Service Function Chain Deployment with
Guaranteed Resilience

Yang Chen and Jie Wu
Center for Networked Computing, Temple University, USA
Email: {yang.chen, jiewu}@temple.edu

Abstract—Network Function Virtualization (NFV) transforms
the implementation of network functions from expensive hard-
wares to software middleboxes. These software middleboxes,
also called Virtual Network Functions (VNFs), are executed on
virtualization platforms, which makes them more prone to error
compared to dedicated hardwares. One effective way of ensuring
VNF robustness is to provision redundancy in the form of
deploying backup instances. Flows usually request to be processed
by a service chain, consisting of multiple chained VNFs in some
order. This paper considers both the resilient VNF deployment
and the routing of flows. We deploy both active and backup VNF
instances while guaranteeing the required VNF service resilience.
Our objective is to minimize the total expected transmission delay
of all flows when the probabilistic prior failure information is
given. We first formulate our problem mathematically. We discuss
the solution for the general network setting. Then, we simplify
some setups and propose performance-guaranteed solutions in
various scenarios with detailed approximation ratio analysis: for
the case of a single flow without backup instances, we propose
four optimal solutions corresponding to the settings of link
transmission delay and server capacity; for the case of a single
flow with backup instances, we extend the algorithms; for the
case of two flows without backup instances, we propose efficient
algorithms with approximation ratios inspired by the solutions
for a single flow.

Index Terms—Delay, deployment, resilience, VNFs.

I. INTRODUCTION

In Software Defined Networks (SDNs), flows usually re-
quest to be processed by a service chain, an ordered set
of Virtualized Network Functions (VNFs). Fig. 1 illustrates
an example of a service chain, consisting of four VNFs:
NAT, Firewall, IDS, and Monitor [1]. Network Function Vir-
tualization (NFV) is the driving force behind the change in
implementing network functions from expensive hardwares to
software middleboxes, which are deployed at switch-connected
servers [2]. With the probabilistic prior failure information
of software middleboxes [3], we consider the resilient VNF
deployment and routing of flows with the objective of min-
imizing the maximum expected transmission delay of all
flows [4]. Beyond the challenges of transitioning to NFV,
extra challenges lie in several aspects as follows: 1) With
prior failure information, there is always a need to meet
a certain level of service chain availability. Backup VNF
instances are deployed in order to increase the availability of

This research was supported in part by NSF grants CNS 1824440, CNS
1828363, CNS 1757533, CNS 1629746, CNS-1651947, and CNS 1564128.

NAT Firewall Monitor

Fig. 1: A service cham example.

the provided service chain. 2) The setting of link transmission
delay and server capacity can be homogeneous (uniform) or
heterogeneous (non-uniform), which complicates our problem.
3) Multiple flows may compete for the same link bandwidth
resource [S5]. In addition, various VNF active and backup
instances can share a server’s capacity. 4) When an active
instance of a network function fails, a flow needs to reroute
to the backup instance of the function to get processed, which
adds extra transmission delay.

Considering all of these challenges leads to our problem:
given the probabilistic prior failure information and the service
chain availability requirement of flows, how we can efficiently
deploy VNF active and backup instances on switch-connected
servers and route flows in order to minimize the total expected
flow transmission delay, when the service chain availability
requirements of flows are satisfied [6]. Therefore, we handle
our problem by proposing effective solutions under some sim-
plified network settings, such as the topology and the required
server resource for deploying a network function instance. We
not only consider the deployment of network functions on
specific topologies, but also study the service chain resilience
issue. We guarantee a certain level of resilience while reserving
resources for future use by selecting several network functions
to have backup instances. In contrast to the existing resilient
resource management schemes for NFV [7-9], we consider
the joint design of resource management schemes accounting
for both normal and failure scenarios.

We use a motivation example to illustrate our problem in
Fig. 2. We are given a toy leaf-spine data-center topology [10],
including spine and leaf switches and server racks. There is
one flow f, whose source and destination are shown in the
figure. It needs to be processed by a service chain, consisting
of four middleboxes in sequence: NAT, Firewall, IDS, and
Monitor. Their active instances are denoted as white boxes
marked with their names. In order to increase the availability
of the provided service chain, three of them have backup
instances, denoted as left-slashed boxes. The red solid line
shows the routing path of f when there is no failure. If the
primary instance of Firewall fails, because of no Firewall

Spine
switch

Leaf

“ switch
RN

"
\ 4

J

@ 4

D@

Fig. 2: A motivation example.

backup instance, the service chain becomes unavailable with
one function not working. If the primary instance of Monitor
fails, the flow will reroute to its backup instance before leaving
the right-most leaf switch, shown in the red dashed line. This
will add extra transmission delay because of a longer path.
In this paper, we study the service chain resilient deploy-
ment with backup instances. We aim at minimizing the total
expected transmission delay among all the admitted flows.
First, we formulate the problem mathematically in the form
of Integer Programming and propose the corresponding solu-
tion for the general case. Then we simplify several settings,
including specific network topologies, the settings of link
transmission delay, and server capacity. We design several
simple but efficient algorithms: For the case of a single flow
without backup instances, we propose four optimal solutions
corresponding to four combinations of link transmission delay
and server capacity. For the case of a single flow with backup
instances, we extend the algorithms. For the case of two flows
without backup instances, we propose efficient algorithms with
approximation ratios inspired by the solutions for a single flow.

II. RELATED WORK

NFV frameworks have drawn a lot of attention, especially in
the areas of VNF deployment and service chain resilience. The
problems of efficient resource management for NFV, including
VNF placement, resource allocation, and flow routing, have
been extensively studied in the literature [11]. Several studies
consider the placement of a minimum number of VNF in-
stances to cover all of the flows. While the case of a single type
of network function is considered in [12], the case of multiple
types of network functions is addressed in [13]. The work
of [14] considers the placement of middleboxes to keep the
shortest path between communicating pairs below threshold,
but this work does not consider multiple network functions.

In other related domains, similar problems have also been
studied. For example, the work in [15] considers the placement
of SDN-enabled routers to maximize the total processed traffic.
They consider a total resource constraint but neglect the lim-
ited resource constraint. Similarly, in the work on link cloud
computing [16], although the resource constraints are consid-
ered, their proposed solution is only for a special case, and
the overall problem does not consider the multi-dimensional
setting. To the best of our knowledge, the multi-dimensional
setting has rarely been considered except in a limited number
of studies. In [17], the authors consider multi-resource VNFs,
with a focus on the analysis of the vertical scaling (i.e., scaling
up/down of various resources) and horizontal scaling (i.e.,

varying number of VNFs instances). The work of [18] focuses
only on request admission and routing. In [19], although the
multi-resource setting is considered, the focus is on how to
balance the traffic load across servers, taking into account
different resource requirements by different network functions.

Most of the existing work on resilience design for NFV
is focused on the standby deployment model [7-9]. This
model requires at least one standby VNF instance for each
primary VNF instance so as to ensure certain availability
when failure occurs. Instead, [20] considers the hot-standby
resilience design, where each standby instance is also active
and is consistently synchronized with the primary instance. In
contrast to backing up instances of the same type of network
functions, [21] takes into account the inherent resource-sharing
property of the virtualized resources and considers models
where each backup server can be provisioned for multiple
types of VNFs; the backup server can be up and running as a
certain type of VNF when failure occurs at some instances of
the corresponding network function. Taking a different path,
[22] studies the problem of VNF recovery by dynamically
reallocating the processing resource of VNF instances. Instead
of having one primary instance and one backup instance,
both instances are actively functioning and have their states
synchronized with each other. When one instance fails, the
other instance will dynamically adjust its processing resource
to accommodate the traffic that is supposed to be processed by
the faulty instance. Taking advantage of the cloud networks,
[23] minimizes the backup cost with edge resource constraints
when considering the availability requirements. It also studies
both the static and the dynamic backup situation.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Resilience

Here we introduce the definition of resilience and the
setting of resilience in this paper. With the advent of Net-
work Function Virtualization (NFV), network functions that
traditionally run on proprietary dedicated hardware can now
be realized using Virtual Network Functions (VNFs) that are
hosted on off-the-shelf general-purpose commodity servers.
While this new network paradigm offers great flexibility to
network operators for efficient management of their networks,
VNF instances based on software implementation running on
general-purpose servers are typically more prone to error and
more vulnerable to security threats compared to dedicated
hardware devices [24, 25]. They can suffer from temporary
unavailability due to mis-configuration or software and hard-
ware malfunction. The VNF resilience can be achieved by
an active-standby deployment, where each network function
has a backup instance, which is activated in case of failure.
Therefore, the NFV paradigm poses new challenges.

Theorem 1: The active and backup instances for one VNF
should be deployed in different servers in order to have a
higher availability of the VNF.

Proof: We prove the theorem by probability analysis. We
need there to be at least one instance between the active

[Symbols [[Definitions |

V,E the set of vertices and edges

¥ availability of server

D p;) availability of middlebox ¢ and its backup

fs Mg, Pr, @yl flow, its traffic rate, path set, its required service chain
srcy,dsty the source and the destination of the flow

Vs service chain availability requirement of flow f

de, Ce transmission delay and remaining capacity of link e

zz indicator function of middlebox ¢ having a backup on v
ag, a:b availability of VNF ¢ primary and backup instances

TABLE I: Symbols and Definitions.

instance and the backup one for each VNF ¢ that is avail-
able. If both the active instance and the backup instance are
deployed in the same server, the availability of the VNF ¢
is equal to a; = v [1 — (1 — ay)?]. If they are distributed
to different servers, the availability of the VNF ¢ is equal
to ag =1 — (1 — - ay)? Then we calculate the difference
between these two values:

az—a1=1-(1=7-0g)* =7 [1-(1-ay)’]
= (27 a5 — (7 -@p)?) = (2y-ay —7-af) =v-ai(1-7)
We know that the availability of a server « is always less than
1, even though it is close to 1. Then we have ay —a; > 0,
illustrating that the distributed deployment has a higher avail-
ability. As a result, the active and the backup instances need
to be deployed in different servers.]

B. Network model

When we have the probabilistic prior failure information,
we consider the problems of VNF deployment, resource al-
location, and flow routing with resilience guarantees against
both hardware and software failures. In certain scenarios,
such information can be learned from failure analytics using
historical data. We first consider software failure only. That
is, each VNF instance may fail independently due to software
errors, but other VNF instances at the same VNF-node could
still be functioning. We also discuss how to provide resilience
guarantees against both software and hardware failures.

Let &y = (}c, .. .,¢|f<bf|) be the required SFC for flow
f, where |®| is the chain length of the SFC for flow f.
In order to ensure resilience against failure and improve the
availability of the required SFC for a flow, we may allocate
backup instances of the same type of network function in
addition to its active instance. We assume that each deployed
VNF instance (active or backup) is for an individual flow and
not shared by other flows. By slightly abusing the notation,
we also use ®; to denote the set of network functions in the
SFC for flow f when there is no ambiguity. Let a® € [0,1]
be the availability probability of a VNF instance of network
function ¢, let n?(v) be the total number of VNF instances
of network function ¢ € ®; (including active and backup)
for flow f at node v, and let a? € [0,1] be the availability
probability of network function ¢ € ®; for flow f (taking
into account both the active and backup instances). Hence, we
have a? =1-(1- oﬂ’)zﬁvn?(v).

C. Problem formulation

Our objective is to minimize the maximum expected trans-
mission delay of all flows based on the VNF failure probability
distribution. The expected transmission delay of a flow f is
denoted as Dy, which is the probability-weighted average
transmission delay based on the probabilistic distribution of all
failure cases when its provided service chain is still available.
Note that when an instance fails, we still use the other
active VNF instances in the service chain. Then Dy can be
formulated as Dy=3%", djc - pgc if the probability of a failure
case i is p% and the transmission delay of f under the case
is d}. (Cas_e 0 is When_ none of the active_: instances fail.) We
have 3, p} =1 and d} = Zeep} de if p} is the routing path
of f under case i. p’]} includes the same routing path of p?,
excluding the partial path from the failed active instance to
its backup instance. This can make sure that the new routing
path can still satisfy the constraints of the functioning and
processing sequence.

For the service chain processing, we first need to make sure
each flow is processed by all VNFs in its required chain of
active instances along its routing path py € Py, where Py is
the set of feasible paths of flow f. Let ®(v) be the set of VNF
instances (including both active and backup ones) deployed at
node v, and let ®(V) = [®(v)]yey be its vector form. We
formulate this functioning constraint as:

Z 1{4)6@(1})} =1,V¢ € CI)f,Vf e F

veEps

(D

Secondly, each VNF ¢ € @; needs to process f in
the sequence of the chain along its routing path py. This
sequence constraint can be formulated as: Vv;, v; € py and
Vom, ¢n € ®f, and we require that it satisfies the following
constraint:

2

Then, to satisfy the SFC processing sequence, we always
deploy the active instances according to the required order. Fi-
nally, each flow f has a service chain availability requirement,
denoted as ay. Its accumulated availability of the provided
service chain with deployed active and backup instances,
which is denoted as ay, can be expressed as ay = H¢e¢>f ag.
We need to make sure that each flow f € F meets its service
chain availability requirement, which can be expressed as:

i <j, if ¢, € ®(v;), ¢ € P(vj) and m < n

CLfZO[f,VfE]‘— 3)

Note that when the availability of the provided service chain
can be satisfied, we should deploy as few backup instances as
possible in order to save resources for future use. This problem
has been proved NP-hard in [26]. In this paper, we directly
apply the proposed solutions in [26] to decide which functions
should have backup instances.

Our problem has been proved NP-hard even when there is
no resilience requirement [2]. In order to give some inspiration
for the problem, we simplify some of the settings of our
problem and propose efficient algorithms with approximation

Algorithm 1 Solution of case 1

Algorithm 2 Solution of case 2

In: Flows f, its required service chain ¢; and sets of vertices
V, links F;
QOut: The placement plan and its routing path;
1: Find the number of servers with enough total capacity to
deploy all VNFs as [;
2: Select any path with exactly [— 1 hops from source to
destination;
3: Return the deployment plan and its routing path.

ratios in four special cases. In the next section, we focus on
the leaf-spine network topology, which is one of the most
popular topologies used in today’s datacenters [10]. For the
settings of link transmission delay and server capacity, we have
two kinds: uniform and non-uniform (various). Based on their
different settings, we have four combinations. As the required
resource of each VNF is the same as a unit, we can check the
feasibility of the service chain deployment by comparing the
sum of residual capacity of each server in the network with the
total number of VNFs in the required service chain. With the
objective of minimizing the total expected transmission delay
and the three constraints, our problem can be formulated as:

minimize Y Dy 4)
(V),p fer
subject to (1), (2),(3) Q)

IV. SOLUTION FOR SPECIAL CASES

Our problem has been proved NP-hard even when there is
no resilience requirement [2]. In order to give some inspiration
for the problem, we simplify some settings of our problem
and propose efficient algorithms with approximation ratios in
four special cases. In this section, we focus on the leaf-spine
network topology, which is one of the most popular topologies
used in today’s data centers [10]. For the settings of link
transmission delay and server capacity, we have two kinds:
uniform and non-uniform (various). Based on their different
settings, we have four combinations. In the following, we
discuss different solutions corresponding to each combination.

A. Single flow without backups

We start with a simple case that there is only a single flow
request, making our objective simplified as min Dy. If the
availability of active VNF instances in ®; is high and we have
[Tay > af, then no backup instance for the requested service
chain is needed. When there is only one flow f in the flow set
F, we can eliminate all links, whose capacities are less than
Ay. This makes our formulation have one less constraint. Our
problem becomes deploying the requested service chain of f
and finding a path for f, in order to minimize its expected
total transmission delay.

First, suppose that the availability of the active VNF in-
stances is high enough and no backup instance is needed.
There are two constraints: link transmission delay d. and
server capacity c,. Based on their uniform or non-uniform

In: Flows f, its required service chain ¢ and sets of vertices
V, links E;
Out: The placement plan and its routing path;
1: Deploy VNFs from the start of the service chain to use
up the server capacity in flow source;
2: Deploy VNFs from the end of the rest of service chain to
use up the server capacity in flow destination;
3: Sort the server capacity;
4: Select the servers with the largest capacity to deploy the
residual VNFs in sequence until fully deployed;
5: Return the deployment plan and its routing path.

settings, we can divide the problem into four cases and propose
one corresponding solution: (1) case 1 (Alg. 1): uniform d, and
uniform ¢,, (2) case 2 (Alg. 2): uniform d. and non-uniform
¢y, (3) case 3 (Alg. 3): non-uniform d, and uniform c,, and
(4) case four (Alg. 4): non-uniform d. and non-uniform c,.
Next, we discuss each solution in details as follows:

In Alg. 1, line 1 calculates the length of f’s routing
path because the server capacity is uniform. Since the link
transmission delay is also uniform, no matter which link we
select to route the flow, the total transmission delay is identical
for any path with a fixed length. Line 2 selects the routing path
with [— 1 hops. The result of the deployment plan and the
routing path of the flow f are returned in line 3. The insight of
the solution is to find a path with enough total server capacity
for deploying all instances of the service chain.

When the server capacity is non-uniform, our proposed Alg.
2 is a little more complex than Alg. 1. The insight of Alg. 2
is to select a path that consists of the servers with the largest
capacity in order to shorten the flow routing path. Lines 1-2
use up the capacity of the servers hosted at the source and
the destination of the flow. We sort the server capacity in line
3. Line 4 routes the flow f to the path along servers with
the largest capacity until all instances of its requested service
chain are deployed. The deployment plan and the routing path
are returned in line 5.

In case 3, a Dynamic Programming (DP) based algorithm
is included in Alg. 3. In order to ensure the deployment
feasibility of the service chain, we need to check the total
capacity of the bypass servers larger than the length of the
requested service chain. Then we define DP(v;, k) as the
minimum delay from the source of the flow src to the current
node v; with k£ hops. Here we list the formulation of our
dynamic programming method as:

min DP(dst, | Py|) (6)
P.f

v; EPf

DP(src,k) =0 VE < |Py| (8)

DP(v;, k) = min {DP(’Uj, k—1)+dj+ di;} 9)
i#£j#l ' '

Algorithm 3 Solution of case 3:
One Flow without backup Solution (ONS)

In: Flows f, its required service chain ¢; and sets of vertices
V, links F;
Out: The placement plan and its routing path;

1: Sort link transmission delay of links in an increasing order.

2: Calculate the number of servers with a total capacity no
less than |¢¢|, which is [%]

3: Use the dynamic programming solution to calculate the
minimum transmission delay from v, to vg with a hop
length as [@]

4: Return the devployment plan and its routing path.

The initial value is DP(src, k), which equals 0 for all k <
|Pf|. The value of DP(v;, k) is the minimum value among
all the values, which are the summation of the delay of its
previous hop v; with k£ —1 hops, DP(v;, k—1), plus the delay
between v; and v; through v;, which is d;; +d;;. We also have
i # j # k. Our objective is to find the minimum delay between
the source src and the destination dst with |P¢| hops, which
is DP(dst, | Py|). We propose the complete algorithm in Alg.
3 for the case with settings of various link transmission delay,
and uniform server capacities. Line 1 sorts all link transmission
delays in an increasing order. Line 2 calculates the number of
servers to deploy all the active instances, which is the value
of |Py|. We apply the dynamic programming method to find
the path with the minimum transmission delay DP(dst, | Pf|)
in line 3. Line 4 returns the result.

When both the link transmission delay and the server
capacity are non-uniform, we cannot figure out the path length
of the flow f. As a result, we need to try all possible values
of the length, starting at 1. The maximum path length is
the total number of leaf switches, meaning the instances of
the requested service chain are deployed at all leaf-switch-
connected servers. We propose the solution in Alg. 4. Line 1
specifies the path length. When we fix the path length, Alg.
3 is applied in line 2 because the remaining problem is the
same with case 3. Line 3 selects the optimal one among all
the obtained paths. The deployment plan and the routing path
are returned in line 5.

Theorem 2: Algs. 1, 2, 3, and 4 are optimal. The time
complexities of the proposed solutions are listed in Tab. II.

Proof: Simply speaking, for the cases with uniform link
transmission delay, our solutions are based on the shortest
path algorithm. For the cases with various link transmission
delay, our solutions are based on the dynamic programming
method. Because of the optimality of the original algorithms,
our solutions are also optimal. Explanations are as follows:

(1) For Alg. 1, when we have uniform server capacity, we
can calculate the number of servers that can hold all VNF
instances as | = (lqﬁf ‘1 If the link transmission delay is also
uniform, the minimum total delay is [- d. when we select any
path from srcy to dsty along [servers, which has [— 1 hops.
The time complexity is O(N) for finding a path with [links.

Algorithm 4 Solution of case 4

In: Flows f, its required service chain ¢ and sets of vertices
V, links E;
Out: The placement plan and its routing path;
1: Increase the hop length of the path [from 1 to N;
2: Find the minimum delay [-hop path with enough server
capacity by Alg. 3;
3: Select the path with the minimum delay among all various-
hop paths;
4: Return the deployment plan and its routing path.

Time Complexity|Uniform d.|[Non-uniform de
O(N) O(NlogN)
O(N?®) O(N?)

Uniform ¢,

Non-uniform ¢,

TABLE II: Time complexity.

(2) For Alg. 2, when the server capacity is non-uniform
but the link transmission delay is still uniform, in order
to minimize the total transmission delay, we need to find
the minimum number of servers to hold all VNF instances.
Because of the full connectivity property of the leaf-spine
topology, we select the servers in decreasing order of their
capacity until the total capacity can hold all the VNF instances.
Then the path is optimal with the minimum transmission
delay. As we need to sort the capacity of all servers, the time
complexity is O(N log N).

(3) For Alg. 3, when the link transmission delay is non-
uniform, the solutions are not trivial. We can treat the trans-
mission delay of each link as its weight, then our problem
changes into finding a minimum total weight path with [— 1
links between two fixed nodes. We solve this problem by using
the dynamic programming method, which generates an optimal
solution. According to the formulation of our DP solution, the
time complexity is O(IN?3) for finding a path with [links.

(4) For Alg. 4, when both link delay and server capacity
are non-uniform, our problem becomes more complicated. We
cannot simply know the length of the optimal path, so we have
to try it as a priori ranging from 1 to N. When the length
of the path is k, we apply the same dynamic programming
method as in case 3. If there is a feasible solution, then it is
the optimal path with the minimum transmission delay. As the
length of the optimal path is unknown, we need to try N times
at most. For each fixed length, the time complexity is the same
as case 3, which is O(N 3). Then, the total time complexity
is O(N3- N) = O(N*). Since our solutions for the cases are
optimal, our theorem holds. |

B. Single flow with backups

When the availability requirement «; is higher than the
availability of the service chain with only active instances
[Ty, we need to add backup instances of selected VNFs in
order to increase the availability of the provided service chain.
Then when a failure happens, we can use its corresponding
backup instance of the same network function and the service
chain would still be available. When we need to add backup
instances, our problem needs to be decomposed into three

% 0.9

b 0.9

%0,9

% 0.7
@0.85

1 51
%05 14109
& &

[selection 2 0.95 0.9

Fig. 3: Two backup selection strategies.

sub-problems: 1) backup selection: which VNFs need to have
backups, 2) deployment: where to deploy the service chain
with backup instances at VNF nodes, and 3) routing: how to
route the flow f to get processed by its requested service chain
under all failure cases.

For the backup instance selection problem, we apply the
solution in [26], which has already studied the same problem:
finding the minimum number of backup VNFs in order to
guarantee a certain degree of availability of a service chain.
They also prove that the backup selection problem is NP-
hard. Here we use a motivating example, shown in Fig. 3, to
illustrate our backup selection problem. We are given a service
chain that consists of 4 primary VNFs. Their availability
probabilities are 0.9, 0.8, 0.9, and 0.85. Thus, the availability
of the service chain is 0.9 - 0.8 - 0.9 - 0.85 = 0.5508, which
cannot meet most flows’ requirements. As a result, we need to
induct redundancy in order to mask failures. Here we use the
traditional active/standby (i.e., 1+1) redundancy model [27]
such that the primary VNF can be failed over to the standby
entity in case it fails. We suppose the availability requirement
is 0.75. The solid line and the dashed line represent two redun-
dancy deployment strategies. Their availability probabilities
are calculated as (1—0.1-0.1)-0.8-(1—-0.1-0.3)-(1-0.1-0.15) =
0.7567 and 0.9-(1—0.2-0.05)-0.9- (1 —0.1-0.15) = 0.7898,
respectively. While both strategies can achieve the availability
requirement, it is clear that the solid one uses fewer backup
VNFs and may save resources for other chain requests.

Alg. 5 is the complete algorithm to deploy the active and
backup instances for the case with the settings of various link
transmission delays and uniform server capacity. Line 1 sorts
all link transmission delays in an increasing order. Line 2
calculates the number of servers needed to deploy all the active
instances. We apply the dynamic programming method to find
the path with the minimum transmission delay in line 3. Line
4 sorts the availability of all backup instances in the service
chain. Line 5 decides the functions with backup instances and
deploys the backup instances primarily. For the other instances,
we select the server to deploy them in line 6. Line 7 returns
the final deployment plan.

Here we provide a motivating example in Fig. 4. We use
the result of the above example as the service chain with
backup instances that need to be deployed in a toy leaf-spine
topology, shown in Fig. 4. The service chain is required by
one flow f, whose source and destination are as shown in the
figure. We assume all links’ transmission delays are identical,
i.e., uniform. The circles are switches and the rectangles
are switch-connected servers. The grey parts illustrate the
unavailable resources, which makes the server capacities non-
uniform. Fig. 4 shows one optimal deployment strategy with
the minimum total transmission delay. The active instances

Algorithm 5 One Flow with Backup Solution (ONBS)

In: Flow f, its required service chain ¢ and sets of vertices
V, links F;
Out: The placement plan;

1: Sort the hop transmission delay of links.

2: Calculate the number of servers with a total capacity no
less than |¢|, which is [121].

3: Use the dynamic programming algorithm to calculate the
minimum total transmission delay from v to vy with a
path length as [l(f—”]

4: Sort the availabilitvy of all backup instances.

5: Deploy the active service chain as well as the top [lff ‘] .
¢y — |¢y| instances with the highest availability at the
selected servers. The sequence of all these active and
backup instances follow the order of the service chain.

6: For rest backup instances, deploy them in the rest Ll(f—f”
servers in the increasing order of link transmission defﬁy.

7: Return the deployment plan.

are white rectangles while the backup ones are the slashed
rectangles. The routing path of f is shown by the red solid
directed line. As the link transmission delay is uniform, the
red solid path has the minimum total delay. Additionally, we
use the dotted red line to illustrate its rerouted path when
the active instance of network function ¢, fails. It is also the
minimum rerouted path because it only adds one extra hop
to its original path. However, if the link transmission delay
is non-uniform, the deployment problem with the objective
of minimizing the expected total delay becomes much more
complicated, especially when the failure probabilities of each
network function are variable.

C. Two flows without backups

In this subsection, we handle the case with two flows, whose
required service chains are the same. We also start with the
case that both of them do not need to deploy backup instances.
Specifically, suppose we have two flows, f and f’, that have
the same source and destination, as well as their requested
service chain. We can also assume they are two sub-flows
of one flow, whose traffic rate is divided into different paths.
We require their paths to be edge-disjoint for the purpose of
load balancing. We propose the solution in Alg. 6. In Alg.
6, line 1 divides the resource at all nodes proportional to the
traffic rate ratio of these two flows, which is Ay /\’. We apply
the corresponding solution for a single flow with its allocated
server resource in line 2. Then we combine the residual node
resource of f with the allocated resource for f’ in line 3, and
similarly apply the solution for f’ in line 4. Line 5 returns the
deployment plan. The time complexity is the same as Alg. 3.
We illustrate the insight of this heuristic solution in Fig. 5. This
solution is performance guaranteed as shown in the following
Theorem 3. The extra challenge here is to generate an optimal
solution or a performance-guaranteed solution with a better
approximation ratio for two such flows without backups.

:

Fig. 5: Tllustration of greedy solution.

Theorem 3: The proposed solution has a total expected
transmission delay of at most (1 + [A};/Af]) times that of
the optimal solution.

Proof: When no backup instance is needed and link delays
are uniform, the number of links in the path of each flow is
at most (1 + [A};/Af]) times that of the optimal solution for
a single flow. Because of uniform link delays, this results in
a total expected delay with an approximation ratio of (1 +
[As/Af]) to that of the optimal solution. |

D. Two flows with backups

The above preliminary results do not handle the case of two
flows with backups, or more generally, multiple flows with
backups. When we need to add backups for their requested
service chains, our problem becomes much more complicated
because of the resource competition. We can simply extend
the solution for the case of two flows without backup in Alg.
6 by applying Alg. 5 in lines 2 and 4. For future work, we
would like to try to generate some approximation heuristic
algorithms or apply some solutions of integer programming.
Even when there is no backup, our problem can be reduced
to a maximum latency problem, which is NP-hard. We would
like to try to generate some approximation heuristic algorithms
or apply some solutions of integer programming in the future.

Additionally, there is a novel approach to provide backup
instances by maintaining only a few backup servers, where
each can serve one of multiple functions when the corre-
sponding middleboxes are unavailable. We can also study the
resilience issue based on this backup provision model. It adds
an extra challenge of determining which network functions to
implement in each of the backup servers in order to have a
higher availability of the provided service chains. We may rely
on the graph theoretical model to propose efficient strategies.

V. SIMULATIONS
A. Experimental settings

We do our simulations on the leaf-spine network topologies
[10]. The number of leaf and spine switches are 200 and
100, respectively. The link transmission delay is a random
number ranging from 0.1 ms to 1 ms. The default uniform
link transmission delay is 0.5 ms. The server capacity is a

Algorithm 6 Two Flows Without Backup Solution (TFS)

In: Flows f and f’, their required service chain ¢; and sets
of vertices V, links F;
Out: The placement plan;
1: Divide the resource at all nodes proportional to Ag/A;
2: Apply Alg. 3 for flow f with its allocated resource;
3: Update the allocated resource for flow f’ with f residual
resource;
4: Apply Alg. 3 for flow f’ with its allocated resource;
5: Return the deployment plan.

random integer ranging from 10 to 100. The default uniform
server capacity is 50. There are 20 types of middleboxes. The
availability of active and backup instances for each type is
a random number ranging from 0.7 to 0.9, respectively. The
source and destination of each flow are generated randomly
among all leaf switches. Each service chain has a length
ranging from 3 to 6, all of whose middleboxes are selected
from the 20 types. The availability requirement of each service
chain is a random number ranging from 0.6 to 0.8. The variable
is the number of incoming flows ranging from 1000 to 9000
with a stride of 1000.

B. Comparison algorithms and performance metrics

We include three comparison algorithms to evaluate our
proposed solutions from different perspectives. Optimal so-
lution (OPT): We use the integer programming solver to get
the optimal solution of our input. Distributed Greedy Solution
(DGS): All active and backup instances are deployed in
different servers. All instances in the service chain are greedily
deployed in sequence on the server with residual capacity,
making the increment of the transmission delay minimized.
Central Greedy Solution (CGS): All backup instances are
deployed in one server with enough residual capacity. We
select the server that can make the expected transmission delay
minimized. We evaluate three of our proposed algorithms: (1)
ONS: algorithm for the single flow without backup instances,
(2) ONBS: algorithm for the single flow with backup instances,
and (3) TFS: algorithm for the two flows without backup
instances. There are four performance metrics that we use to
compare the algorithms: (1) the total expected transmission
delay, (2) the largest expected transmission delay among all
flows, (3) the length of the longest flow path, and (4) the
execution time. We evaluate all metrics for three cases: (1)
one flow without backups, (2) one flow with backups, and (3)
two flows without backups.

C. Results for one flow without backups

Fig. 6 shows the results of changing the number of flows
from 1000 to 9000 when we have only one flow without
backup instances for their requested service chain at each time.
Our proposed algorithm for this case is called Alg. ONS.
Fig. 6(a) shows the result of the total expected delay. OPT
has the best performance with the minimum total expected
transmission delay while our proposed ONS has the second

AT
> A-Cas 6
© |-O-DGS E
33l ons %
i orT g
g2 m
% o
m 2
s 5
P :
pre s :
OA L
2000 .

4000 6000
Number of flows

8000

4000
Number of flows

6000 8000

(a) Total expected delay.
-4-CGs

(b) Largest single expected delay.
3000

A
. o o
S Q ONS
()
- f - £ 2000 | 0PT
a c
Q 2
3 . 3
&6 SO e 1000
S | _o-f il In]
R
L P g
2000 4000 6000 8000 2000 4000 6000 8000

Number of flows Number of flows

(c) Longest path length. (d) Execution time.

Fig. 6: One flow without backups.

smallest total expected delay. The delay of Alg. ONS is at most
23.1% more than that of the optimal solution. Alg. CGS has
the largest total delay because deploying all backup instances
in one single server reduces the chance of finding a path with
a smaller length. Fig. 6(b) shows the largest expected delay
of a single flow when we change the number of flows. The
largest expected delay among all flows becomes larger. When
the number of flows increases, the largest single delays and the
length of the longest path for running all algorithms become
larger. This is because it is more difficult to find a shorter
path for a flow to place all instances for its required service
chain. The result for the longest flows’ path is shown in Fig.
8(c). The path length becomes larger, especially for the Algs.
CGS and DGS. The increment is more than 80.3% when the
number of flows changes from 1000 to 9000. Our proposed
ONS algorithm has a close performance with the optimal
solution, which indicates its efficiency. Alg. CGS has the worst
performance with the largest path length. Fig. 6(d) shows the
execution time of running all the algorithms. OPT needs to find
the minimum delay value in each time, which makes it much
more time-consuming than the others. The changing tendency
of the execution time is in a form of exponential increment.
The execution times of the other three algorithms are quite
close while the performance of our proposed Alg. ONS is
much better than Algs. CGS and DGS.

D. Results for one flow with backups

Fig. 7 shows the results of running all algorithms when we
have one flow with the need to place backup instances for
their requested service chain. Our proposed algorithm for this
case is called Alg. ONBS. More VNF instances are deployed
in order to meet the availability requirement of the service
chains. So the delay and the path length of each flow become
a little bit larger. Fig. 7(a) shows the result of the total expected
delay. OPT has the best performance with the minimum total
expected delay while our proposed ONBS has the second

x10° >

. A-CGS 3

& |-O-DGS o

8 6|-0NBS 2

8 OPT Gé_

|53 [0}

g4 o

8 2

82 2

2 g
i e o

S 40
2000 4000 6000 8000 2000 4000 6000 8000

Number of flows Number of flows
(a) Total expected delay.

-4-CGS

(b) Largest single expected delay.
5000

-
>

< ., |-o-pas =-ces
€12 _o- -0-DGS
5 ONBS © g4000 ONBS
5 10 _;_:, 3000 OPT
< <]

Q =

B 8 §2ooo

2 ¢ h

3 & 1000

‘ o —
2000 4000 6000 8000 2000 4000 6000 8000

Number of flows Number of flows

(c) Longest path length. (d) Execution time.

Fig. 7: One flow with backups.

smallest expected delay. Alg. CGS has the worst performance
with the largest total transmission delay, which can be more
than 5 times than that of Alg. OPT. This indicates that it is not
enough to only deploy all backup instances on a single server,
which directly results in a larger path length. In Fig. 7(b), the
largest expected delay among all flows becomes larger because
more flows are inserted, and less server capacity is left. When
the number of flows increases, the increment of the total delay
of all algorithms becomes larger. This is because it becomes
more difficult to find a shorter path for a flow to place all
instances for its required service chain. The path length of
the incoming flow becomes longer, which has a direct impact
on the total transmission delay. Fig. 7(c) shows the result of
the largest path length of a single flow. Our proposed ONBS
algorithm has a close performance compared with the optimal
solution, which indicates its efficiency. Fig. 7(d) shows the
execution time of running all the algorithms. OPT needs to
find the minimum delay value in each time, which makes it
much more time-consuming than the other algorithms. The
result demonstrates the trade-off between the performance and
the efficiency of the algorithms. Our proposed Alg. ONBS
has a much lower execution time than Alg. OPT while their
performances on the last three metrics are close.

E. Results for two flows without backups

Fig. 8 shows the results of changing the number of flows
from 1000 to 9000 when we have two flows without backup
instances each time. Our proposed algorithm for this case is
called Alg. TFS. Fig. 8(a) shows the result of the total expected
delay. When the number of flows increases, the increment
of the total delay of all algorithms becomes larger. This is
because it is more difficult to find a shorter path for a flow
to place all instances for its required service chain. The path
length of the newly-coming flow becomes longer, which has a
direct impact on the total transmission delay. OPT has the best
performance with the minimum total delay while our proposed

=
- -A-CGS)
& |-O-DGS i
86|+ TFs £
E OPT :.J_
34 o
o <
3 2
T2 w OG- e
S R I
o % 40 e
2000 4000 6000 8000 2000 4000 6000 8000
Number of flows Number of flows
(a) Total expected delay. (b) Largest single expected delay.
12

“A-CGS 6000 A-Cas
£ |[©ODbes -0-DGS
(=]
g 10 TFS © TFS
e [mOPT £ 4000 |- 0PT
g8 S
5 5
o) (5}
g d E 2000
o

4000 6000
Number of flows

2000 4000 6000

Number of flows

8000

2000 8000

(c) Longest path length. (d) Execution time.

Fig. 8: Two flows without backups.

TES has the second smallest total expected delay. In Fig. 8(b),
the largest expected delay among all flows becomes larger
because more flows are inserted, and less server capacity is
left. Our proposed TFS algorithm has a close performance
with the optimal solution, which indicates its efficiency. On
average, the largest delay of Alg. TFS is just 27.9% more
than that of the optimal solution. As for the result for the
longest flows’ paths, shown in Fig. 8(c), Alg. CGS has the
worst performance with the largest path length. This indicates
that it is not enough to only deploy all backup instances on a
single server, which directly results in a larger path length. Fig.
8(d) shows the execution time of running all the algorithms.
OPT needs to find the minimum delay value in each time,
which makes it much more time-consuming than the other
algorithms.

VI. CONCLUSION

We not only consider the deployment of network functions
on specific topologies, but also study the service chain re-
silience issue. Our objective is to minimize the maximum
expected transmission delay of all flows based on the VNF
failure probability distribution. For the general case, our
problem is formulated as an Integer Programming problem.
Then we specialize several settings and focus on the leaf-
spine topology, where we propose performance-guaranteed
solutions in various scenarios: For the case of a single flow
without backup instances, we propose four optimal solutions
corresponding to four combinations of link transmission delay
and server capacity. For the case of a single flow with backup
instances, we extend the algorithms. For the case of two flows
without backup instances, we propose efficient algorithms with
approximation ratios inspired by the solutions for a single flow.

REFERENCES

[1] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in SIGCOMM 2017.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

(271

Y. Chen, J. Wu, and B. Ji, “Virtual network function deployment in
tree-structured networks,” in ICNP 2018.

A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in SIGCOMM 2014.

C. Voudouris, G. Owusu, R. Dorne, and D. Lesaint, Service chain
management: Technology innovation for the service business. Springer
Science & Business Media, 2007.

Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-edge
service function chaining for cost-efficient edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 8, pp. 1866—
1880, 2019.

J. Sherry, S. Ratnasamy, and J. S. At, “A survey of enterprise middlebox
deployments,” in Semantic Scholar, 2012.

J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu, “Raba:
Resource-aware backup allocation for a chain of virtual network func-
tions,” in INFOCOM 2019.

L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A reliability-aware
network service chain provisioning with delay guarantees in nfv-enabled
enterprise datacenter networks,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 554-568, 2017.

M. T. Beck, J. F. Botero, and K. Samelin, ‘“Resilient allocation of service
function chains,” in NFV-SDN 2016.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in SIG-
COMM 2014.

A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 2, pp. 1409-1434, 2018.

Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,”
in INFOCOM 2017.

G. Sallam, G. R. Gupta, B. Li, and B. Ji, “Shortest path and maximum
flow problems under service function chaining constraints,” in INFO-
COM 2018.

T. Lukovszki, M. Rost, and S. Schmid, “Approximate and incremental
network function placement,” Journal of Parallel and Distributed Com-
puting, 2018.

K. Poularakis, G. losifidis, G. Smaragdakis, and L. Tassiulas, “One step
at a time: Optimizing sdn upgrades in isp networks,” in INFOCOM
2017.

A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably efficient
algorithms for placement of service function chains with ordering
constraints,” Ph.D. dissertation, Université Cote d’Azur, CNRS, I3S,
France; Inria Sophia Antipolis, 2018.

H. Yu, J. Yang, C. Fung, R. Boutaba, and Y. Zhuang, “Ensc: Multi-
resource hybrid scaling for elastic network service chain in clouds,” in
ICPADS 2018.

G. Even, M. Medina, G. Schaffrath, and S. Schmid, “Competitive and
deterministic embeddings of virtual networks,” Theoretical Computer
Science, vol. 496, pp. 184-194, 2013.

T. Wang, H. Xu, and F. Liu, “Multi-resource load balancing for virtual
network functions,” in ICDCS 2017.

S. G. Kulkarni, G. Liu, K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “Reinforce: Achieving efficient failure resiliency for network
function virtualization based services,” in CoNEXT 2018.

Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Optimizing
virtual backup allocation for middleboxes,” IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 2759-2772, 2017.

R. Xia, H. Dai, J. Zheng, R. Gu, X. Wang, and G. Chen, “Safe: Service
availability via failure elimination through vnf scaling,” in /CPP 2019.
X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service function
chain backup cost over the edge and cloud by a self-adapting scheme,”
in INFOCOM 2020.

P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: Measurement, analysis, and implications,” in SIGCOMM
2011.

S. Lal, T. Taleb, and A. Dutta, “Nfv: Security threats and best practices,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 211-217, 2017.
J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping of
service function chains,” in INFOCOM 2017.

R. Potharaju and N. Jain, “Demystifying the dark side of the middle: A
field study of middlebox failures in datacenters,” in IMC 2013.

