Reliable Broadcast with Joint Forward Error Correction and Erasure Codes in Wireless Communication Networks

Pouya Ostovari and Jie Wu

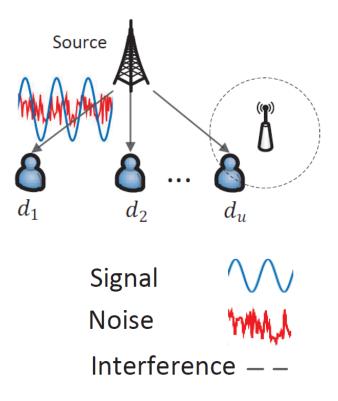
Computer & Information Sciences Temple University

Center for Networked Computing http://www.cnc.temple.edu

Agenda

- Introduction
 - Motivation
- Cross-layer protection
 - Formulation
 - Proposed method
- Evaluations
- Conclusions

Introduction


- Advances in technology of mobile devices
 - Smartphones and tablets
- Wireless connections
 - Are widely used
 - Internet is accessible everywhere
- Reliable transmission
 - ARQ
 - Erasure codes
 - Hybrid-ARQ
 - Fountain codes (rateless codes)

114				
:Ċ:		•	100	0
		8		
		0	-	-
			1	2
			- 22	
	÷			

Transmission Errors

- Noise
 - Forward error correcting codes (FEC)
 - Adding redundant bits to find and correct bit errors
 - Physical layer
- Interference
 - Packet erasure codes (EC)
 - Transmitting redundant packets
 - Application and network layers

Network Coding

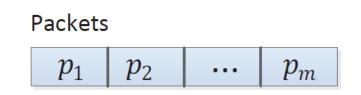
- Random linear network coding
 - Linear combinations of the packets
 - Gaussian elimination

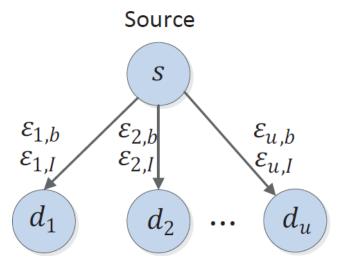
$$q_1 = \alpha_{1,1}p_1 + \alpha_{1,2}p_2 + \alpha_{1,3}p_3$$

$$q_2 = \alpha_{2,1}p_1 + \alpha_{2,2}p_2 + \alpha_{2,3}p_3$$

$$q_{\rm n} = \alpha_{n,1} p_1 + \alpha_{n,2} p_2 + \alpha_{n,3} p_3$$

- Applications of network coding
 - Reliable transmissions
 - Throughput/capacity enhancement
 - Distributed storage systems/ Content distribution/ Layered multicast

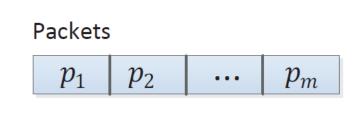

Cross-Layer Reliable Transmission

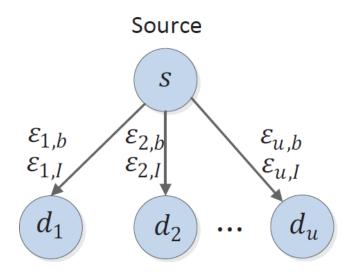

- Joint FEC and EC
 - Deciding about the amount of redundancy to be added for FEC and EC
- Previous work
 - Theoretic result for the case of single destination
 - Muriel Medard: implementation on sensor network
 - Shows that joint FEC-NC is effective
 - Depending on noise and interference level, more NC or FEC redundancy enhances the reliability
 - No method for redundancy distribution

Setting

- Single source
 - Transmits a set of *m* packets
 - Size of each packet: *n* bits
 - Source can transmit *X* bits

- Two sources of errors
 - Noise and interference
 - Different noise and interference probabilities

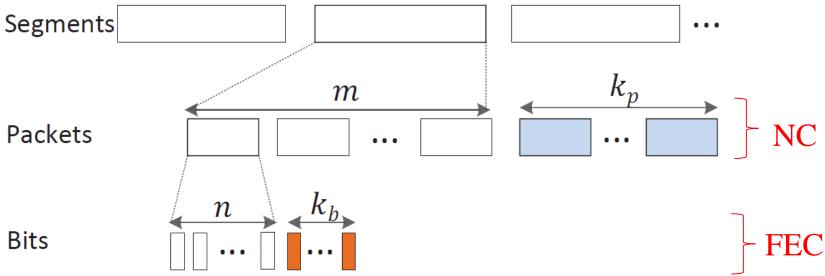



Setting

- Provide protection for the packets
 - Joint FEC and NC

Objective

 Finding the optimal transmission scheme that maximizes the probability of receiving the *m* packets by the destinations



Joint Coding Scheme

- 1. Segmentation
- 2. Applying network coding
- 3. Adding FEC to each network coded packet

Problem Formulation

- Erasure due to noise
 - When bit errors cannot be corrected

$$\epsilon_{i,e} = 1 - \sum_{j=n}^{n+k_b} \binom{n+k_b}{j} \epsilon_{i,b}^{n+k_b-j} (1-\epsilon_{i,b})^j$$

• Erasure due to noise and interference

$$\epsilon_i = \epsilon_{i,e} + (1 - \epsilon_{i,e}) \times \epsilon_{i,I}$$

• Successful transmission of the *m* packets

$$q_i = \sum_{j=m}^{m+k_p} \binom{m+k_p}{j} \epsilon_i^{m+k_p-j} (1-\epsilon_i)^j$$

Problem Formulation

$$\max \prod_{i=1}^{u} q_i$$

e.t $q_i = \sum_{j=m}^{m+k_p} {m+k_p \choose j} \epsilon_i^{m+k_p-j} (1-\epsilon_i)^j, \ \forall i: 1 \le i \le u$
 $\epsilon_{i,e} = 1 - \sum_{j=n}^{n+k_b} {n+k_b \choose j} \epsilon_{i,b}^{n+k_b-j} (1-\epsilon_{i,b})^j, \ \forall i: 1 \le i \le u$
 $\epsilon_i = \epsilon_{i,e} + (1-\epsilon_{i,e}) \times \epsilon_{i,I}, \quad \forall i: 1 \le i \le u$
 $(n+k_b) \times (m+k_p) \le X$

Finding Optimal Distribution

- The probability equation cannot be simplified into a closed-form
- Two-phases algorithm
 - Offline phase: creating a reference table which shows the success delivery of the packets for each possible FEC and NC redundancy levels
 - Online phase: performing a search on reference table to find the optimal FEC and NC levels
 - Depending on the noise and interference probabilities of the users

Reference Table Creation

Algorithm 1 Reference Table Creation

- 1: Initialization: h, j, k = 0
- 2: **Main:**

7:

8:

3: for
$$k_b = 0$$
 to $k_b = (X - mn)/m$, step=g do

4: h = h + 1 // Index for reference table

$$5: \quad k_p = X/(n+k_b) - m$$

6: **for**
$$\epsilon_{i,b} = 0.05$$
 to 1, $step = 0.05$ **do**

j = j + 1 // Index for bit error probability

for
$$\epsilon_{i,I} = 0.05$$
 to 1, $step = 0.05$ do

- 9: k = k + 1 // Index for interference probability
- 10: Use Equation (1) to calculate $\epsilon_{i,e}$

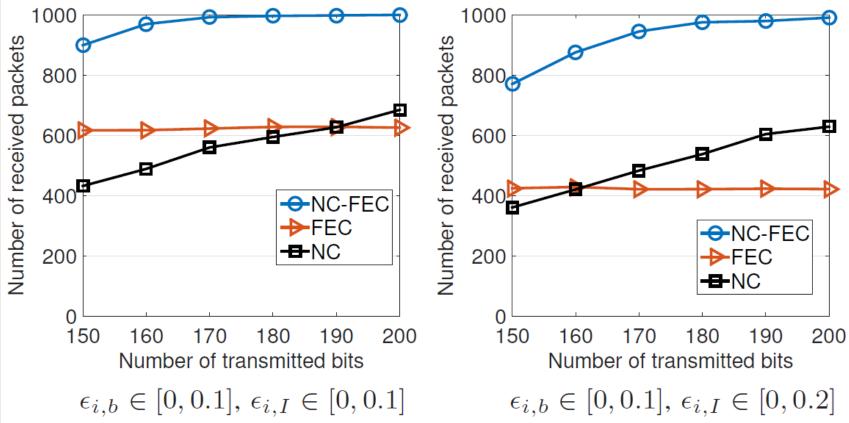
11:
$$\epsilon_i = \epsilon_{i,e} + (1 - \epsilon_{i,e}) \times \epsilon_{i,I}$$

12: Use Equation (3) to calculate q

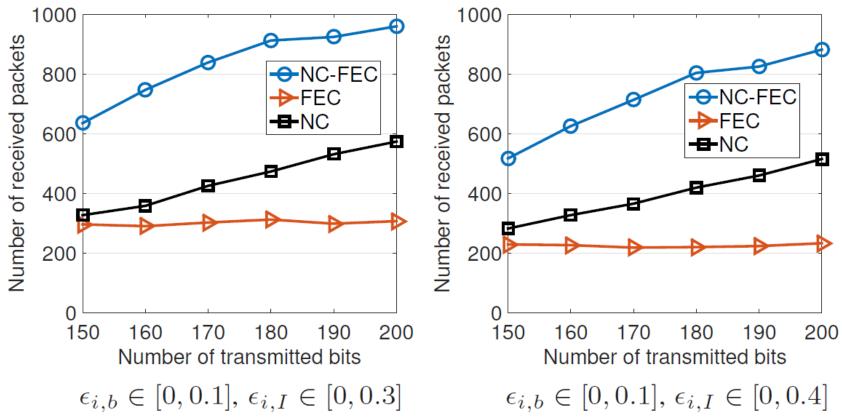
13: Ref(h, j, k) = q

Search for Optimal Coding Scheme

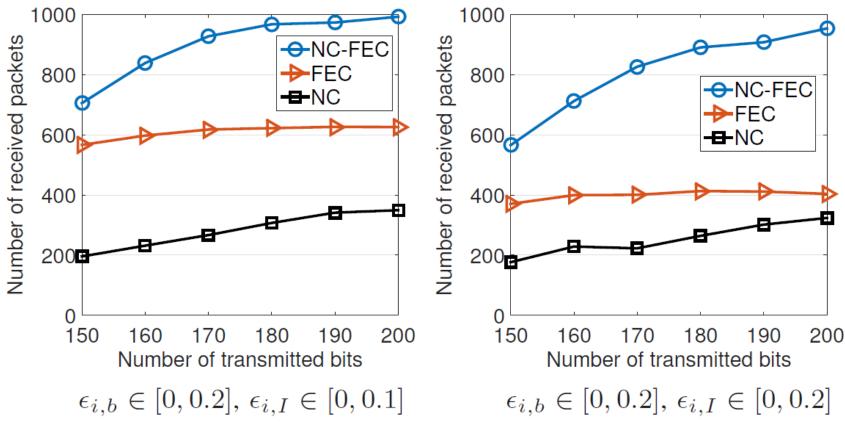
Algorithm 2 Search for Optimal Coding Scheme


- 1: Initialization: max = 0
- 2: **Main:**
- 3: for Each strategy h in the reference table do
- 4: U = 1
- 5: for Each user u_i do
- 6: Search the reference table to find q_i corresponding to $\epsilon_{i,b}$ and $\epsilon_{i,I}$
- $7: \qquad U = U \times q_i$
- 8: if U > max then
- 9: max = U
- 10: Mark strategy h as the selected policy

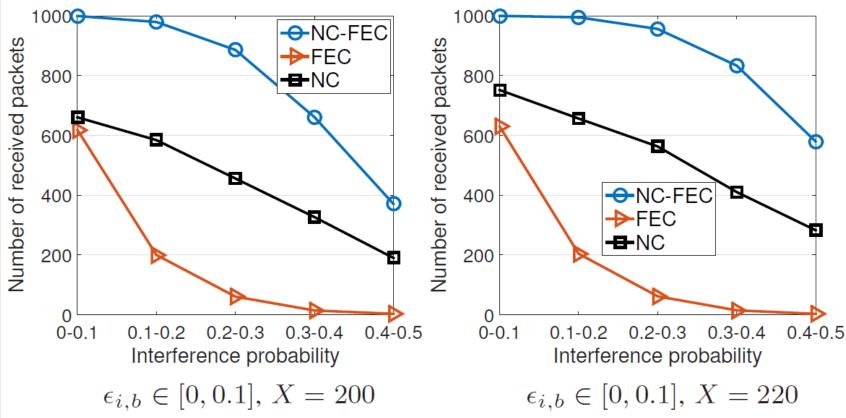
- Simulator in Matlab environment
- 1000 topologies with random bit error rate and interference probability
- Bit error rate and interference probability of the destinations are independent
- Comparing with only FEC and only NC methods



- 100 sets of packets
 - Each set contains 10 packets



- 100 sets of packets
 - Each set contains 10 packets



- 100 sets of packets
 - Each set contains 10 packets

- 100 sets of packets
 - Each set contains 10 packets

Simulation Summary

- For low noise probability FEC provides a better protection
- As noise or interference probability increases, more redundancy is needed for NC (EC)
 - FEC performs poorly
- FEC or NC?
 - For a given noise and interference probability, that depends on *X*

Conclusion

- Cross-layer protection of transmitted packets
- Joint FEC and NC to enhance reliability
- Fixed redundancy
- Finding the optimal transmission scheme
 - FEC redundancy
 - NC redundancy (erasure code)
- Two-phases algorithm
 - Offline and online phases

Thank you