

Towards Federated Learning on Fresh Datasets

Chen Wu¹, Mingjun Xiao¹, **Jie Wu²** Yin Xu¹, Jinrui Zhou¹, and He Sun¹

¹University of Science and Technology of China ²Temple University

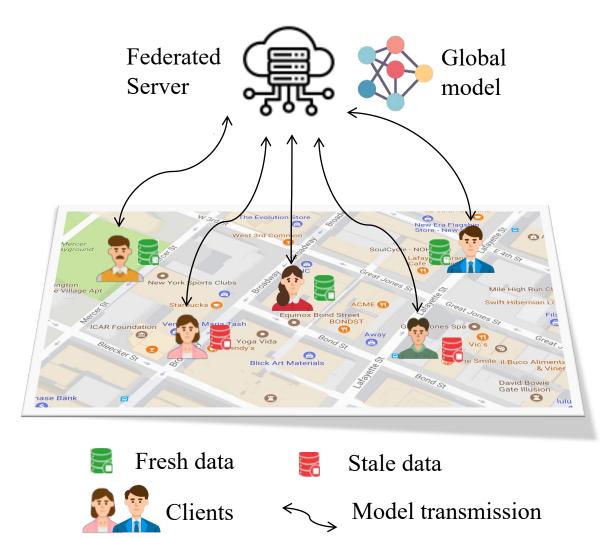
► Motivation & Challenges

Preliminaries & Problem Formulation

► Basic Idea & Solution

Evaluation & Conclusion

Motivation



Traditional FL

Invariability: clients' local datasets are static;
 Inadaptability: data in real-world are continuously generated along with the time.

Update Datasets

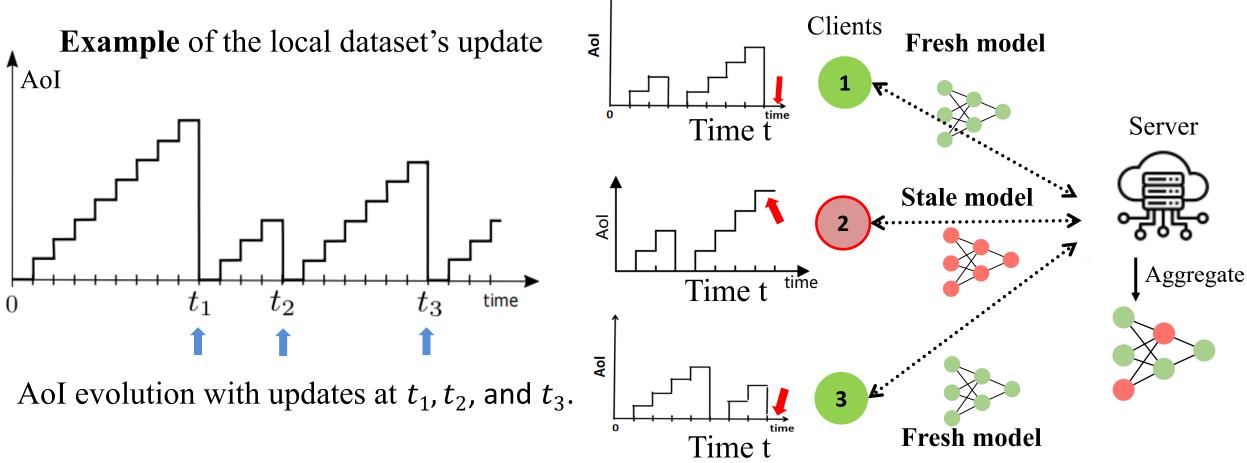
Train with Fresh Data

FL on Fresh Datasets

- □ Variability: clients collect new data periodically;
- □ Freshness of Models: fresh data can accurately characterize the model parameters;
- □ Budget Limit: clients spend some extra costs while the total budget is limited.

AoI: Metric for Measuring Data Freshness

Age of Information (AoI): freshness of the local dataset --- the time elapsed from the data collection to its usage. \uparrow



- Selected clients: **update** local datasets & **reduce** the AoI values
 - \rightarrow Quantify the impact of AoI on the model training of FL
 - → Reveal the relationship between the loss of global model and the decrease of the AoI values of clients' datasets?
- **Dependence**: client selection and the corresponding AoI values
 - → Design a client selection strategy to **optimize the performance** of the global model (i.e., **global loss**) within a **budget**?

□ Client Selection: make decisions under different optimization objectives e.g., Huang T, Lin W, Wu W, et al. "An efficiency-boosting client selection scheme for federated learning with fairness guarantee", in IEEE TPDS, 2020, 32(7): 1552-1564.

□ AoI Optimization: minimize AoI under different scenarios

e.g., Lim W Y B, et al. "When information freshness meets service latency in federated learning: A task-aware incentive scheme for smart industries", in IEEE TII, 2020, 18(1): 457-466.

Restless MAB: all bandits might evolve stochastically

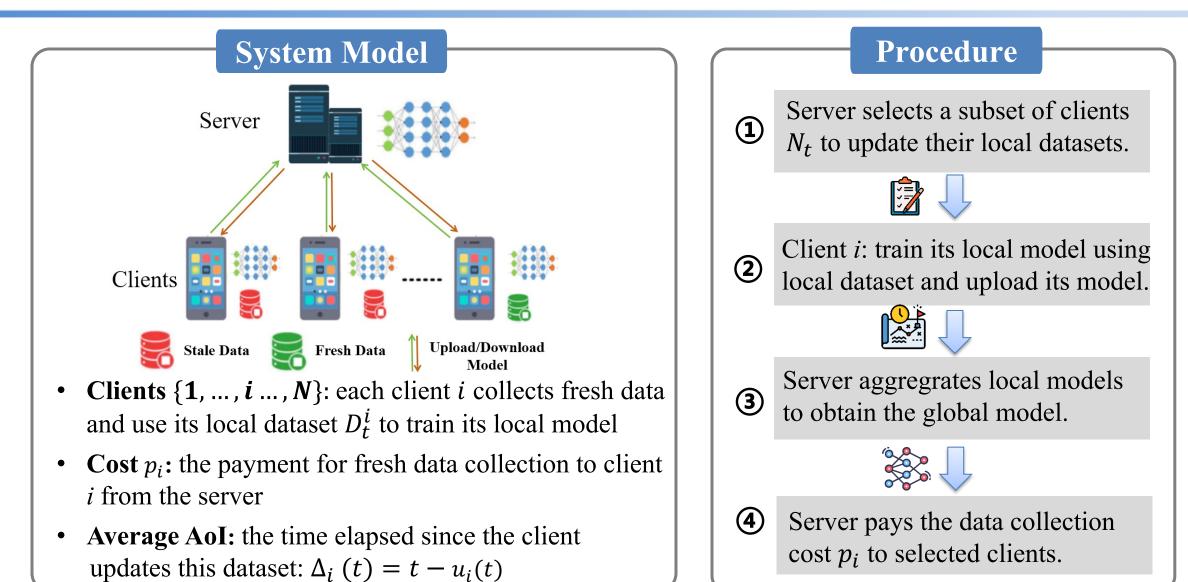
e.g., Whittle P. "Restless bandits: Activity allocation in a changing world", in Journal of applied probability, 1988, 25(A): 287-298.

Ignore the importance of data freshness

Ignore the relationship between AoI & loss

We aim to design a clients selection mechanism for FL while considering **data freshness** and **limited budget simultaneously**.

- ✓ System: Introduce a novel AoI-aware FL considering the freshness of the local datasets for client selection.
- ✓ Analysis: Derive a relationship between the training loss of the global model and the AoI values of local datasets.
- ✓ Algorithm: Propose the Whittle's Index-based Client Selection (WICS) algorithm and prove its approximate optimality.
- Experiments: Evaluate WICS by using real-world datasets (i.e., MNIST and FMNIST) to verify its performance.



Model Training of FL

> Step 1: each client *i* conducts local training with data size $|D_t^i| = n_i$.

Compute Local Loss $F_{t,i}(\omega; \mathcal{D}_t^i) = \frac{1}{|\mathcal{D}_t^i|} \sum_{x \in \mathcal{D}_t^i} f(\omega; x),$

Update Parameters $\omega_t^{i,k+1} = \omega_t^{i,k} - \eta_t \nabla F_{t,i}(\omega_t^{i,k}; \xi_t^{i,k}),$

where f(.) is the a server-specified loss function, η_t is the learning rate, $k = \{1, 2, ..., \tau\}$ is the index of local iterations, and $\xi_t^{i,k}$ is the *k*-th mini-batch sampled from the dataset D_t^i .

Step 2: the server aggregates received local models.

Aggregate Models
$$\omega_t = \sum_{i=1}^N \frac{n_i}{n} \omega_t^i$$
, where $n = \sum_{i=1}^N n_i$ Global Loss Function $F(\omega) \triangleq \frac{1}{T} \sum_{t=1}^T \sum_{i=1}^N \frac{n_i}{n} F_{t,i}(\omega; \mathcal{D}_t^i).$

Goal: find the optimal global model parameters

$$\omega^* = \operatorname*{arg\,min}_{\omega} F(\omega).$$

Problem Formulation

> Original Optimization problem:

P1:
$$\min_{\pi \in \Pi} \mathbb{E}[F(\omega_T)] - F^*,$$
s.t. $a_i^{\pi}(t) \in \{0, 1\}, \forall i \in \mathcal{N}, \forall t \in \mathcal{T},$

$$\Delta_i(t) = \mathbb{1}_{\{a_i^{\pi}(t)=0\}} [\Delta_i(t-1)+1],$$

$$\sum_{i=1}^N a_i^{\pi}(t)p_i \leq B, \forall t \in \mathcal{T}.$$
Constraints
$$\sum_{i=1}^N a_i^{\pi}(t)p_i \leq B, \forall t \in \mathcal{T}.$$
Constraint 1: client *i* is selected in the *t*th time slot. $a_i^{\pi}(t) = 1$ is selected; otherwise, $a_i^{\pi}(t) = 0.$
Constraint 2: the dynamics of each client's AoI, where $1_{\{.\}}$ is an indicator function.
Constraint 3: the budget constraint of the server in each round of FL.

Conergence Analysis

Assumption 1	For all $t, i, F_{t,i}$ is $\boldsymbol{\beta}$ -smooth, that is, for $\forall \omega_1, \omega_2, F_{t,i}(\omega_2) - F_{t,i}(\omega_1) \le \langle \nabla F_{t,i}(\omega_1), \omega_2 - \omega_1 \rangle + \frac{\beta}{2} \omega_2 - \omega_1 _{\cdot}^2$			
Assumption 2	For all $t, i, F_{t,i}$ is μ-strongly-convex , that is, for $\forall \omega_1, \omega_2, F_{t,i}(\omega_2) - F_{t,i}(\omega_1)$ $\geq \langle \nabla F_{t,i}(\omega_1), \omega_2 - \omega_1 \rangle + \frac{\mu}{2} \omega_2 - \omega_1 _{\cdot}^2$			
Assumption 3	For all <i>t</i> , <i>i</i> , the stochastic gradients of loss function is unbiased , i.e., $E_{\xi}[\nabla F_{t,i}(\omega;\xi)] = \nabla F_{t,i}(\omega).$			
Assumption 4	For all <i>t</i> , <i>i</i> , the expected squared norm of stochastic gradients is AoI-aware bounded : $E_{\xi} \left \left \nabla F_{t,i}(\omega; \xi) \right \right \leq G_i^2 + \Delta_i(t) \sigma_i^2$.			
$ \Delta_i(t) - AoI; \sigma_i^2 - sensitivity of client's local data to freshness; G_i^2client's inherent bound$				
-	is an extension of the hypothesis in existing FL, considering the impact of data t. It is applicable to mean absolute loss, mean squared loss, and cross entropy loss .			

Theorem 1 (Convergence Upper Bound). Define $\bar{\eta} = \min_t \{\eta_t\}$ and $\tilde{\eta} = \max_t \{\eta_t\}$. Suppose that Assumptions 1 to 4 hold and the step size meets $\bar{\eta} < \frac{2}{\mu}$. Then, the FL training loss after the initial global model ω_0 is updated for T rounds satisfies:

$$\mathbb{E}[\mathbb{F}(\omega_T)] - F^* \leq \frac{\beta}{2} (1 - \frac{\mu \overline{\eta}}{2})^2 + \frac{\beta}{2} \sum_{t=1}^T \sum_{i=1}^N \alpha_i [G_i^2 + \Delta_i(t)\sigma_i^2],$$

where
$$\alpha_i = \frac{\tilde{\eta}n_i}{\mu n} + N\tilde{\eta}(\tau^2\tilde{\eta} + \frac{2(\tau-1)^2}{\mu}\frac{n_i^2}{n^2}).$$

NOTE: controlling $\sum_{t=1}^{T} \sum_{i=1}^{N} \alpha_i \Delta_i(t) \sigma_i^2$ can control the convergence of the model.

Restless Multi-Armed Bandit

- Modeling: a Restless Multi-Armed
 Bandit (RMAB) --- a generalization of
 MAB problem
- Characteristic: any number of bandits (more than 1) can be made active and all bandits might evolve stochastically.

RAMB	Our problem			
Restless bandit	Each client			
State	AoI value			
Reward	Fresh local model			

Step 2: Convert Problem

> Converted Optimization problem:

$$\begin{array}{ll} \mathbf{P2}: & \min_{\pi \in \Pi} \frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} \phi_i \Delta_i(t), & \text{Goal} \\ \text{s.t.} & a_i^{\pi}(t) \in \{0,1\}, \forall i \in \mathcal{N}, \forall t \in \mathcal{T}, & \text{Constraints} \\ \Delta_i(t) = \mathbbm{1}_{\{a_i^{\pi}(t)=0\}} \left[\Delta_i(t-1)+1\right], \\ \sum_{i=1}^{N} a_i^{\pi}(t) p_i \leq B, \; \forall t \in \mathcal{T}. \end{array} \right)$$

Constraint 1: client *i* is selected in the t^{th} time slot. $a_i^{\pi}(t) = 1$ is selected; otherwise, $a_i^{\pi}(t) = 0$. Constraint 2: the dynamics of each client's AoI, where $1_{\{.\}}$ is an indicator function. Constraint 3: the budget constraint of the server in each round of FL.

Step 3: Relaxation and Decoupling

- $\blacktriangleright \text{ Relax Constraint 3: } \sum_{i=1}^{N} a_i^{\pi}(t) p_i \leq B \quad \Longrightarrow \quad \frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} a_i^{\pi}(t) \frac{p_i}{B} \leq \frac{1}{N}$
- > Transform Problem P2 into the Lagrangian Dual Problem P3:

P3:
$$\max_{\lambda} \min_{\pi} \mathcal{L}(\pi, \lambda) = \frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} \phi_i \Delta_i(t) + \lambda [\frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} a_i^{\pi}(t) \frac{p_i}{B} - \frac{1}{N}]$$

s.t. $\Delta_i(t) = \mathbb{I}_{\{a_i^{\pi}(t)=0\}} [\Delta_i(t-1) + 1],$
 $a_i^{\pi}(t) \in \{0,1\}, \ \lambda \ge 0.$

Solve $min_{\pi}\mathcal{L}(\pi, \lambda)$: finding the optimal strategy π for any given λ ; Problem P3 can be decoupled to Problem P4:

$$\mathbf{P4}: \min_{\pi \in \Pi} \left\{ \lim_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \left[\frac{B\phi_i}{p_i} \Delta_i(t) + \lambda a_i^{\pi}(t) \right] \right\}$$

s.t. $a_i^{\pi}(t) \in \{0, 1\}, \forall i \in \mathcal{N}, \forall t \in \mathcal{T},$
 $\Delta_i(t) = \mathbb{1}_{\{a_i^{\pi}(t)=0\}} \left[\Delta_i(t-1) + 1 \right],$
 $\lambda \ge 0.$

Step 4: Solving Problem P4

Formulation: The decoupled problem can be formulated as a Markov Decision Process (MDP) with AoI state Δ_i(t), control variable a^π_i(t), state transition P(·), and cost function C(·).

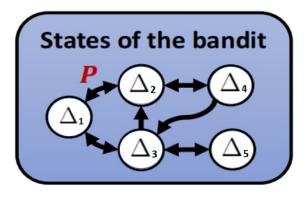
State Transition

$$\mathbb{P}(\Delta_i(t+1) = \Delta_i(t) + 1 | a_i^{\pi}(t) = 0) = 1; \\
\mathbb{P}(\Delta_i(t+1) = 0 | a_i^{\pi}(t) = 0) = 0; \\
\mathbb{P}(\Delta_i(t+1) = \Delta_i(t) + 1 | a_i^{\pi}(t) = 1) = 0; \\
\mathbb{P}(\Delta_i(t+1) = 0 | a_i^{\pi}(t) = 1) = 1;$$

Cost Function

$$C_i(\Delta_i(t), a_i^{\pi}(t)) \triangleq \frac{B\phi_i}{p_i} \Delta_i(t) + \lambda a_i^{\pi}(t)$$

NOTE: the Lagrange multiplier λ is a kind of service charge for client *i* under the MDP model, generated only when $a_i^{\pi}(t) = 1$.

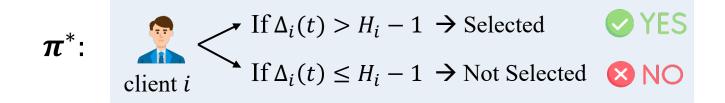


Step 4: Solving Problem P4

> Solving MDP \rightarrow Get the optimal strategy for the decoupled problem (P4)

Theorem 2 (Optimal Strategy for MDP): Consider the decoupled model over an infinite time-horizon. Given λ , the optimal strategy π^* is selecting client *i* in each time slot *t* to update its local dataset only when $\Delta_i(t) > H_i - 1$, where

$$H_i = \left\lfloor -\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{2\lambda p_i}{B\phi_i}} \right\rfloor.$$



Step 5: Approximately Solve Problem P3 (and P2)

- > Solving $\max_{\lambda} \mathcal{L}(\pi^*, \lambda)$: finding the optimal λ is difficult.
- > Using the Whittle's approximation method:

Find a λ_i to maximize the objective function for each decoupled problem separately; Each λ_i also follows Theorem 2;

$$WI_{i,t} \triangleq \lambda_i(\Delta_i(t)) = \frac{(\Delta_i(t) + 1)(\Delta_i(t) + 2)B\phi_i}{2p_i}$$

 $WI_{i,t}$ is the Whittle's index for client *i*.

Whittle's Index-based Client Selection (WICS) P_3 (and P_2 based on duality)

Basic idea: Select the clients with higher WI values in each time slot under budget constraint *B*.

Algorithm

Algorithm 1: Whittle's Index based Client Selection						
Input: AoI value of each client $\{\Delta_1(t), \dots, \Delta_N(t)\},\$		in $\phi_i = 0.3$	$\phi_{i} = 0.4$	$\phi_{i} = 0.5$	$\phi_{i} = 0.6$	$\phi_{i} = 0.7$
weight of each client $\{\phi_1, \dots, \phi_N\}$, payment of each		$p_i = 1.5$	$p_i = 3$	$p_i = 3.5$	$p_i = 2$	<i>p_i</i> = 2.5
client $\{p_1, \cdots, p_N\}$, budget B		$\Delta_1(0)=0$	$\Delta_2(0)=0$	$\Delta_3(0)=0$	4(0) = 0	$\Delta_5(0)=0$
Output: The index set of selected clients \mathcal{N}_{t+1}		$WI_{1,0} = 0.20$	$WI_{2,0} = 0.13$	$WI_{3,0} = 0.14$	$WI_{4,0} = 0.30$	$WI_{5,0} = 0.28$
1: for each client <i>i</i> in \mathcal{N} do		$\Delta_1(1) = 1$	$\Lambda_{2}(1) = 1$	$\Delta_3(1) = 1$	\checkmark $\Delta_4(1) = 0$	$\mathbf{\nabla}$ $\Delta_5(1) = 0$
2: Calculates its WI value $WI_{i,t}$ according to Eq.(18)		$WI_{1,1} = 1.20$		$WI_{3,1} = 0.86$		
and sends it to the server		\checkmark		\checkmark		
3: end for		$\Delta_1(2) = 0$			$\Delta_4(2) = 1$	$\Delta_5(2) = 1$
4: The server sorts the clients into (i_1, i_2, \cdots, i_N) such		$WI_{1,2} = 0.20$	$WI_{2,2} = 1.50$	$WI_{3,2} = 0.14$	$WI_{4,2} = 1.80$	$WI_{5,2} = 1.20$
that $WI_{i_1,t} \geq WI_{i_2,t} \geq \cdots \geq WI_{i_N,t}$, and initializes a	an 📕					
empty set \mathcal{N}_{t+1} , an initial index $k = 1$	3	$\Delta_1(3) = 1$ $WI_{1,3} = 1.20$	$\Delta_2(3) = 0$ $WI_{2,3} = 0.13$	$\Delta_3(3) = 1$ $WI_{3,3} = 0.86$	$\Delta_4(3) = 0 WI_{4,3} = 0.30$	$\Delta_5(3) = 2$ $WI_{5,3} = 3.36$
5: while $\sum_{i \in \mathcal{N}_{t+1}} p_i + p_{i_k} < B$ do		\checkmark				\checkmark
6: $\mathcal{N}_{t+1} \leftarrow \mathcal{N}_{t+1} \cup \{i_k\}, \ k = k+1$	4	$\Delta_1(4) = 0$		$\Delta_3(4) = 2$		$\Delta_5(4)=0$
7: end while		$WI_{1,4} = 0.20$	$WI_{2,4} = 0.80$	$WI_{3,3} = 1.71$	$WI_{4,4} = 1.80$	$WI_{5,4} = 0.28$
	·↓			\checkmark		
	1					

Theorem 3 (Approximate Optimality): The solution produced by the WICS algorithm for Problem P2 over an infinite time-horizon is ρ^{WI} -optimal, where

$$\rho^{WI} < \frac{18N-2}{M-1}$$

Here,
$$M = \left\lfloor \frac{B}{p_{max}} \right\rfloor$$
 and $p_{max} = \max_i \{p_i\}.$

NOTE: ρ^{WI} will not be too large.

Experimental Settings

Dataset and Model

- Dataset: MNIST and FMNIST (60,000 samples for training and 10,000 for test, IID)
- Model: LR (convex) and CNN (non-convex, two 5×5 convolution layers)

Compared Algorithms

- WICS : our proposed algorithm
- ♦ Random
- ◆ MaxPack: based on AoI values
- ◆ ABS: based on the time of last selection

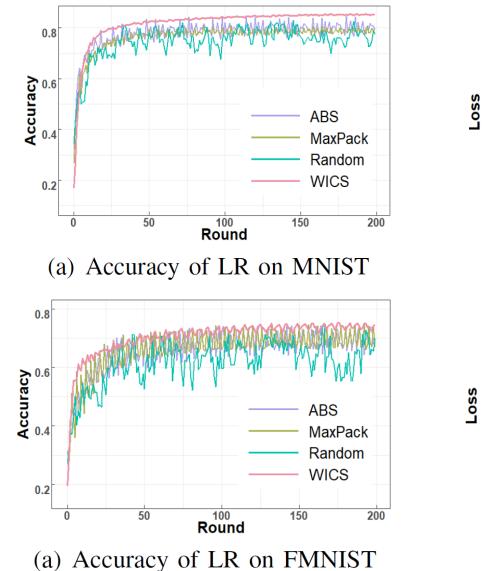
Parameter settings

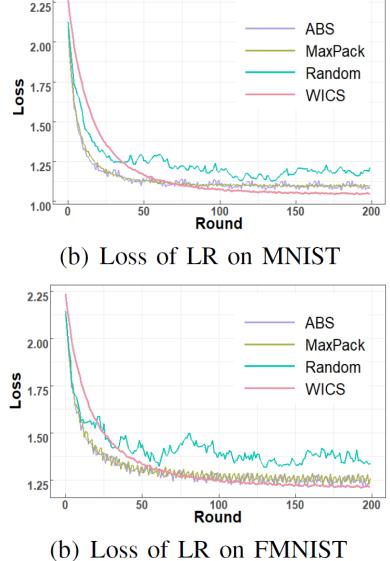
- ◆ The number of clients N ranges from [10, 40]
- The budget *B* ranges from [25, 70]
- The learning rate $\eta = 0.001$
- The number of time slots T = 200

Evaluation Metrics

- Accuracy: the number of correct predictions
- ◆ Loss: diff. between predicted and actual output
- Average AoI of all clients

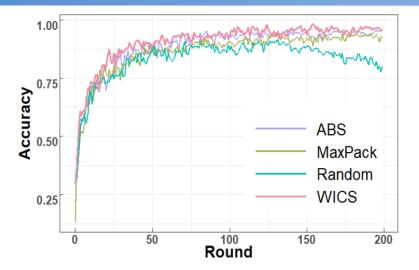
>>>> Performance of LR on MNIST and FMNIST

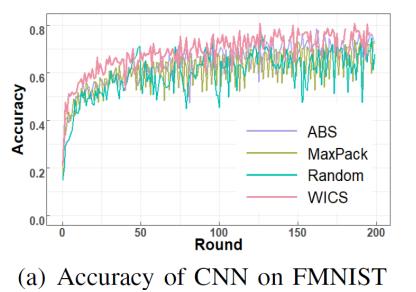


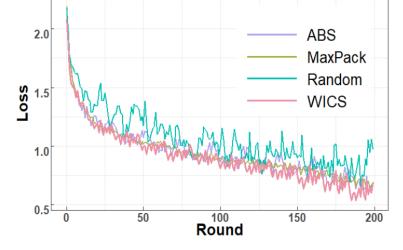


- The **accuracy** of four algorithms **rises** along with the increase of rounds;
- The **loss** of four algorithms **descends** with the increase of rounds;
- WICS is **better** (in terms of accuracy and loss) than the three compared algorithms.

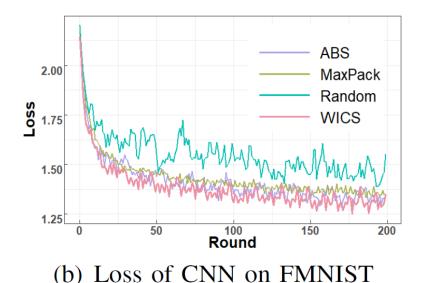
>>>> Performance of CNN on MNIST and FMNIST





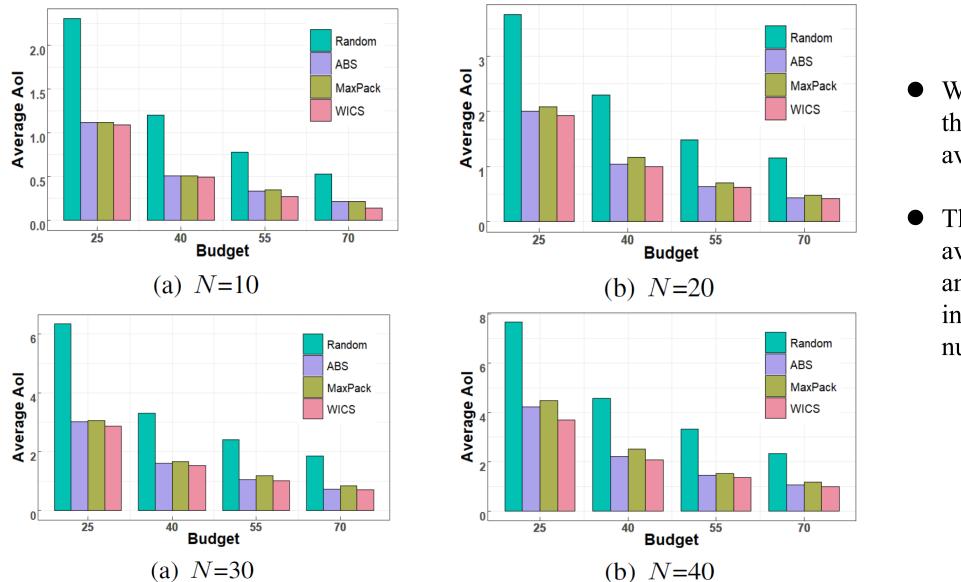


(b) Loss of CNN on MNIST



When the loss function is **non-convex** (i.e., CNN), the performances of WICS are still **better**.

Average AoI with Different Budget and Client Number



- WICS can achieve the **lowest** weighted average AoI;
- The weighted average AoI exhibits an **uptrend** with the increase of the number of clients *N*.

- Introduce a novel AoI-aware FL system, where the server tries to select suitable clients to provide fresh datasets for local model training.
- Model the client selection problem as a restless multi-armed bandit, and propose the WICS algorithm by applying Whittle's Index.
- Prove the approximate optimality of WICS and evaluate the algorithm performance via simulations.

Future work:

- Extend using discount factor based on time -- more weight on fresh information.
- Investigate on fine-grained integration of **fresh data** and **stale data**.

