
E , which denotes that the elements only
exist in eitherA or B . SpeciÞcally,dE A denotes the elements
that only exist inA, anddE B denotes that the elements that
only exist inB . Thus,dE = dE A � dE B . The second kind of
difference, denoted asdM , includes the elements which appear
in bothA andB , but with diverse multiplicities, i.e., number of
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TABLE I

THE APPLICABILITY OF EXISTING SIMPLE SET
SYNCHRONIZATION METHODS

duplicates of an element. Typically,dM A denotes the common
elements such that their multiplicities inA are larger than
those inB . Meanwhile,dM B denotes the common elements
such that their multiplicities inA are less than those inB .
Thus,dM = dM A � dM B . An efÞcient multiset synchronization
method should identifydE anddM . Then, to save bandwidth,
only the elements indE should be transmitted.

Some lightweight methods are proposed for efÞcient
set synchronization. The insight is to employ bloom Þl-
ters (BF) [6] and their variants, e.g., counting bloom Þl-
ter (CBF) [7], compressed bloom Þlter [8], invertible bloom
Þlter (IBF) [9], and invertible bloom lookup table (IBLT) [10].
Such methods represent all elements of a set using a vector
of cells, each of which can be one bit or a dedicated data
structure. After exchanging the resultant bloom Þlters of two
sets, those unique set elements can be identiÞed via a process
of operations, such as query and subtracting. Consequently,
large numbers of common elements are not required to be
delivered to each other.

We argue that the existing BF-like synchronization methods
for simple sets are inapplicable to the multiset synchronization
problem. Table I shows the details. Among BF-like struc-
tures, only CBF and its variants (including Spectral Bloom
Filter (SBF) [12], Dynamic Count Filter (DCF) [13], [14],
Shifting Bloom Filter (ShBF) [15], and Count Min
Sketch (CM) [16]), can represent element multiplicity in a
multiset by augmenting the bit in each cell to be an integer,
but they are not inversely decodable, and cannot distinguishdE

from dM . IBF and IBLT can be decoded inversely, but they fail
to represent multiset, since the XOR operations will eliminate
it when the element is mapped into the same cells again.

Accordingly, in this paper, we Þrst conÞrm the potential
of synchronizing multisets with CBF and IBF by following
a common framework. CBF can record the multiplicity of
each set element and a query-based decoding process can
Þnally discover the different elements between two multisets.
However, the CBF-based method cannot decode the elements
inversely. For the IBF-based method, the resultant IBF after
subtracting one IBF from another one may decode the different
elements in a recursive manner. In each round, the IBF only
decodes those elements in the root sets (see DeÞnition 2) of
the current two multisets. After each round of decoding, the
two multisets will be updated via eliminating the root sets
from them. In this recursive method, multiset synchronization
can be realized with high probability. However, the IBF-based
method invokes the IBF processes round by round, and thus

suffers from a massive computation time. Note that both the
IBF-based method and the CBF-based method cannot dis-
tinguish dE and dM , and thus they will suffer from vast
communication overhead. The intrinsic reason is that they
must query all elements to uncoverd and treatdE and dM

with no difference.
To avoid the inherent weakness of the CBF and IBF-based

methods, we design a novel data structure, invertible counting
bloom Þlter (ICBF), which consists of a vector of cells. Each
cell contains two Þelds, i.e., theid andcount, which record the
element mapped into that cell and its multiplicity, respectively.

We then propose an efÞcient method based on ICBF for
the multiset synchronization problem. Our method depends
on three operations for ICBF: the encoding, subtracting, and
decoding. For the encoding operation, a family of independent
hash functions are utilized to map each element of a multiset
into the cell vector, and a specialidentiÞer mechanism is intro-
duced to identify this element. For two ICBFs, the subtracting
operation eliminates those common elements, and results in
a new ICBF. Accordingly, the resultant ICBF can decode all
elements from its cell vector via referring to the localid table,
which records the mapping relationship ofid and the real
content of each element. To be speciÞc, ICBF records the
multiplicity of an element with itscount Þeld, decodes the
elements inversely from the cells with the help ofid Þeld
and the localid table, and distinguishesdE from dM with
joint consideration ofcount andid in ICBF C andICBF C � .
Consequently, only the elements indE will be transmitted to
the other host.

Furthermore, we conduct comprehensive experiments
to evaluate the performanceof the ICBF-based and IBF-
based methods. The results indicate that our ICBF-based
method achieves better accuracy and incurs much less time-
consumption than the IBF-based method. We also measure the
additional communication overhead when the multiplicities
follow different distribution patterns. We Þnd that our
ICBF-based method outperforms the IBF-based method,
and requires much less communication overhead. The major
contributions of this paper can be summarized as follows:

€ We propose a novel data structure called ICBF to rep-
resent a multiset. Furthermore, we design an efÞcient
method based on ICBF to synchronize a pair of multisets.

€ We reveal that the existingCBF and IBF can theoretically
realize multiset synchronization. Accordingly, we pro-
pose dedicated multiset synchronization methods based
on CBF and IBF, respectively.

€ Comprehensive experiments demonstrate that the
ICBF-based method outperforms the IBF-based
methods in terms of the synchronization accuracy,
time-consumption, and communication overhead.

The remainder of this paper is organized as follows.
Section II summarizes preliminaries about multisets and
bloom Þlters. Section III reports the CBF-based and IBF-based
methods for multiset synchronization. Section IV introduces a
new data structure, ICBF, and accordingly designs an efÞcient
and accurate multiset synchronization method. Section V
evaluates the performance of proposed synchronization
methods. We then elaborate on the related works in Section VI,
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TABLE II

SYMBOLS AND NOTATIONS

and discuss several practical concerns in Section VII. Finally,
we conclude this paper in Section VIII.

II. PRELIMINARIES

We introduce the basic concept of the multiset and then
summarize the standard bloom Þlters and two of its variants
in this section. The important symbols and notations in this
paper are given in Table II.

A. Multiset

Unlike a simple set, a multiset allows an element to appear
multiple times [18]. To characterize the features of a multiset,
several parameters can be employed to describe a multiset.

DeÞnition 1: Let x be an element of a multisetA. The
multiplicity of x is denoted bymA (x), which denotes the
number of instances ofx in A.

DeÞnition 2: Given a multisetA, a simple setA� is deÞned
as the root set ofA such thatA� = { x � A|mA (x)> 0} .
Hence, different multisets might have the same root set.

DeÞnition 3: Let C(A) denote the cardinality of a multi-
setA, i.e., the sum of multiplicity of each element. We have
C(A) =

� n
i =1 mA (xi ), wherexi is an element ofA� and

n denotes the cardinality of the root setA� .
According to such deÞnitions, a multisetA can be char-

acterized as its root set and the multiplicity of each ele-
ment. That is, A can be represented as a set of pairs,
i.e., A = {� x1, mA (x1)� , · · · , � xi , mA (xi )� , · · · } . For exam-
ple, A = {� x, 3� , � y, 2� , � z,1�} stands for{ x, x, x, y, y, z } .

B. Bloom Filters

Given a setA = { x1, x2, ..., xn } with n elements, a bloom
Þlter (BF) [6] represents suchn elements with a bit vector of
lengthm. All of m bits in the vector are all initially set to 0.
A group of k independent hash functions,<h 1, h2, ..., hk > ,
are employed to randomly map each set element intok
positions,<h 1(x), h2(x), ..., hk (x)> , in the bit vector. Those
bits at suchk positions in the vector are all set to 1. In the
same way, all the elements can be represented by the same BF.

According to them-bit vector and thek hash functions, we
can realize the membership query against any element. If any
bit at thek hashed positions of the element is set to 0, the BF
judges that this element does not belong to the set. Otherwise,
the BF believes that the queried element belongs to the set with
a low probability of false positive. That is, for an element not
in the set, all of itsk hash positions in the bit vector may be 1,
due to the unavoidable hash conßicts.

Bloom Þlters have been used in many Þelds [19]Ð[21].
Regarding various applications, several variants are proposed
to make them more effective and efÞcient. We further discuss
two mainstream variants, counting bloom Þlters and invertible
bloom Þlters.

C. Counting Bloom Filters

One drawback of bloom Þlters is that they are only suitable
for static sets, while a dynamic set has to tackle the element
insertion and deletion operations. It is clear that bloom Þlters
naturally support the element insertion operation by setting
the hashedk bits to 1. It, however, cannot simply reset all
the hashed bits to 0 when an element is removed from the
corresponding set, since thek hash bits may be shared by other
elements in the set, so resetting can lead to false negatives.

To address this issue, the counting bloom Þlter [7] was
proposed to improve the bloom Þlters. It naturally supports
the deletion and insertion of any element by replacing each
bit in the vector with a counter consisting of multiple bits.
In this way, the value of each cell can exceed 1. Assume
element x is hashed into the4th , 10th , and 15th cells,
while elementy is hashed into the5th , 15th , and24th cells,
respectively. Consequently, thecount value is 1 for the4th ,
5th , 10th , and 24th cells, but is 2 for the15th cell. If the
elementx is deleted from the set, the values of the4th , 10th ,
and 15th cells are decreased by 1, but the value of the15th

cell is still positive other than 0. That is, a query ofy would
result in a correct positive indication, since the membership
information of elementy is still kept in the updated CBF.

Several variants of CBF have been proposed to optimize
the size of each cell, or enhance the query accuracy, e.g.,
SBF [12], DCF [13], ShBF [15], and CM [16]. SBF and
DCF adjust the size of the used bits in each cell according
to the maximum multiplicity of elements. By contrast, ShBF
and CM are devoted to a more efÞcient query. Besides, the
false negative problem of CBF has been well discussed [17].

D. Invertible Bloom Filters

It is well-known that a bloom Þlter cannot decode those
elements represented by its bit vector, due to the use of one-
way hash functions. To enable the set synchronization, the
query-based method is used to identify and then exchange
different elements between two sets. The insight is to query
a BF of one set against each element in another set. Such a
query-based synchronization method is inefÞcient and time-
consuming. Invertible bloom Þlters (IBF) [9] extend bloom
Þlters from several aspects such that the subtracting operation
of IBFs for two sets provides the opportunity to decode those
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CBF can record the multiplicity of each element in a multiset
via the count value in each cell. It, however, fails to decode
the elements from the counter vector, due to the well-known
Òone way propertyÓ of hash functions. That is, a CBF requires
additional information besides the counter vector to decode all
of the elements in a set represented by it. For this reason, we
design the invertible counting bloom Þlters (ICBF) with a new
cell vector, each of which contains acount Þeld and an extra
id Þeld.

For each cell, theid Þeld is responsible for recording a
generated identiÞer for each element that has been hashed
into the cell. Thecount Þeld memorizes how many ele-
ments have been encoded into that cell, i.e., the multi-
plicity of a particular element if there are no conßicts.
For an elementx, we employ the minimal value among
ICBF A [h1(x)].count, · · · , ICBF A [hk (x)].count asmA (x).
What is more, we also measure the probability of such a
conßict-free event, and adjustm andk to ensure high conßict-
free probability in Section 4.5.

To decode the elements from a cell vector inversely, the
identiÞer of each element should not only record the element
but also identify which set the element belongs to. Thus for
the ICBF-based method, the identiÞer of any set element is
constructed as two parts. The preÞx part identiÞes the set this
element belongs to, while the sufÞx part indicates the element
itself. The details about the identiÞer will be introduced later
in Section 4.2.

Note that there exist potential conßicts under the encoding
process, i.e., multiple diverse elements may be hashed into
a same cell with a given probability. If the number of cells
is m, the probability that two diverse elements are mapped
into a same cell is given by1/m . Indeed, bloom Þlters and
their variants always suffer this weakness. ICBF, however, can
tackle the potential hash conßicts via theid Þeld. For example,
an elementx has been hashed into thei th cell of a ICBF.
When the ICBF encodes another elementy into the i th cell,
the count Þeld needs to be increased but theid Þeld remains
unchanged. That is,CBFA [i ].count = mA (x) + mA (y).

It is clear that ICBF can naturally support the element
insertion, fast membership-query. However, ICBF can not
only realize the element deletion operation, but also inversely
decode the elements. Furthermore, we show in Section 5
that ICBF consumes fewer storage resources and incurs less
communication overhead than IBF; this is because it employs
only two Þelds, while IBF needs three Þelds.

B. The IdentiÞer Generation Mechanism an Element

Given two multisets,A and B , id assignment of each
element inA or B only cares about the value ofC(A� ) or
C(B � ) (the cardinality of the multiset), rather than that of
C(A� )+ C(B � ). For any element in setA or setB , we employ
the Þrst digit (the leftmost digit) of itsid to record the set it
belongs to, i.e., the red digit in Fig. 2. We use other binary bits
of an identiÞer to distinguish each element in a multiset. The
length of such an identiÞer is determined by the cardinality of
the root set of each multiset. For example, in Fig. 2, a 2-digit
identiÞer (the black digits in theid Þeld) is employed forA,

Fig. 2. An example of ICBF encoding and subtracting process. For simplicity,
the bits that used to label the empty cells are omitted.

since the root setA� only has three elements. In this way,
our ids can identify each element in any multiset and can be
used to realize the subtracting and decoding operations. For
instance, in Fig. 2, the red 0 means that all related elements
belong toA, while the red 1 declares that thisid is used for
elements inB .

The identiÞer of each element is represented as binary bits in
memory. Hence, one vital issue is how to distinguish the empty
cells with non-empty cells in ICBF. In real implementation,
there are two differentiated solutions. One possible strategy
is to augment an additional bit as the ßag. If the cell is
non-empty, this ßag will be set as 1; otherwise, it is set
as 0. In this way, the algorithm will check the ßag during
synchronization. In contrast, another solution is to leave a
default sufÞx (e.g., 00· · · 00) of the identiÞer as the sign of
empty cells. For instance, if there are 3 diverse elements in a
multiset, the sufÞx 00 implies the empty cells. By contrast, 01,
10, and 11 represent the 3 elements, respectively. We prefer the
Þrst strategy since only one bit must be checked, which will
signiÞcantly ease the cost of distinguishing the empty cells.

C. id table at Each Host

To accomplish the synchronization,HostA (HostB ) trans-
mits the elements inEA (EB ) to HostB (HostA ). However,
the ICBF can only derive theids of these elements. Hence,
to know what the content of anid really refers, we maintain
an id table at each host to record the mapping relationship
between each element and its identiÞer. When our algorithms
need to know the original element behind anid, they can refer
to the id table at that host. By maintaining the relationship
betweenids and elements locally, the synchronization will
incur less bandwidth than IBF does, which remotely transmits
the original elements between hosts.

Undoubtedly, the introduction of theid table will bring
extra storage overhead. However, we argue that, the storage
overhead is controllable and acceptable. Firstly, theid table
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TABLE III

THE SPACE OVERHEAD OF id table (MB)

only records the information of local elements, and never
cares about the elements at other remote hosts. Secondly,
the existing key-value storage techniques can be employed to
optimize the storage strategy and speed up the query request,
e.g., Dynamo [23], Redis [24], and Memcached [25]. Thirdly,
instead of saving the original content of elements with the
id table, we prefer to store the location or directory of
elements in the local Þle system.

To quantify the space overhead, we consider two storage
strategies, i.e., storingid table with an array and storing
the id table with a hash table (Dynamo, Redis, and Mem-
cached). For the array, the space overhead isn · (
 (log2n)� +
1 + s̄)/ 8 (MB), where n is the number of elements in the
root set, ands̄ denotes the maximum number of bits that
the directory used. As for the hash table, the required space
overhead can be calculated asm · s̄ (MB), where m is the
number of cells the hash table has. Table III records the space
overhead of both storage strategies, whens̄ = 500 bit and
m = 30n. Apparently, with the increase ofn, both strategies
cost more space overhead, and storing theid table with array
consumes much less space overhead. But we argue that, the
time-complexity of querying an element in an array and a hash
table isO(n) andO(1), respectively. Hence, to speed up the
synchronization process, storing theid table with the hash
table is more advisable, and the resulted space overhead is
acceptable for nowadaysÕ hosts.

D. The ICBF Operations for Synchronizing Multisets

Note that the synchronization result of two multisets is the
union of them at both hosts. For any elementx appearing in
both multisets, we generate|mA (x) Š mB (x)| replicas ofx
at the host that holds the less multiplicity ofx, such that
mA (x) = mB (x). Besides, for those elements appearing only
in one multiset, they need to be sent to another host, and a
given number of replicas will be generated for consistency.
For example, ifmA (x) = 3 while x doesnÕt belong toB , the
elementx will be delivered fromA to B and 2 extra repli-
cas will be generated atHostB . Similarly, our ICBF-based
method also follows the proposed synchronization framework,
as shown in Fig.1, consisting of three operations: encoding,
subtracting, and decoding.

Consider thatHostA and HostB need to synchronize
two multisetsA and B . First of all, each host executes the
encoding operation and establishes anid table. Secondly,
HostB sends its encoding result, i.e.,ICBF B , to HostA .
Thirdly, HostA performs the subtracting operation to derive
ICBF C = ICBF A Š ICBF B and ICBF C� = ICBF B Š
ICBF A . HostA employs the decoding operation to identify
elements inEA and dM A . According to the fourth step in
the framework,HostA sendsEA , ICBF C and ICBF C �

to HostB . In the Þfth step,HostB decodesICBF C and

Algorithm 2 Encoding Operation of ICBF
Require: A multiset A, any elementx � A, k hash functions

and a cell vectorICBF .
1: Initialize theICBF vector of cells;
2: for x � A do
3: for i = 0 to k Š 1 do
4: Calculate the hash value ofhi (x);
5: if ICBF [hi (x)].id is not emptythen
6: ICBF [hi (x)].count++ ;
7: else
8: ICBF [hi (x)].id 	 x.id ;
9: ICBF [hi (x)].count++ ;

10: return ICBF ;

ICBF C � to identify the elements inEB and dM B . Finally,
HostB sends the decoding result, i.e.,EB to HostA , and
thus, the synchronization is accomplished.

Encoding: Given a pair of multisets,A and B , when
encoding any multiset, each of its elements is mapped intok
cells via thek independent hash functions. What is different
from the encoding process of IBF is that ICBF need not
know the size of the difference betweenA and B . This will
save the additional overhead resulting from estimating the
difference, compared to the IBF-based method. Fig. 2 depicts
the encoding process for multisetA and B . As reported in
Algorithm 2, when an element is mapped into a given cell,
if the id Þeld is empty, then theid of such an element will
be kept in thatid Þeld, and the associatedcount Þeld will be
increased by 1. Otherwise, only thecount Þeld needs to be
increased by one. Reasonably, according to the minimal value
among thek count Þelds, we can estimate whether an element
has been mapped into this cell, and if so, how many times.
Note that, in Fig. 2, there is a hash conßict inICBF B since
x andz are mapped into a same cell. In this case, theid Þeld
only records the identiÞer ofx, while thecount Þeld counts
mB (x) + mB (z).

Subtracting:After encoding multisetsA and B , the two
corresponding hosts will exchange the resultantICBF A and
ICBF B . So far, the next process of synchronization is to
subtract the different elements from the two ICBFs, each of
which is a vector of cells. Note that the set of used hash
functions and the length of the cell vectors forA and B
must be the same, such that any common element will be
mapped into the same set ofk locations in the two vectors.
Algorithm 3 describes the subtracting process. It traverses the
cell vectors ofA and B from beginning to end. For thei th

cell in both ICBF A and ICBF B , if both ICBF A [i ].id and
ICBF B [i ].id are empty, Algorithm 3 just moves towards the
next cell. If ICBF A [i ].id and ICBF B [i ].id are not empty,
the algorithm only remainsICBF A [i ].id in the resultant cell
vector. If eitherICBF A [i ].id or ICBF B [i ].id is not empty,
the algorithm will remain the nonempty one to identify the
corresponding element.

The operation on thecount Þeld of each cell inICBF A

and ICBF B is relatively simple. It just executes the
operation ofICBF A [i ].countŠ ICBF B [i ].count, calculating
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