
1190 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

Efficient Multiset Synchronization
Lailong Luo, Deke Guo, Member, IEEE, ACM, Jie Wu, Fellow, IEEE, Ori Rottenstreich,

Qian He, Yudong Qin, and Xueshan Luo

Abstract— Set synchronization is an essential job for distrib-
uted applications. In many cases, given two sets A and B,
applications need to identify those elements that appear in set
A but not in set B, and vice versa. Bloom filter, a space-
efficient data structure for representing a set and supporting
membership queries, has been employed as a lightweight method
to realize set synchronization with a low false positive probability.
Unfortunately, bloom filters and their variants can only be
applied to simple sets rather than more general multisets, which
allow elements to appear multiple times. In this paper, we first
examine the potential of addressing the multiset synchronization
problem based on two existing variants of the bloom filters:
the IBF and the counting bloom filter (CBF). We then design
a novel data structure, invertible CBF (ICBF), which represents
a multiset using a vector of cells. Each cell contains two fields,
id and count, which record the identifiers and number of
elements mapped into them, respectively. Given two multisets,
based on the encoding results, the ICBF can execute the dedicated
subtracting and decoding operations to recognize the different
elements and differences in the multiplicities of elements between
the two multisets. We conduct comprehensive experiments to
evaluate and compare the three dedicated multiset synchroniza-
tion approaches proposed in this paper. The evaluation results
indicate that the ICBF-based approach outperforms the other
two approaches in terms of synchronization accuracy, time-
consumption, and communication overhead.

Index Terms— Multiset synchronization, counting bloom filter,
invertible bloom filter, invertible counting bloom filter.

I. INTRODUCTION

CONSIDER a pair of hosts HostA and HostB , each
holding a set A and B. The goal of set synchronization

for HostA and HostB is to calculate the differences between

Manuscript received January 6, 2016; revised June 12, 2016 and
September 26, 2016; accepted October 3, 2016; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor S. Chen. Date of publication
November 7, 2016; date of current version April 14, 2017. This work was
supported in part by the National Natural Science Foundation for Outstanding
Excellent Young Scholars of China under Grant 61422214, in part by the
National Basic Research Program (973 program) under Grant 2014CB347800,
in part by the National Natural Science Foundation of China under Grant
61661015, in part by the Program for New Century Excellent Talents in
University, in part by the Hunan Provincial Natural Science Fund for Distin-
guished Young Scholars under Grant 2016JJ1002, and in part by the Research
Funding of NUDT under Grant JQ14-05-02 and Grant ZDYYJCYJ20140601.

L. Luo, D. Guo, Y. Qin, and X. Luo are with the Science and
Technology Laboratory on Information Systems Engineering, National
University of Defense Technology, Changsha 410073, China (e-mail:
luolailong09@nudt.edu.cn; dekeguo@nudt.edu.cn; qinyudong12@nudt.edu.cn;
xsluo@nudt.edu.cn).

J. Wu is with the Department of Computer and Information Science, College
of Science and Technology, Temple University, Philadelpha, PA 19122 USA
(e-mail: jiewu@temple.edu).

O. Rottenstreich is with the Department of Computer Science, Princeton
University, Princeton, NJ 08544 USA (e-mail: orir@cs.princeton.edu).

Q. He is with the Key Laboratory of Cloud Computing and Complex
System, Guilin University of Electronic Technology, Guilin 541004, China
(e-mail: heqian@guet.edu.cn).

Digital Object Identifier 10.1109/TNET.2016.2618006

the two sets A and B then deduce the union A ∪B. In fact,
set synchronization is a common and fundamental task in
a variety of systems [1]. For example, in a distributed file
system, files usually need to be duplicated for disaster recovery
via set synchronization. In peer-to-peer networks [2], any pair
of peers only needs to exchange those missing blocks of a
file from each other. For wireless sensor networks [3], the
sink node only needs to collect those unobserved results from
other hosts. For software-defined networks (SDN) [4], flow
tables generated by the controller must be synchronized with
the corresponding switches in a timely manner. In this case,
only those updated flow entries should be delivered. In cloud
computing applications, local devices (smartphones, laptops,
robotics, and wearable equipment) only upload or download
the nonexistent data from the Cloud [5].

In the above cases, a straightforward method of set syn-
chronization between any two hosts is to exchange all elements
with each other. The amount of transferred data is proportional
to the total number of elements at the two hosts [1]. This
method is inefficient when the two sets differ in just a few
elements. Moreover, such a method also incurs non-trivial and
unnecessary communication overhead and additional latency.
If the hosts cannot identify the difference between the involved
sets, unnecessary transmission of the shared elements may
burden the networks. Especially for the latency-sensitive appli-
cations and the bandwidth-scarce networks, the increasingly
frequent synchronization can be fatal. What’s worse, since
the volume of the common elements in the sets is unpre-
dictable, the hosts cannot manage the additional transmission
cost.

Essentially, set synchronization can be classified into two
categories. The first one is simple set synchronization, where
both A and B are simple sets. By contrast, multiset syn-
chronization concerns two multisets, each of which allows
an element has multiple duplicates, i.e., the multiplicity of
each element can be larger than one. Note that a multiset is a
generalization of a set, and a simple set is a special case of a
multiset where all elements only appear once.

Simple set synchronization is relatively easy since any
element in the set is unique; hence, the difference between two
simple sets stems only from the diverse elements that appear
in exactly one of the sets. However, for multisets A and B,
the difference between them stems from two sources. The first
kind of difference is dE , which denotes that the elements only
exist in either A or B. Specifically, dEA denotes the elements
that only exist in A, and dEB denotes that the elements that
only exist in B. Thus, dE = dEA ∪ dEB . The second kind of
difference, denoted as dM , includes the elements which appear
in both A and B, but with diverse multiplicities, i.e., number of

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LUO et al.: EFFICIENT MULTISET SYNCHRONIZATION 1191

TABLE I

THE APPLICABILITY OF EXISTING SIMPLE SET
SYNCHRONIZATION METHODS

duplicates of an element. Typically, dMA denotes the common
elements such that their multiplicities in A are larger than
those in B. Meanwhile, dMB denotes the common elements
such that their multiplicities in A are less than those in B.
Thus, dM = dMA∪dMB . An efficient multiset synchronization
method should identify dE and dM . Then, to save bandwidth,
only the elements in dE should be transmitted.

Some lightweight methods are proposed for efficient
set synchronization. The insight is to employ bloom fil-
ters (BF) [6] and their variants, e.g., counting bloom fil-
ter (CBF) [7], compressed bloom filter [8], invertible bloom
filter (IBF) [9], and invertible bloom lookup table (IBLT) [10].
Such methods represent all elements of a set using a vector
of cells, each of which can be one bit or a dedicated data
structure. After exchanging the resultant bloom filters of two
sets, those unique set elements can be identified via a process
of operations, such as query and subtracting. Consequently,
large numbers of common elements are not required to be
delivered to each other.

We argue that the existing BF-like synchronization methods
for simple sets are inapplicable to the multiset synchronization
problem. Table I shows the details. Among BF-like struc-
tures, only CBF and its variants (including Spectral Bloom
Filter (SBF) [12], Dynamic Count Filter (DCF) [13], [14],
Shifting Bloom Filter (ShBF) [15], and Count Min
Sketch (CM) [16]), can represent element multiplicity in a
multiset by augmenting the bit in each cell to be an integer,
but they are not inversely decodable, and cannot distinguish dE

from dM . IBF and IBLT can be decoded inversely, but they fail
to represent multiset, since the XOR operations will eliminate
it when the element is mapped into the same cells again.

Accordingly, in this paper, we first confirm the potential
of synchronizing multisets with CBF and IBF by following
a common framework. CBF can record the multiplicity of
each set element and a query-based decoding process can
finally discover the different elements between two multisets.
However, the CBF-based method cannot decode the elements
inversely. For the IBF-based method, the resultant IBF after
subtracting one IBF from another one may decode the different
elements in a recursive manner. In each round, the IBF only
decodes those elements in the root sets (see Definition 2) of
the current two multisets. After each round of decoding, the
two multisets will be updated via eliminating the root sets
from them. In this recursive method, multiset synchronization
can be realized with high probability. However, the IBF-based
method invokes the IBF processes round by round, and thus

suffers from a massive computation time. Note that both the
IBF-based method and the CBF-based method cannot dis-
tinguish dE and dM , and thus they will suffer from vast
communication overhead. The intrinsic reason is that they
must query all elements to uncover d and treat dE and dM

with no difference.
To avoid the inherent weakness of the CBF and IBF-based

methods, we design a novel data structure, invertible counting
bloom filter (ICBF), which consists of a vector of cells. Each
cell contains two fields, i.e., the id and count, which record the
element mapped into that cell and its multiplicity, respectively.

We then propose an efficient method based on ICBF for
the multiset synchronization problem. Our method depends
on three operations for ICBF: the encoding, subtracting, and
decoding. For the encoding operation, a family of independent
hash functions are utilized to map each element of a multiset
into the cell vector, and a special identifier mechanism is intro-
duced to identify this element. For two ICBFs, the subtracting
operation eliminates those common elements, and results in
a new ICBF. Accordingly, the resultant ICBF can decode all
elements from its cell vector via referring to the local id table,
which records the mapping relationship of id and the real
content of each element. To be specific, ICBF records the
multiplicity of an element with its count field, decodes the
elements inversely from the cells with the help of id field
and the local id table, and distinguishes dE from dM with
joint consideration of count and id in ICBFC and ICBFC′ .
Consequently, only the elements in dE will be transmitted to
the other host.

Furthermore, we conduct comprehensive experiments
to evaluate the performance of the ICBF-based and IBF-
based methods. The results indicate that our ICBF-based
method achieves better accuracy and incurs much less time-
consumption than the IBF-based method. We also measure the
additional communication overhead when the multiplicities
follow different distribution patterns. We find that our
ICBF-based method outperforms the IBF-based method,
and requires much less communication overhead. The major
contributions of this paper can be summarized as follows:

• We propose a novel data structure called ICBF to rep-
resent a multiset. Furthermore, we design an efficient
method based on ICBF to synchronize a pair of multisets.

• We reveal that the existing CBF and IBF can theoretically
realize multiset synchronization. Accordingly, we pro-
pose dedicated multiset synchronization methods based
on CBF and IBF, respectively.

• Comprehensive experiments demonstrate that the
ICBF-based method outperforms the IBF-based
methods in terms of the synchronization accuracy,
time-consumption, and communication overhead.

The remainder of this paper is organized as follows.
Section II summarizes preliminaries about multisets and
bloom filters. Section III reports the CBF-based and IBF-based
methods for multiset synchronization. Section IV introduces a
new data structure, ICBF, and accordingly designs an efficient
and accurate multiset synchronization method. Section V
evaluates the performance of proposed synchronization
methods. We then elaborate on the related works in Section VI,

1192 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

TABLE II

SYMBOLS AND NOTATIONS

and discuss several practical concerns in Section VII. Finally,
we conclude this paper in Section VIII.

II. PRELIMINARIES

We introduce the basic concept of the multiset and then
summarize the standard bloom filters and two of its variants
in this section. The important symbols and notations in this
paper are given in Table II.

A. Multiset

Unlike a simple set, a multiset allows an element to appear
multiple times [18]. To characterize the features of a multiset,
several parameters can be employed to describe a multiset.

Definition 1: Let x be an element of a multiset A. The
multiplicity of x is denoted by mA(x), which denotes the
number of instances of x in A.

Definition 2: Given a multiset A, a simple set A∗ is defined
as the root set of A such that A∗ = {x ∈ A|mA(x)>0}.
Hence, different multisets might have the same root set.

Definition 3: Let C(A) denote the cardinality of a multi-
set A, i.e., the sum of multiplicity of each element. We have
C(A) =

∑n
i=1 mA(xi), where xi is an element of A∗ and

n denotes the cardinality of the root set A∗.
According to such definitions, a multiset A can be char-

acterized as its root set and the multiplicity of each ele-
ment. That is, A can be represented as a set of pairs,
i.e., A = {〈x1, mA(x1)〉, · · · , 〈xi, mA(xi)〉, · · · }. For exam-
ple, A = {〈x, 3〉, 〈y, 2〉, 〈z, 1〉} stands for {x, x, x, y, y, z}.

B. Bloom Filters

Given a set A = {x1, x2, ..., xn} with n elements, a bloom
filter (BF) [6] represents such n elements with a bit vector of
length m. All of m bits in the vector are all initially set to 0.
A group of k independent hash functions, <h1, h2, ..., hk>,
are employed to randomly map each set element into k
positions, <h1(x), h2(x), ..., hk(x)>, in the bit vector. Those
bits at such k positions in the vector are all set to 1. In the
same way, all the elements can be represented by the same BF.

According to the m-bit vector and the k hash functions, we
can realize the membership query against any element. If any
bit at the k hashed positions of the element is set to 0, the BF
judges that this element does not belong to the set. Otherwise,
the BF believes that the queried element belongs to the set with
a low probability of false positive. That is, for an element not
in the set, all of its k hash positions in the bit vector may be 1,
due to the unavoidable hash conflicts.

Bloom filters have been used in many fields [19]–[21].
Regarding various applications, several variants are proposed
to make them more effective and efficient. We further discuss
two mainstream variants, counting bloom filters and invertible
bloom filters.

C. Counting Bloom Filters

One drawback of bloom filters is that they are only suitable
for static sets, while a dynamic set has to tackle the element
insertion and deletion operations. It is clear that bloom filters
naturally support the element insertion operation by setting
the hashed k bits to 1. It, however, cannot simply reset all
the hashed bits to 0 when an element is removed from the
corresponding set, since the k hash bits may be shared by other
elements in the set, so resetting can lead to false negatives.

To address this issue, the counting bloom filter [7] was
proposed to improve the bloom filters. It naturally supports
the deletion and insertion of any element by replacing each
bit in the vector with a counter consisting of multiple bits.
In this way, the value of each cell can exceed 1. Assume
element x is hashed into the 4th, 10th, and 15th cells,
while element y is hashed into the 5th, 15th, and 24th cells,
respectively. Consequently, the count value is 1 for the 4th,
5th, 10th, and 24th cells, but is 2 for the 15th cell. If the
element x is deleted from the set, the values of the 4th, 10th,
and 15th cells are decreased by 1, but the value of the 15th

cell is still positive other than 0. That is, a query of y would
result in a correct positive indication, since the membership
information of element y is still kept in the updated CBF.

Several variants of CBF have been proposed to optimize
the size of each cell, or enhance the query accuracy, e.g.,
SBF [12], DCF [13], ShBF [15], and CM [16]. SBF and
DCF adjust the size of the used bits in each cell according
to the maximum multiplicity of elements. By contrast, ShBF
and CM are devoted to a more efficient query. Besides, the
false negative problem of CBF has been well discussed [17].

D. Invertible Bloom Filters

It is well-known that a bloom filter cannot decode those
elements represented by its bit vector, due to the use of one-
way hash functions. To enable the set synchronization, the
query-based method is used to identify and then exchange
different elements between two sets. The insight is to query
a BF of one set against each element in another set. Such a
query-based synchronization method is inefficient and time-
consuming. Invertible bloom filters (IBF) [9] extend bloom
filters from several aspects such that the subtracting operation
of IBFs for two sets provides the opportunity to decode those

LUO et al.: EFFICIENT MULTISET SYNCHRONIZATION 1193

Fig. 1. An illustrative example of the proposed framework.

different elements between the two sets. Each cell of IBF
contains three fields:

• idSum, the XOR of element ids hashed into that cell.
• hashSum, the XOR of elements mapped by an extra

hash function g into that cell.
• count, the amount of elements hashed into that cell.
To decode the set elements from an IBF with a high

probability, its parameters have to be configured carefully.
Let d denote the amount of total difference between two sets.
The number of cells for an IBF is m = α · d, where α>1.
It has been also confirmed that 3 or 4 hash functions are
sufficient in practice [9]. Consequently, the communication
overhead of elements is O(d), and the computation complexity
of synchronization is O(n + d), where n is the amount of
associated elements, if we do not consider the overhead due
to estimating the total number of different elements [9].

III. MULTISET SYNCHRONIZATION VIA

VARIANTS OF BLOOM FILTERS

In this section, we start with a framework of multiset
synchronization. We then explore how IBF and CBF can
be used to realize multiset synchronization based on this
framework.

A. Framework of Multiset Synchronization

Assume that two hosts, HostA and HostB , host two
multisets, A and B, respectively. Multiset synchronization
means to identify and exchange those different elements
between A and B such that the two hosts will have the
same elements with the same multiplicity at last. The mul-
tiset synchronization must handle both the dE and dM .
For example, for two multisets, A = {〈x, 1〉, 〈y, 2〉, 〈z, 3〉}
and B = {〈y, 1〉, 〈z, 2〉, 〈w, 1〉, 〈u, 2〉}, the result of A −
B is a new multiset: {〈x, 1〉, 〈y, 1〉, 〈z, 1〉, 〈w,−1〉, 〈u,−2〉}.
Similarly, the result of B − A can be easily derived as:
{〈x,−1〉, 〈y,−1〉, 〈z,−1〉, 〈w, 1〉, 〈u, 2〉}.

To enable fast and accurate multiset synchronization, we
propose a general framework for the design of multiset syn-
chronization methods as depicted in Fig. 1. The framework
contains three processes: encoding, subtracting, and decoding.
Given HostA and HostB , the following six steps are required
to accomplish the multiset synchronization.

1) Each host executes the encoding operation, which maps
its elements to the cell vector by the k independent hash
functions.

2) HostB sends the encoding result of B to HostA.
3) Given the two encoding results, HostA executes the

subtracting and decoding operations to derive those
elements that need to be transmitted to HostB .

4) HostA sends the subtracting result of the two encoding
results, as well as EA, to HostB .

5) HostB receives EA and the subtracting result; it then
executes the decoding operation to identify the elements
in EB , which need to be sent to HostA.

6) HostB sends EB to HostA and the synchronization will
be accomplished.

Note that, for those elements in dM , a dedicated number
of replicas will be generated to ensure the consistency of
A and B. This general framework will guide the design
of dedicated multiset synchronization methods. They usually
differ in the encoding, subtracting, and decoding operations.
In the following sections, we evaluate the possibility of realiz-
ing multiset synchronization using the variants of bloom filters.
Note that, the standard bloom filter is not feasible since it
neither records the multiplicity of each element nor is inversely
decodable. For this reason, we only explore IBF and CBF to
realize the multiset synchronization.

B. The IBF-Based Synchronization Method

Although IBF is very efficient in enabling the synchroniza-
tion of simple sets, it cannot be directly used to address the
synchronization problem of multisets. Recall that the idSum
field of each cell in IBF records the XOR result of those
elements, which are mapped into that cell by one of the
k independent hash functions. It is easy to find that the XOR
operation ensures that each idSum field can record an element
only once. If the multiplicity of an element is even, the XOR
operation makes the idSum fields of k involved cells eliminate
this element. For the same reason, the idSum field of cells
will record an element only once if its multiplicity is odd. As a
consequence, the IBF cannot directly represent a multiset, not
to mention realize the multiset synchronization.

Fortunately, it is reasonable to view a multiset as the
“union” of several simple sets. For example, a multiset
A = {〈x, 1〉 〈y, 2〉 〈z, 3〉} can be considered as the “union”
of three simple sets, i.e., A = {x, y, z} � {y, z} � {z}.
Inspired by this observation, IBF may successfully enable
the multiset synchronization by performing the traditional
set synchronization round by round. Basically, the IBF-based
method also calls for encoding, subtracting, and decoding
operations to identify the different elements during each
round.

The functionality of IBF stems from three operations:
the encoding, the subtracting, and the decoding. During the
encoding process, for any element x ∈ A, k hash functions
are employed to map x to the cell vector. The idSum field of
the mapped cell demonstrates the XOR of elements that are
hashed into this cell. Meanwhile, the hashSum field of the
mapped cell records the output of an additional hash function
of x for the purpose of checking during the decoding process.
To subtract those different set elements, IBF performs the
XOR operation on the encoding results of sets A and B

1194 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

to eliminate the common elements between the two sets.
Consequently, the resultant IBF vector just represents the
information of those different elements.

Then we can simply decode those different elements. The
basic idea is to locate a cell with only one element denoted
as x. We then insert x again into the resultant IBF. The XOR
operation will eliminate the encoded information of x at the
involved k cells. By executing this operation recursively, IBF
will finally decode all distinct elements with high probability.
However, as discussed in [9], IBF may fail to find a cell
with only one element in each round, even after carefully
setting parameters. The above method can be embodied in
the following steps.

Note that, the IBF-based method also follows the general
framework in a recursive manner. HostA and HostB map
their root sets A∗ and B∗ into IBFA∗ and IBFB∗ via
k independent hash functions, respectively (Step 1 of the
framework). Then HostB sends IBFB∗ to HostA (Step 2
of the framework) and HostA executes the subtracting and
decoding operations to identify the elements in EA in this
round (Step 3 of the framework). The next step is that,
according to the framework, HostA sends the elements in EA

as well as the subtracting result IBFC∗ to HostB such that
those elements only appearing in A∗ are synchronized to B
(Step 4 of the framework).

Upon receiving IBFC∗ , HostB executes the IBF decoding
operation [9], thus deriving the elements in EB of this round
(Step 5 of the framework). At last, HostB delivers the
elements in EB to HostA such that A∗ = B∗ eventually
(Step 6 of the framework). In this way, the six steps in
the framework are accomplished and the IBF-based method
synchronizes A∗ and B∗ with dedicated probability. This
method will continue to be performed in the next round, and
can only be terminated when at least one set is identified as
empty.

For two multisets A = {〈x, 1〉, 〈y, 2〉, 〈z, 2〉, 〈w, 1〉} and
B = {〈y, 1〉, 〈z, 1〉, 〈w, 3〉, 〈u, 2〉}, we illustrate an example to
clarify the aforementioned synchronizing processes. Their root
sets are A∗ = {x, y, z, w} and B∗ = {y, z, w, u}, respectively.
In the first round, the different elements of the two root
sets are identified as {x, u}. After deleting the root sets, the
original two multisets are updated as A = {〈y, 1〉, 〈z, 1〉} and
B = {〈w, 2〉, 〈u, 1〉}.

We then recursively execute the synchronization process.
After one more round, set A becomes empty while set B
is {〈w, 1〉}. Thus, this method will terminate with the
identified difference between the original A and B, i.e.,
{〈x, 1〉, 〈y, 1〉, 〈z, 1〉, 〈w, 2〉, 〈u, 2〉}. To be specific, the IBF-
based method derives dA1 = {x} and dB1 = {u} in the
first round of decoding. In the second round, the decoding
operation deduces the different elements as dA2 = {y, z}
and dB2 = {w, u}. Note that, the third round will not be
executed, since A is already empty, and HostB will send
the remained element, i.e., w, to HostA directly. In this
case, dM = {〈y, 1〉, 〈z, 1〉, 〈w, 2〉}, and dE = {〈x, 1〉, 〈u, 2〉}.
However, the IBF-based method fails to distinguish dM from
dE , as a result, all the different elements must be transmitted
between HostA and HostB .

This special method, however, still suffers from other
weaknesses. First, it is inefficient and must be executed for
η = min{ηA, ηB} rounds, where ηA and ηB denote the
maximum multiplicity of elements in A and B, respectively.
The computation complexity of each round is O(n + d) [9],
where n is the amount of associated elements. Moreover, the
parameters of IBF have to be reset in each round, according to
the estimated size of the difference between updated A and B.
Such an estimation process will bring additional computa-
tion overhead. Although accurate estimation can improve the
decoding probability of this method, it cannot absolutely
guarantee the success of the entire decoding process. The
reason is that decoding failures may occur during each round.
This weakness stems from the IBF mechanism even under the
best setting of parameters [9].

Let pi for 1 ≤ i ≤ η denote the probability that the
ith round of IBF process successfully decodes the difference.
The probability of a successful multiset synchronization is
given by p =

∏η
i=1 pi and is much less than the pi of any

round. For example, even if each round can succeed with
pi = 0.99, the probability of a successful multiset synchro-
nization is only (0.99)20 ≈ 0.818 when η = 20. That is, the
IBF-based method is not suitable for high multiplicity
multisets.

C. The CBF-Based Synchronization Method

Our research finds that CBF is a candidate for realizing
the multiset synchronization, since it offers an indirect
way to record the multiplicity of each element. After
encoding the element x ∈ A, the minimum count among
CBFA[h1(x)], · · · , CBFA[hk(x)] will be regarded as an
estimation for mA(x) [7]. Conflicts may occur in such
k dedicated cells, because other elements may be mapped
into these cells too. However, the probability that all the
k cells experience conflict at the same time is negligible.
Thus, the minimum value among such cells for an element
can tell the correct multiplicity of x with high probability.

Note that, such a CBF-based method still follows the set
synchronization framework proposed in Fig. 1. Two hosts,
HostA and HostB , first encode their multisets as CBFA and
CBFB by using CBF, respectively. For any x ∈ A with a
multiplicity β, the k cells h1(x), · · · , hk(x) in CBFA will
be increased by β. The same result holds for any element
in multiset B. Then HostB sends the resultant CBFB to
HostA. The subtracting of CBFB from CBFA can be easily
implemented by HostA since each cell in CBF has only one
field, i.e., the count. It records how many elements have
been mapped into that cell. Let CBFC denote the new CBF
resulting from the subtracting operation. The value of each
cell in CBFC is simply the minus result of the corresponding
count in CBFA and CBFB .

Apparently, there may be conflicts due to the hash functions,
i.e., different elements are mapped into the same cells, with
a rather small probability. Note that the resulting CBFC is
significantly affected by the hash conflicts. If there are no
conflicts for both CBFA and CBFB , a zero cell means that
all of elements in A and B are not mapped into that cell,

LUO et al.: EFFICIENT MULTISET SYNCHRONIZATION 1195

Algorithm 1 Decoding Operation of CBF at HostA

Require: The subtracting result CBFC = CBF (A) −
CBF (B), any element x ∈ A and k hash functions.

1: flag← 0;
2: for x ∈ A do
3: for i = 0 to k − 1 do
4: Calculate the hash value of hi(x);
5: if CBF [hi(x)].count>0 then
6: flag++;

7: if flag==k then
8: add x into EA for later transmission;
9: return EA;

or x is mapped into that cell but mA(x) = mB(x). When
the value of a cell is a positive integer, it demonstrates
that for the element x that has been mapped into this cell,
mA(x)>mB(x). Otherwise, if the value is a negative integer,
it implies mA(x)<mB(x).

However, if any i-th cell occurs conflict either in CBFA or
CBFB , the corresponding cells in CBFC will be meaningless.
If both x and y are hashed into the 5th cell in CBFA and
CBFB , then the value of the 5th cell in CBFC is decided
by the difference of mA(x) + mA(y) and mB(x) + mB(y).
If mA(x) + mA(y)>mB(x) + mB(y), then CBFC [4] is
a positive integer. Meanwhile, CBFC [4] is negative when
mA(x) + mA(y)<mB(x) + mB(y) and 0 when mA(x) +
mA(y) = mB(x)+mB(y). As a result, we cannot judge which
one is larger among mA(x) and mB(x) as well as mA(y)
and mB(y). This is because the probability of conflict-free
encoding of CBF is the same as the invertible counting bloom
filters that we will introduce later. We discuss the probability
issue and our solution in Section 4.5.

HostA and HostB encode the elements of A and B via
the same set of hash functions. After receiving the CBFB ,
HostA calculates the result of CBFC = CBFA − CBFB

via performing the minus operations on corresponding cells
in CBFA and CBFB . However, unlike IBF, CBF is not
inversely decodable. Accordingly, we cannot derive the differ-
ence between multisets A and B just according to the resultant
CBFC . Thus, we still employ the query-based mechanism to
identify those different elements.

As depicted in Algorithm 1, at HostA, for an element
x ∈ A, the decoding process maps x by the k hash
functions. If the values in the resulting cells, i.e.,
CBFC [h1(x)], CBFC [h2(x)], · · · , CBFC [hk(x)], are all
positive, then x will be added into EA, which will be
further delivered to HostB . In this way, all elements in
EA can be derived. EA and CBFC will be sent to HostB
according to the fourth step in our general framework.
Similarly, HostB will execute the same algorithm to
distinguish the elements in EB based on CBFC . Note that
EB includes any element x which satisfy the constraint
that CBFC [h1(x)], CBFC [h2(x)], · · · , CBFC [hk(x)] are all
negative rather than positive.

After identifying EA and EB , they should be delivered
to HostB and HostA, respectively. Note that, all of ele-

ments in EA and EB only need to be transmitted once.
To complete the process of multiset synchronization, HostB
queries each element in x ∈ EA from CBFC to derive how
many replicas of x should be created to keep accordance
with A. For instance, if HostB queries an element x ∈ EA

against CBFC , and finds out that the minimal value among
CBFC [h1(x)], CBFC [h2(x)], · · · , CBFC [hk(x)] is 3, then
HostB will add x and 2 extra replicas of x into B. Similarly,
Given CBFC and EB , HostA will execute the query opera-
tions to derive how many extra replicas of x ∈ EB should be
added into A so that we get A ∪B eventually.

Such a method, however, suffers non-trivial time consump-
tion. C(A∗) and C(B∗) queries have to be executed at
HostA and HostB during the decoding process, respectively.
Moreover, the CBF suffers the inherent false positive prob-
ability, which may cause a serious negative impact on the
performance of multiset synchronization. Given the value of k
and the number of elements, the only way to lessen the false
positive probability is to utilize more cells. However, more
cells will cause more storage overhead. Note that, to minimize
the transmission overhead, only those diverse elements should
be transmitted, while those common elements with distinct
multiplicities can be synchronized by generating a dedicated
number of replicas at each host. However, the CBF-based
method fails to distinguish dM from dE , and thus it incurs
unnecessary transmission costs.

For example, given A = {〈x, 1〉, 〈y, 3〉, 〈z, 1〉} and
B = {〈y, 1〉, 〈z, 2〉}, HostA decodes CBFC and derives that
A−B = {〈x, 1〉, 〈y, 2〉, 〈z,−1〉}. Then HostA sends x and y
to HostB because the multiplicity of both x and y are positive
in CBFC . Similarly, HostB delivers z, whose multiplicity
in CBFC is negative, to HostA to realize synchronization.
However, the fact is that y should not be transmitted to HostB
and z need not to be delivered to HostA since y and z have
already existed in HostB and HostA, respectively.

In summary, IBF and CBF can indirectly solve the multiset
synchronization problem. The CBF based methods are not
inversely decodable; hence, a query-based method is the only
choice to recognize the elements in the cells. The IBF-based
method is inversely decodable but must be executed for
multiple rounds to achieve multiset synchronization. So,
they suffer from high time complexity and limited accuracy.
Besides, the IBF-based method and the CBF-based method
fail to distinguish dE and dM ; thus, they suffer an additional
communication overhead. Thus, we need another novel data
structure to represent the multiset and detach dM from dE to
realize fast and accurate multiset synchronization.

IV. INVERTIBLE COUNTING BLOOM FILTERS

FOR MULTISET SYNCHRONIZATION

In this section, we propose a novel dedicated data structure,
called invertible counting bloom filters (ICBF), to represent a
multiset and tackle the multiset synchronization problem.

A. Invertible Counting Bloom Filters

We find that each count in CBF is capable of recording
how many elements have been mapped into it. That is,

1196 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

CBF can record the multiplicity of each element in a multiset
via the count value in each cell. It, however, fails to decode
the elements from the counter vector, due to the well-known
“one way property” of hash functions. That is, a CBF requires
additional information besides the counter vector to decode all
of the elements in a set represented by it. For this reason, we
design the invertible counting bloom filters (ICBF) with a new
cell vector, each of which contains a count field and an extra
id field.

For each cell, the id field is responsible for recording a
generated identifier for each element that has been hashed
into the cell. The count field memorizes how many ele-
ments have been encoded into that cell, i.e., the multi-
plicity of a particular element if there are no conflicts.
For an element x, we employ the minimal value among
ICBFA[h1(x)].count, · · · , ICBFA[hk(x)].count as mA(x).
What is more, we also measure the probability of such a
conflict-free event, and adjust m and k to ensure high conflict-
free probability in Section 4.5.

To decode the elements from a cell vector inversely, the
identifier of each element should not only record the element
but also identify which set the element belongs to. Thus for
the ICBF-based method, the identifier of any set element is
constructed as two parts. The prefix part identifies the set this
element belongs to, while the suffix part indicates the element
itself. The details about the identifier will be introduced later
in Section 4.2.

Note that there exist potential conflicts under the encoding
process, i.e., multiple diverse elements may be hashed into
a same cell with a given probability. If the number of cells
is m, the probability that two diverse elements are mapped
into a same cell is given by 1/m. Indeed, bloom filters and
their variants always suffer this weakness. ICBF, however, can
tackle the potential hash conflicts via the id field. For example,
an element x has been hashed into the ith cell of a ICBF.
When the ICBF encodes another element y into the ith cell,
the count field needs to be increased but the id field remains
unchanged. That is, CBFA[i].count = mA(x) + mA(y).

It is clear that ICBF can naturally support the element
insertion, fast membership-query. However, ICBF can not
only realize the element deletion operation, but also inversely
decode the elements. Furthermore, we show in Section 5
that ICBF consumes fewer storage resources and incurs less
communication overhead than IBF; this is because it employs
only two fields, while IBF needs three fields.

B. The Identifier Generation Mechanism an Element

Given two multisets, A and B, id assignment of each
element in A or B only cares about the value of C(A∗) or
C(B∗) (the cardinality of the multiset), rather than that of
C(A∗)+C(B∗). For any element in set A or set B, we employ
the first digit (the leftmost digit) of its id to record the set it
belongs to, i.e., the red digit in Fig. 2. We use other binary bits
of an identifier to distinguish each element in a multiset. The
length of such an identifier is determined by the cardinality of
the root set of each multiset. For example, in Fig. 2, a 2-digit
identifier (the black digits in the id field) is employed for A,

Fig. 2. An example of ICBF encoding and subtracting process. For simplicity,
the bits that used to label the empty cells are omitted.

since the root set A∗ only has three elements. In this way,
our ids can identify each element in any multiset and can be
used to realize the subtracting and decoding operations. For
instance, in Fig. 2, the red 0 means that all related elements
belong to A, while the red 1 declares that this id is used for
elements in B.

The identifier of each element is represented as binary bits in
memory. Hence, one vital issue is how to distinguish the empty
cells with non-empty cells in ICBF. In real implementation,
there are two differentiated solutions. One possible strategy
is to augment an additional bit as the flag. If the cell is
non-empty, this flag will be set as 1; otherwise, it is set
as 0. In this way, the algorithm will check the flag during
synchronization. In contrast, another solution is to leave a
default suffix (e.g., 00· · · 00) of the identifier as the sign of
empty cells. For instance, if there are 3 diverse elements in a
multiset, the suffix 00 implies the empty cells. By contrast, 01,
10, and 11 represent the 3 elements, respectively. We prefer the
first strategy since only one bit must be checked, which will
significantly ease the cost of distinguishing the empty cells.

C. id table at Each Host

To accomplish the synchronization, HostA (HostB) trans-
mits the elements in EA (EB) to HostB (HostA). However,
the ICBF can only derive the ids of these elements. Hence,
to know what the content of an id really refers, we maintain
an id table at each host to record the mapping relationship
between each element and its identifier. When our algorithms
need to know the original element behind an id, they can refer
to the id table at that host. By maintaining the relationship
between ids and elements locally, the synchronization will
incur less bandwidth than IBF does, which remotely transmits
the original elements between hosts.

Undoubtedly, the introduction of the id table will bring
extra storage overhead. However, we argue that, the storage
overhead is controllable and acceptable. Firstly, the id table

LUO et al.: EFFICIENT MULTISET SYNCHRONIZATION 1197

TABLE III

THE SPACE OVERHEAD OF id table (MB)

only records the information of local elements, and never
cares about the elements at other remote hosts. Secondly,
the existing key-value storage techniques can be employed to
optimize the storage strategy and speed up the query request,
e.g., Dynamo [23], Redis [24], and Memcached [25]. Thirdly,
instead of saving the original content of elements with the
id table, we prefer to store the location or directory of
elements in the local file system.

To quantify the space overhead, we consider two storage
strategies, i.e., storing id table with an array and storing
the id table with a hash table (Dynamo, Redis, and Mem-
cached). For the array, the space overhead is n · (
(log2n)�+
1 + s̄)/8 (MB), where n is the number of elements in the
root set, and s̄ denotes the maximum number of bits that
the directory used. As for the hash table, the required space
overhead can be calculated as m · s̄ (MB), where m is the
number of cells the hash table has. Table III records the space
overhead of both storage strategies, when s̄ = 500 bit and
m = 30n. Apparently, with the increase of n, both strategies
cost more space overhead, and storing the id table with array
consumes much less space overhead. But we argue that, the
time-complexity of querying an element in an array and a hash
table is O(n) and O(1), respectively. Hence, to speed up the
synchronization process, storing the id table with the hash
table is more advisable, and the resulted space overhead is
acceptable for nowadays’ hosts.

D. The ICBF Operations for Synchronizing Multisets

Note that the synchronization result of two multisets is the
union of them at both hosts. For any element x appearing in
both multisets, we generate |mA(x) −mB(x)| replicas of x
at the host that holds the less multiplicity of x, such that
mA(x) = mB(x). Besides, for those elements appearing only
in one multiset, they need to be sent to another host, and a
given number of replicas will be generated for consistency.
For example, if mA(x) = 3 while x doesn’t belong to B, the
element x will be delivered from A to B and 2 extra repli-
cas will be generated at HostB . Similarly, our ICBF-based
method also follows the proposed synchronization framework,
as shown in Fig.1, consisting of three operations: encoding,
subtracting, and decoding.

Consider that HostA and HostB need to synchronize
two multisets A and B. First of all, each host executes the
encoding operation and establishes an id table. Secondly,
HostB sends its encoding result, i.e., ICBFB , to HostA.
Thirdly, HostA performs the subtracting operation to derive
ICBFC = ICBFA − ICBFB and ICBFC′ = ICBFB −
ICBFA. HostA employs the decoding operation to identify
elements in EA and dMA . According to the fourth step in
the framework, HostA sends EA, ICBFC and ICBFC′

to HostB . In the fifth step, HostB decodes ICBFC and

Algorithm 2 Encoding Operation of ICBF
Require: A multiset A, any element x ∈ A, k hash functions

and a cell vector ICBF .
1: Initialize the ICBF vector of cells;
2: for x ∈ A do
3: for i = 0 to k − 1 do
4: Calculate the hash value of hi(x);
5: if ICBF [hi(x)].id is not empty then
6: ICBF [hi(x)].count++;
7: else
8: ICBF [hi(x)].id← x.id;
9: ICBF [hi(x)].count++;

10: return ICBF ;

ICBFC′ to identify the elements in EB and dMB . Finally,
HostB sends the decoding result, i.e., EB to HostA, and
thus, the synchronization is accomplished.

Encoding: Given a pair of multisets, A and B, when
encoding any multiset, each of its elements is mapped into k
cells via the k independent hash functions. What is different
from the encoding process of IBF is that ICBF need not
know the size of the difference between A and B. This will
save the additional overhead resulting from estimating the
difference, compared to the IBF-based method. Fig. 2 depicts
the encoding process for multiset A and B. As reported in
Algorithm 2, when an element is mapped into a given cell,
if the id field is empty, then the id of such an element will
be kept in that id field, and the associated count field will be
increased by 1. Otherwise, only the count field needs to be
increased by one. Reasonably, according to the minimal value
among the k count fields, we can estimate whether an element
has been mapped into this cell, and if so, how many times.
Note that, in Fig. 2, there is a hash conflict in ICBFB since
x and z are mapped into a same cell. In this case, the id field
only records the identifier of x, while the count field counts
mB(x) + mB(z).

Subtracting: After encoding multisets A and B, the two
corresponding hosts will exchange the resultant ICBFA and
ICBFB . So far, the next process of synchronization is to
subtract the different elements from the two ICBFs, each of
which is a vector of cells. Note that the set of used hash
functions and the length of the cell vectors for A and B
must be the same, such that any common element will be
mapped into the same set of k locations in the two vectors.
Algorithm 3 describes the subtracting process. It traverses the
cell vectors of A and B from beginning to end. For the ith

cell in both ICBFA and ICBFB , if both ICBFA[i].id and
ICBFB [i].id are empty, Algorithm 3 just moves towards the
next cell. If ICBFA[i].id and ICBFB [i].id are not empty,
the algorithm only remains ICBFA[i].id in the resultant cell
vector. If either ICBFA[i].id or ICBFB [i].id is not empty,
the algorithm will remain the nonempty one to identify the
corresponding element.

The operation on the count field of each cell in ICBFA

and ICBFB is relatively simple. It just executes the
operation of ICBFA[i].count−ICBFB[i].count, calculating

1198 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

Algorithm 3 Subtracting Operation for ICBF
Require: The encoding results ICBFA and ICBFB , the

length of cell vectors m.
1: Initialize a cell vector, denoted as ICBFC ;
2: for i = 0 to m− 1 do
3: if ICBFA[i].id is not empty then
4: ICBFC [i].id←ICBFA[i].id;
5: ICBFC [i].count←ICBFA[i].count −

ICBFB [i].count;

6: if ICBFA[i].id is empty and ICBFB [i].id is not then
7: ICBFC [i].id←ICBFB [i].id;
8: ICBFC [i].count←ICBFA[i].count −

ICBFB [i].count;

9: return ICBFC ;

the difference of multiplicity of an element in both A and B.
Through the two operations on the id and count fields of
each cell, Algorithm 3 can subtract the different elements
between A and B. In the resulting cell vector, the id field
identifies what the different elements are, and the count
field records how many times the elements differ from each
other. Fig.2 presents a successful subtracting process between
A = {〈x, 2〉, 〈y, 1〉} and B = {〈x, 1〉, 〈y, 2〉, 〈z, 1〉}. The
resultant multiset C = A − B can be calculated via the
aforementioned rules. The common elements, i.e., x and y,
are mapped into the same locations in ICBFA and ICBFB .
In the resulting cell vector ICBFC , the id field of each
cell stems from either ICBFA or ICBFB (only when
ICBFA[i].id is empty), while the count field of each cell
is derived by ICBFA[i].count− ICBFB [i].count.

During the subtracting process, if both ICBFA[i].id and
ICBFB [i].id are non-empty or ICBFA[i].id is non-empty
but ICBFB [i].id is empty, we remain the ICBFA[i].id
in the ICBFC vector. Only when ICBFA[i].id is empty
but ICBFB [i].id is non-empty, ICBFC would record
ICBFB [i].id. Note that the decoding process will benefit
from this special discipline. When HostB decodes ICBFC ,
it can identify those elements that only belong to B. Thus,
EB will be determined since all elements appearing in A can
be found by checking the first digit of each identifier, i.e., 0.
Also, if HostA decodes ICBFC , it will be aware of those
elements in dMA , by estimating whether their identifiers begin
with 0 and whether their count fields are negative. The specific
decoding process will be discussed as follows.

Decoding: In fact, HostA is also able to derive the set
C

′
= B−A via the designed subtracting process. By decoding

ICBFC and ICBFC′ , each host can distinguish the elements
that should be copied at the local host from the elements that
call for transmission to another host. In ICBFC , only those
elements appearing in B but not in A are identified with the
id fields, beginning with 1. In contrast, in ICBFC′ , only
those elements that appear in A, but never appear in B are
identified via those id fields, which start with 0. That is, EA

can be derived from ICBFC′ at HostA, while EB can be
derived from ICBFC at HostB , respectively. Furthermore,
HostA can decode ICBFC and discover those elements

Algorithm 4 Decoding ICBFC and ICBFC′ at HostB

Require: The subtracting result ICBFC and ICBFC′ , as
well as the number of cells m.

1: dMB ← NULL, EB ← NULL;
2: for i = 0 to m− 1 do
3: if ICBFC [i].id.[0]==1 and the element is not in EB

then
4: Push the element into EB;
5: if ICBFC′ [i].id.[0]==1, ICBFC′ [i].count<0 and the

element is not in dMB then
6: Push the element into dMA ;

7: return EB and dMA ;

which belong to A, but the count fields are negative. Such
elements belong to dMB and |count| replicas of these ele-
ments will be generated at HostA. Similarly, HostB decodes
ICBFC′ and recognizes those elements, which belong to B
while the count fields are negative, and |count| replicas
will be required. Thus, the hosts only exchange the elements
appearing in only one set.

To handle the potential hash conflicts, when decoding the
elements, ICBF employs the mode value (the value appears
most often) of the k count fields as the multiplicity of an
element in d. The reason is that, the hash conflicts in ICBFA

and ICBFB will affect the minimal value of the count field
in ICBFC , as well as ICBFC′ . Consequently, the minimal
value of the k count fields in ICBFC and ICBFC′ is not
reliable any more. By contrast, even if k−2 cells of an element
occurs hash conflicts, it is still possible for the mode value of
the k cells to infer the correct multiplicity of an element.

As an example, Algorithm 4 reports the decoding operation
at HostB . It decodes ICBFC to find out the elements that
need to be transmitted to HostA, i.e., EB . If the id of a
cell in ICBFC begins with 1, then the associated element
belongs to EB and should be transmitted to HostA. With
the help of the local id table, HostB knows the content of
each element in EB . Afterward, HostB chooses each cell
from ICBFC′ , whose id field starts with 1 and in which
the count field is negative, and then generates replicas of
the associated elements. In this way, dMA is derived and
synchronized without any additional transmission overhead.

Note that, for the ICBF-based method only, EA is equal
to the root set of dEA and EB records the root set of
dEB . Besides, dM can be calculated as dMA ∪ dMB . But the
IBF-based method and the CBF-based method fail to distin-
guish dE and dM . Thus, for these two methods, EA represents
the elements in dEA ∪ dMA , while EB involves the elements
in dEB ∪ dMB . Thus, the ICBF-based method transmits fewer
elements than the IBF-based and CBF-based methods.

E. Probability of Correct Representation

In this section, we measure the probability of conflict-
free representation of an element x in a given multi-
set A, i.e., min{C[hj(x)]} = mA(x), where j ∈ [1, k].
Indeed, even with a set of random and independent hash

LUO et al.: EFFICIENT MULTISET SYNCHRONIZATION 1199

Fig. 3. The changing trends of successful representation probability of an element (pe) and the entire multiset (pA), with different parameter options.
(a) Impact of k when m = 1000, nA = 50. (b) Impact of m when nA = 50, k = 4. (c) Impact of nA when m = 1000, k = 4.

functions, ICBF may still incur some false behaviors with a
given probability during the process of set synchronization.
ICBF can accurately represent an element iff the minimal
value of the k count fields in the mapped cells is equal to its
multiplicity. Hence, with given m, nA and k, we calculate the
false-positive probability of representing an element x using
an ICBF.

We note that any multiset A is the “union” of several subsets
of its root set A∗. For example, A = {〈x, 1〉 〈y, 2〉 〈z, 3〉}
can be considered as the “union” of three standard sets, i.e.,
A = A∗ �A1 � A2, where A∗ = {x, y, z}, A1 = {y, z}, and
A2 = {z}. Hence, hashing all elements in A to the ICBF cells
can be realized by mapping the elements in such simple sets
round by round, i.e., first A∗, then A1, and at last A2.

Theorem 1: Given the value of m, nA and k, the necessary
and sufficient condition of x ∈ A that is correctly represented
by ICBF is that x can be validly represented by ICBF in the
first round, i.e., in A∗. Mathematically,

p(min{C[hj(x)]}=mA(x))=pr(min{C[hj(x)]}= 1) (1)

where j ∈ [1, k], and pr(min{C[hj(x)]} = 1) means x is
correctly represented by ICBF in the first round.

Proof: We can infer from Theorem 1 that If the element x
is correctly represented in the first round, the final ICBF cells
satisfy min{C[hj(x)]} = mA(x) with j ∈ [1, k], regardless
of how many replicas x still has.

On one hand, the element x has been mapped for mA(x)
rounds into ICBF cells. If min{C[hj(x)]} = mA(x) holds,
for any cell whose counter part is mA(x), at each round only
x is mapped into the cell. At each round, k hash functions
map x into the cell vector; hence, the minimum count filed
in these cells record the multiplicity of x, i.e., mA(x) =
min{C[hj(x)]}. If any other element y also has been mapped
into this cell, the counter part is mA(x) + mA(y), which is
definitely larger than mA(x). So, it can be concluded that
for the cells whose final state is mA(x), the counter part is
increased by 1 at each round (certainly including the first round
which handles the root set of A). Thus, the sufficiency of the
conditions is proved.

On the other hand, if in the first round C[hj(x)]’s counter
part is only added by 1 due to mapping x with hj , then in
the remaining rounds, no other elements but x will be hashed

into this cell. The reason is that, the root set A∗ contains
all elements that occur in A, and we have A∗ ⊇ A1 · · · ⊇
Ai · · · ⊇ Aγ , where γ denotes the maximum multiplicity of
elements in A. Hence, at last, the cell C[hj(x)]’s counter
part must be mA(x). Thus, the necessity of the conditions
is proved. �

Theorem 2: Given the value of m, nA, k, and j ∈ [1, k], the
probability that an element x ∈ A can be validly represented
by ICBF in the first round is:

pr(min{C[hj(x)]} = 1) = 1− (1− (1 − 1
m

)nA·k−1)k. (2)

Proof: In the first round, an element x has definitely
been mapped k times by the k independent hash func-
tions. For any position hj(x) in the cell vector, we have
pr(C[hj(x)] = 1) = (1 − 1

m)nA·k−1. There exist k
such positions for x; hence, the probability that x is cor-
rectly represented in the first round can be calculated as
pr(min{C[hj(x)]} = 1) = 1− (1− (1− 1

m)nA·k−1)k . Thus,
Theorem 2 is proved. �

Based on Theorems 1 and 2, the probability that ICBF can
rightly represent an element is derived. Then the nA-th Power
of pr(min{C[hj(x)]} = 1) demonstrates the probability that
all elements in A are correctly recorded. Fig. 3 specifies the
impact of k, m, and nA, in terms of the probability of correctly
representing a single element (denoted as pe), and the entire
multiset A (denoted as pA). In Fig. 3 (a), given m = 1000 and
nA = 50, when k increases from 1 to 60, both pe and pA first
increase to nearly 1, then drop to a low level. By taking the
derivative and equaling to zero, the optimal value of k can be
derived. It is difficult to calculate the analysis formula of the
optimal k, and we employ the result in [27] as a reference,
i.e., k ≈ m

nA
ln 2. The reason is that our pe is much more

complicated than the probability in [27]. But we can still
determine the optimal k for ICBF by searching around m

nA
ln 2.

Besides, Fig. 3 (b) and Fig. 3 (c) confirm the impact of
m and nA with n = 50, k = 4 and m = 1000, k = 4,
respectively. Apparently, pe and pA benefit from larger m,
since more cells can degrade the chance of hash conflicts.
The impact of m shows a marginal effect. In the experiment,
when m is larger than 1000, pe and pA increase more slowly.
In contrast, nA shows a totally opposite influence on the
evaluated probabilities. With given m and k, fewer elements

1200 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

TABLE IV

COMPARISON BETWEEN CBF AND ICBF WITH nA = 400, nB = 500,
AND d = 1000, IN TERMS OF SYNCHRONIZATION ACCURACY,

TIME-CONSUMPTION AND CONFLICT RATE

result in higher probability of successful representation of
elements. This is reasonable, since more elements call for more
hash operations and lead to more chances for failure. Note that,
pA is calculated as pnA

e , and thus shows more radical increases
or decreases in our experiments. Indeed, with respect to k,
according to the means introduced in [27], the best option of
m can be derived as m = −2.081n ∗ ln(1 − pe); hence, we
omit the details here.

Furthermore, Table IV records the performance of synchro-
nization, as well as the conflict rate at HostA (Coll-A) and
HostB (Coll-A). Note that, the conflict rate means the ratio
of the number of hash conflicts to the total times of hash
operations. It is clear that increasing the value of m will
cause less hash conflicts. HostB occurs more hash conflicts
than HostA, since nA = 400 but nB = 500. Besides, the
synchronization accuracy grows with the drop of the conflict
rate, irrespective of CBF and ICBF.

V. PERFORMANCE EVALUATION

In this section, we implement IBF and ICBF to evaluate
the synchronization accuracy and time-consumption. The
synchronization accuracy is defined as the ratio of the number
of decoded differences to the amount of real difference.
By contrast, the time-consumption records the time lasting
from the very beginning of the encoding operation to the end
of the decoding operation. We also compare the additional
communication overhead caused by transmitting the IBF or
ICBF cell vectors.

A. Experiment Methodology

A virtual machine with 2.5 GHz CPU and 8 GB RAM is
employed as a host. We augment the strings with lengths and
characters that differ from those of elements in multisets. Note
that one challenging issue for bloom filter-like data structure
is the generation of a group of k independent hash functions.
In our experiments, the hash functions are generated with the
method employed in [26], i.e.,

hi(x) = (g1(x) + i · g2(x)) mod m (3)

where g1(x) and g2(x) are two random and independent
integers in the universe with a range [1, m]. The integer i
belongs to the range [0, k − 1].

In Table IV, we compare the performance of the synchro-
nization methods based on CBF and ICBF, in terms of the

synchronization accuracy and time-consumption, with given
nA = 400, nB = 500, and d = 1000. Apparently, more cells
result in obvious improvement of the synchronization accuracy
for both CBF and ICBF, at the cost of more time-consumption.
Note that, CBF and ICBF lead to similar accuracy under the
same parameter setting. The intrinsic reason is that they follow
same encoding, subtracting, and decoding framework; hence
they suffer from the same false positive. However, compared
with CBF, ICBF costs less time-consumption. Consider that,
CBF must query all the elements in A∗ and B∗ to deduce d,
but ICBF only needs the information of elements recorded in
ICBFC or ICBFC′ . Thus, ICBF outperforms CBF in terms
of synchronization time-consumption. More importantly, CBF
is not inversely decodable and fails to identify dE and dM .
Consequently, it cannot minimize the transmission of elements
between two hosts. For this reason, we just evaluate the
IBF-based and ICBF-based synchronization methods. We also
verify the influence of parameter settings on the synchroniza-
tion performance, and subsequently report all the performance
metrics on an average of 100 rounds of tests.

B. Synchronization Accuracy and Time-Consumption

The IBF-based method and ICBF-based method are capable
of achieving multiset synchronization, but result in differ-
ent time-consumptions and communication overheads. In this
section, we evaluate their performance in terms of the syn-
chronization accuracy and time-consumption under diverse
parameter settings. Typically, the Jaccard similarity of root
sets A∗ and B∗, i.e., J = |A∗ ∩B∗|/|A∗ ∪B∗|, is employed
to measure the similarity of A and B based on their root sets.

We measure the impact of different settings of multisets on
the performance of the two methods. Fig. 4(a) and Fig. 5(a)
report the synchronization accuracy and time-consumption of
the ICBF-based and IBF-based methods, respectively, when J
varies from 0 to 1, given nA = 500, nB = 500, d = 2000.
With the increase of J , the synchronization accuracy of the
IBF-based method grows up from 0.523 to 0.999, while the
time-consumption decreases from 345s to 165s. Also, the
ICBF-based method shares the similar changing trends of
accuracy and time-consumption.

However, the ICBF-based method achieves a higher
synchronization accuracy and incurs less time-consumption,
compared with the IBF-based method. Indeed, larger J causes
more common elements in the two root sets of A and B,
which means that fewer kinds of elements will be involved
in the synchronization processes. As a result, the IBF-based
method will be executed for more rounds, but involves fewer
elements in each round, which leads to better accuracy and less
time. This explains why when J increases, the synchronization
accuracy of the IBF-based method continues to increase while
the time-consumption reduces continuously.

Fig. 4(b) and Fig. 5(b) report the impact of d (the size of
the difference among two mulitsets) on the changing trends
of performance metrics. Given nA = 500, nB = 500, and
J = 0.8, we vary the value of d from 500 to 3500. It is
clear that the two metrics always fluctuate within a narrow
interval with the increase of d. That is, the ICBF-based method

LUO et al.: EFFICIENT MULTISET SYNCHRONIZATION 1201

Fig. 4. The synchronization accuracy of ICBF and IBF under different parameter settings. (a) Accuracy when J varies. (b) Accuracy when d varies.
(c) Accuracy when nB varies.

Fig. 5. The time-consumption of ICBF and IBF under different parameter settings. (a) Time-consumption when J varies. (b) Time-consumption when
d varies. (c) Time-consumption when nB varies.

is insensitive to the difference that is caused by different
multiplicities of same elements. The root cause is that the
two metrics of the ICBF-based synchronization are actually
determined by the size of the difference between the two
corresponding root sets, irrespective of the multiplicity of each
element.

On the contrary, both performance metrics under the
IBF-based method grow as d increases. The larger value of
d means that the IBF-based method will be executed for
more rounds, thus increasing the execution time. In effect,
among 100 rounds of failed IBF processes, most failures occur
within the first five rounds. Accordingly, the involved elements
become scarce as the round order increases; hence, this eases
the successful decoding of such elements. In our experiment
settings, nA and nB are constant. Thus, more differences
result in higher multiplicity for elements on average. So the
IBF-based method will be executed with a high frequency,
and more elements will be identified. Thus, the synchroniza-
tion accuracy of the IBF-based method keeps increasing and
approaches 1.

Let the value of nB range from 100 to 1200, with
nA = 600, J = 0.1, and d = 6000. As shown in Fig.
5(c), the ICBF-based and IBF-based methods always result
in increasing time-consumption along with the growing nB .
Note that the ICBF-based method saves the consumed time
considerably more than the IBF-based method. In Fig. 4(c), the
synchronization accuracy of the ICBF-based method decreases
from 0.956 to 0.873, while that of IBF-based decreases from
0.916 to 0.690. So the ICBF-based method outperforms the
IBF-based method in terms of the synchronization accuracy.

C. Communication Overhead of Cell Vector

As depicted in Fig. 1, three interactions are needed to
realize multiset synchronization, and undoubtedly, each round
of the communication cost is dedicated to communication
overhead. In this section, to reveal the efficiency of differ-
ent synchronization methods, we assess the communication
overhead caused by transmitting cell vectors used by different
methods. We do not consider the communication overhead that
has been caused by transmitting elements. This is because only
our ICBF-based method can distinguish dM from dE and thus
eliminate unnecessary transmission, while other methods can-
not. Compared with the ICBF-based method, other methods
definitely suffer from an increased communication overhead
of transmitting elements. Generally speaking, 4 bits for the
counters are sufficient, but we set the count filed as 16 bits by
default in case of the worst situations.

According to the analysis in [27], with respect to the
optimal value of k, the best option of m is given as
m = −2.081n · ln(1− pe). In our evaluation, the value of pe

is set as 0.999; hence, m can be derived as 14.3776n. Thus
the communication overhead of ICBF, i.e., COICBF , can be
calculated as:

COICBF = 14.3776 · (18 + log2 n)n. (4)

where n denotes the maximum of nA and nB , and m denotes
the number of cells. Additionally, the count field cost 16 bits,
while the prefix and the flag (empty or not) need 1 bit,
respectively. Meanwhile, the suffix cost log2 n bits. Note that,
in this parameter setting, the majority of the cells are empty.

1202 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

Fig. 6. The communication overhead of IBF and ICBF for multiset synchronization with different parameter settings. (a) Communication overhead when n
varies. (b) Communication overhead when α varies. (c) Communication overhead when d/n varies.

To save the consumed memory by ICBF and reduce the
resultant communication overhead, we use a double linked
list to save the cell vector. Linked list saves those nonempty
cells with two pointers, the prior and the next, to identify
the position of each cell in the vector. Here, each pointer is
16 bits. So, when the ICBF cells are stored with linked list,
the communication overhead turns to be:

COICBF−l = (50+log2 n) · n. (5)

As for the IBF-based method, the communication overhead
of each round, i.e., COIBF , can be calculated by the following
equation:

COIBF = α · d̄ · (log2 n + 2 · log n + log d̄ + 16) (6)

where d̄ denotes the size of estimated difference, n denotes the
maximum of nA and nB in this round, and α is a coefficient
that controls the length of the IBF vector. In this equation,
log2n, 2 · log d̄ + log d̄ and 16 denote the overhead caused
by the idSum, hashSum [22], and count fields in an IBF,
respectively. The part of 2·log n+log d̄ is the least bit length of
hashSum to identify single-element cells for further decoding
use [9].

Fig. 6 plots the communication overhead caused by the two
synchronization methods under different parameter settings.
In our experiments, three mainstream discrete distributions
for the multiplicity in the multiset are employed, i.e., the
Binomial, Poisson, and Geometric distributions. We keep the
average multiplicity the same under these distributions. In fact,
these distributions never affect the communication overhead
caused by the ICBF-based method, which is decided by the
value of n, i.e., the maximum number of elements in the two
root sets. By contrast, IBF decodes all of its elements via
round-robin processes, which implies that its communication
overhead will be affected by the distribution of multiplicity.
Note that, in Fig. 6, the legends “IBF-B”, “IBF-P”, and
“IBF-G” denote the additional communication overhead of the
IBF-based method when the multiplicity of elements follow
Binomial, Poisson, and Geometric distributions. “ICBF-O”
and “ICBF-L” identify the additional communication overhead
of ICBF-based method with the original storage strategy and
employing double linked list.

In Fig. 6(a), we vary n from 3000 to 12000, while α = 3
and d/n = 0.3. Compared with the IBF-based method, the

ICBF-based method causes less overhead under each mul-
tiplicity distribution, since both “ICBF-O” and “ICBF-L”
outperform others. By contrast, we keep n = 10000, while
varying α and d/n in Fig. 6(b) and Fig. 6(c), respectively.
To be exact, d/n = 0.3 while α increases from 3 to 12 in
Fig. 6(b) and α = 3 while d/n rises from 0.1 to 1 in Fig. 6(c).
Obviously, the communication overhead of ICBF is much less
than IBF and stays constant in both Fig. 6(b) and Fig. 6(c).
The reason is that the employed linked list only records the
nonempty cells in ICBF. Meanwhile, the number of nonempty
cells in ICBF can be calculated as k · n. Thus, the variables
α and d cannot affect the additional communication overhead
of the ICBF-based method. Moreover, Fig. 6 also indicates
that the double linked list can significantly save storage and
degrade the communication overhead of ICBF.

The communication overhead caused by the IBF-based
method is very close under the Binomial and Poisson
distributions, since they hold the similar statistical
characteristics. Furthermore, the IBF-based method incurs
the least communication overhead under the long-tailed
Geometric distribution, because most multiplicities of
elements are less than the average value, and thus, execute
fewer rounds of the synchronization processes.

Note that, to execute the subtracting and decoding opera-
tions, the received double linked list should be recovered as a
vector of ICBF cells. This mission can be easily achieved by
using the pointers in the linked list. For example, in the linked
list, if ICBFl[i].next = 9 and ICBFl[i + 1].prior = 4, then
four empty cells ranging from ICBF [5] to ICBF [8] should
be added between ICBFl[i] and ICBFl[i + 1] to recover the
ICBF. After recovering all of the m cells, the host will follow
the designed steps to deduce the different elements between
multisets A and B.

VI. RELATED WORK

As an essential task, set synchronization has been exten-
sively studied in the fields of database, networking, and
information theory. We classify the existing work into two
categories according to what they synchronize, i.e., specific
contents or general elements.

A. Synchronization of Specific Contents

We note that researchers take advantages of the intrinsic
features of the content to model the synchronization problems.

LUO et al.: EFFICIENT MULTISET SYNCHRONIZATION 1203

Accordingly, the synchronization mechanism will be designed,
and the upper and lower bound of the communication com-
plexity can be reasonably derived.

Synchronization of Random Variables: To synchronize
two discrete random variables, one model is proposed to
calculate the upper and lower bound of the communication
complexity [28]. Thereafter, Alon and Orlisky reveal the
connection between synchronization of random variables
and minimal coloring problem of the corresponding
characteristic graph [29]. Furthermore, Orlisky also proposes
a linear error-correcting codes-based method to realize data
synchronization [30]. Based on the well-studied coloring and
error-correcting theories, the communication complexity of
synchronization can be accurately evaluated.

Synchronization of Files or Strings: The synchronization of
files (or strings) on two distributed hosts has been modeled
as the well-known edit-distance problem [31]. The error-
correcting code-based method has been developed to settle
this issue with nearly optimal communication overhead by
ranking the strings in sorted order [32]. The efficiency of the
error-correcting based method is closely related to the code
mechanism [31]. Given two sets, each with a set of bit-strings,
a characteristic polynomial is generated to represent each
set [33]. By evaluating the rational function of the character-
istic polynomials, the different strings will be decoded.

Synchronization of Pictures: Reference [11] denotes itself to
synchronize two sets of pictures by evaluating the similarity
between two pictures with Earth Mover’s Distance (EMD).
Based on the observation that close points in the Euclidean
space often represent the same element, [11] utilizes the Invert-
ible Bloom Lookup Tables (IBLTs) to record the information
of points in the space. After exchanging the IBLTs of the other
set, an EMD-enabled decoding algorithm is sufficient to derive
the different elements.

These methods realize communication-saving synchroniza-
tion by modelling the synchronization problem of specific
contents; hence, their strength may not be popularized in other
fields.

B. Synchronization of General Elements

In fact, this kind of synchronization method employs the
bloom filters and their variants to record the information of
each set, regardless of what the involved elements are.

Bloom Filter has been employed to realize set synchroniza-
tion, due to the space efficiency and constant query delay [6].
Each host employs a bit vector to represent all of its elements,
and delivers the bit vector to the other host for synchro-
nization [1]. However, if multiple elements have been hashed
into any bit in BF, the BF may fail to identify all elements.
To settle this problem, the CBF-based set synchronization
method records the information of its elements via a cell
vector [21]. Note that, the time-complexity of synchronization
is O(nA+nB) due to a number of nA+nB queries. The former
two methods failed to decode the elements inversely, thus
they need additional query operations to identify the different
elements from the vectors. IBF [9], which records the elements
via three dedicated fields, i.e., idSum, hashSum, and count,
can synchronize two sets and inversely decode the elements

from cells. But the parameters need to be carefully designed,
and it costs additional computation and space overhead to
evaluate the difference.

The aforementioned methods are all inefficient to synchro-
nize multisets, allowing elements to appear multiple times.
Thus, for the first time, we propose a novel variant of bloom
filters and utilize it to achieve fast and accurate multiset
synchronization in this paper.

VII. DISCUSSION

To fully understand the proposed methods, we discuss the
following issues further.

Synchronization in Extreme Cases: Undoubtedly, it is true
that the ICBF-based method can realize bandwidth-saving
synchronization. However, in some extreme cases, represent-
ing multisets with ICBFs to discover the different elements
between two multisets may be not cost-effective. Firstly, if
the amount size of all elements in a multiset is smaller than
the size of the used ICBF, it is not advisable to employ
the ICBF-based method. Basically, each host calculates the
size of ICBF with Equation 5. If the calculated result is no
less than the total size of the elements in a multiset, the
host will send the multiset to the other host directly. The
second extreme case is that there are enormous differences
between two multisets. In this case, we believe that the ICBF-
based method is still recommendable since it distinguishes
dE from dM . As a result, only the elements in dE will be
transmitted for once. By contrast, the elements in dM will be
synchronized by generating dedicated number of replicas at the
local host. In this way, ICBF-based method transmits the least
elements.

The Hash Conflicts: Hash conflicts are unavoidable, when
encoding a multiset with BF and its variants. For this reason,
many efforts have been done to control and mitigate the impact
of hash conflicts, according to different missions. To represent
a multiset for query, the minimal count value in the k cells
can infer the multiplicity of an element with high probability,
as discussed in Section IV-E. By contrast, to synchronize
two multisets, the minimum value of the k involved count
fields may underestimate the multiplicity during the decoding
operation. Hence, it is better to employ the mode value of the
k count fields as the multiplicity. For example, in the resulted
ICBFC in Fig. 2, the minimum value of the k cells for both
x and z is 0. However, their real multiplicities in C = A−B
are 1 and −1, respectively. Hence, the mode value is more
reliable than the minimum value for the decoding operation.
Indeed, it is complicated to qualify the relationship between
the conflict rate and the set synchronization. However, by
employing the mode value as the multiplicity of each element,
the ICBF can still synchronize this element successfully with
high probability.

Future Work: Due to the importance of multiset synchro-
nization, more comprehensive endeavors should be made to
further improve the synchronization techniques. Firstly, note
that the proposed methods can synchronize multisets with high
probability, but fail to realize 100% synchronization accuracy.
To address this problem, other outstanding data structures may
be useful to represent and synchronize multisets. Moreover,

1204 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

how to achieve accurate and fast multi-party synchronization
is also a challenging issue to be solved in the future.

VIII. CONCLUSION

In this paper, we focus on the essential problem of multiset
synchronization, which has not been addressed in literature.
We first examine the potential of the IBF-based method and the
CBF-based method for multiset synchronization, using a gen-
eral framework. However, they are either time-consuming or
inefficient. To realize multiset synchronization efficiently, we
further propose a novel data structure named invertible count-
ing bloom filters (ICBF). Accordingly, we design the ICBF-
based method that synchronizes two multisets both quickly
and accurately. Typically, the localized ids are employed to
identify each kind of element in A and B. Additionally,
an associated id table is established in each host to record
the mapping relationship between ids and elements. The
evaluating results show that, compared with the IBF-based
method, our ICBF-based method synchronizes the multisets
more accurately within a shorter time period. Moreover, the
communication cost of the ICBF-based method is much less
than the IBF-based method, and is only decided by the value
of n. Accordingly, we believe that our ICBF-based method is
effective and practical to synchronize multisets.

REFERENCES

[1] D. Guo and M. Li, “Set reconciliation via counting bloom filters,” IEEE
Trans. Knowl. Data Eng., vol. 25, no. 10, pp. 2367–2380, Oct. 2013.

[2] J. Liu, S. Ahmad, E. Buyukkaya, R. Hamzaoui, and G. Simon, “Resource
allocation in underprovisioned multioverlay peer-to-peer live video shar-
ing services,” Peer-to-Peer Netw. Appl., vol. 8, no. 3, pp. 399–413,
May 2015.

[3] T. Chen, D. Guo, X. Liu, and J. Liu, “BDP: A bloom filters
based dissemination protocolin wireless sensor networks,” in Proc.
6th IEEE Int. Conf. Mobile Adhoc Sensor Syst. (MASS) Oct. 2009,
pp. 593–602.

[4] V. Stefano, L. Vanbever, and O. Bonaventure, “Opportunities
and research challenges of hybrid software defined networks,”
Comput. Commun. Rev., vol. 44, no. 2, pp. 70–75, Apr. 2014.

[5] K. P. N. Puttaswamy et al., “Docx2go: Collaborative editing of fidelity
reduced documents on mobile devices,” in Proc. ACM MobiSys, 2010,
pp. 345–356.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area Web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[8] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 604–612, Oct. 2002.

[9] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference?: Efficient set reconciliation without prior context,” in Proc.
ACM SIGCOMM, 2011, pp. 218–229.

[10] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup
tables,” in Proc. 49th Annu. Allerton Conf. Commun., Control, Comput.,
Sep. 2011, pp. 792–799.

[11] D. Chen, C. Konrad, K. Yi, W. Yu, and Q. Zhang, “Robust set
reconciliation,” in Proc. ACM SIGMOD 2014, pp. 135–146.

[12] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proc. ACM
SIGMOD, Jun. 2003, pp. 241–252.

[13] J. A. Saborit, P. Trancoso, V. M. Mulero, and J. L. L. Pey, “Dynamic
count filters,” ACM SIGMOD Rec. Homepage, vol. 35, no. 1, pp. 26–32,
2005.

[14] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom
filters,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 120–133,
Jan. 2010.

[15] T. Yang et al., “A shifting bloom filter framework for set queries,” in
Proc. VLDB Endowment, 2016, pp. 408–419.

[16] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, Apr. 2005.

[17] D. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem of
counting bloom filter,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 5,
pp. 651–664, May 2010.

[18] D. Singh, A. Ibrahim, T. Yohanna, and J. Singh, “An overview of the
applications of multisets,” Novi Sad J. Math., vol. 37, no. 3, pp. 73–92,
2007.

[19] D. Guo, Y. He, and P. Yang, “Receiver-oriented design of bloom filters
for data-centric routing,” Comput. Netw., vol. 54, no. 1, pp. 165–174,
2010.

[20] D. Guo, Y. He, and Y. Liu, “On the feasibility of gradient-based data-
centric routing using bloom filters,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 1, pp. 180–190, Jan. 2014.

[21] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

[22] D. Eppstein and M. T. Goodrich, “Straggler identification in round-trip
data streams via Newton’s identities and invertible bloom filters,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 2, pp. 297–306, Feb. 2011.

[23] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, and
A. Lakshman, “Dynamo: Amazon’s highly available key-value store,”
ACM Sigops Operating Syst. Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007.

[24] “Redis,” accessed on Oct. 25, 2015. [Online]. Available: http://redis.io
[25] “About Memcached,” accessed on Nov. 21, 2015. [Online]. Available:

http://memcached.org
[26] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:

Building a better bloom filter,” Random Struct. Algorithms, vol. 33, no. 2,
pp. 187–218, 2006.

[27] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 131–155, Feb. 2012.

[28] P. Koulgi, E. Tuncel, S. L. Regunathan, and K. Rose, “On zero-error
source coding with decoder side information,” IEEE Trans. Inf. Theory,
vol. 49, no. 1, pp. 99–111, Jan. 2003.

[29] N. Alon and A. Orlitsky, “Source coding and graph entropies,” IEEE
Trans. Inf. Theory, vol. 42, no. 5, pp. 1329–1339, Sep. 1996.

[30] A. Orlitsky, “Interactive communication: Balanced distributions, corre-
lated files, and average-case complexity,” in Proc. 32nd Annu. Symp.
Found. Comput. Sci. Oct. 1991, pp. 228–238.

[31] M. G. Karpovsky, L. B. Levitin, and A. Trachtenberg, “Data verification
and reconciliation with generalized error-control codes,” IEEE Trans. Inf.
Theory, vol. 49, no. 7, pp. 1788–1793, Jul. 2003.

[32] K. A. S. Abdel-Ghaffar and A. El Abbadi, “An optimal strategy for
comparing file copies,” IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 1,
pp. 87–93, Jan. 1994.

[33] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Trans. Inf. Theory,
vol. 49, no. 9, pp. 2213–2218, Sep. 2003.

Lailong Luo received the B.S. and M.S. degrees
from the School of Information System and Manage-
ment, National University of Defense Technology,
Changsha, China, in 2013 and 2015, respectively,
where he is currently pursuing the Ph.D. degree with
the College of Information System and Management.
His current research interests include data centers
and software defined networks.

Deke Guo (S’06–M’08) received the B.S. degree in
industry engineering from the Beijing University of
Aeronautics and Astronautics, Beijing, China, in
2001, and the Ph.D. degree in management science
and engineering from the National University of
Defense Technology, Changsha, China, in 2008.
He is currently a Professor with the College of
Information System and Management, National Uni-
versity of Defense Technology. His research inter-
ests include distributed systems, software-defined
networking, data center networking, wireless and

mobile systems, and interconnection networks. He is a member of the ACM.

LUO et al.: EFFICIENT MULTISET SYNCHRONIZATION 1205

Jie Wu (M’90–SM’93–F’09) was the Program
Director with the U.S. National Science Foundation.
He is currently the Chair and a Professor with the
Department of Computer and Information Sciences,
Temple University. He has authored over 450 papers
in various journals and conference proceedings. His
research interests include wireless networks and
mobile computing, routing protocols, fault-tolerant
computing, and interconnection networks. He has
served as an IEEE Computer Society Distinguished
Visitor. He is also the Chairman of the IEEE Tech-

nical Committee on Distributed Processing.

Ori Rottenstreich received the B.S. (summa cum
laude) degree in computer engineering and the Ph.D.
degree from the Electrical Engineering Department,
Technion–Israel Institute of Technology, Haifa,
Israel, in 2008 and 2014, respectively. He is cur-
rently a Post-Doctoral Research Fellow with the
Department of Computer Science, Princeton Univer-
sity. He is a recipient of the Google Europe Ph.D.
Fellowship in computer networking, the Andrew
Viterbi Graduate Fellowship, the Jacobs-Qualcomm
Fellowship, the Intel Graduate Fellowship, and the

Gutwirth Memorial Fellowship. He also received the Best Paper Runner Up
Award at the IEEE INFOCOM 2013.

Qian He received the B.S. degree from Hunan Uni-
versity, Changsha, China, in 2001, the M.S. degree
from the Guilin University of Electronic Technology,
Guilin, China, in 2004, and the Ph.D. degree from
the Beijing University of Posts and Telecommu-
nications, Beijing, China, in 2011. He has done
post-doctoral research at the National University of
Defense Technology, Changsha, China. He is cur-
rently a Visiting Research Associate with the School
of Computer Science, The University of Manchester,
U.K., and a Professor with the Guilin University of

Electronic Technology. His research interests include network security and
distribute computing. He is a Senior Member of the CCF.

Yudong Qin received the B.S. degree with the
School of Information System and Management,
National University of Defense Technology,
Changsha, China, in 2016, where he is currently
pursuing the M.S. degree with the College of
Information System and Management. His current
research interests include data centers and
software-defined networks.

Xueshan Luo received the B.E. degree in infor-
mation engineering from the Huazhong Institute
of Technology, Wuhan, China, in 1985, and the
M.S. and Ph.D. degrees in system engineering from
the National University of Defense Technology,
Changsha, China, in 1988 and 1992, respectively.
He is currently a Professor of Information System
and Management, National University of Defense
Technology. His research interests are in the general
areas of information system and operation research.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

