
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Elastic Scheduling for Scaling Virtual
Clusters in Cloud Data Center Networks
SHUAIBING LU1,2 (Member, IEEE), ZHIYI FANG1, JIE WU2(FELLOW, IEEE), AND GUANNAN
QU1.
1College of Computer Science and Technology, Jilin University Changchun, 130012, China (e-mail: lushuaibing11@163.com, fangzy@jlu.edu.cn,
gnqu@jlu.edu.cn)
2Center for Networked Computing, Temple University, USA (e-mail: jiewu@temple.edu)

Corresponding author: Shuaibing Lu (e-mail: lushuaibing11@163.com).

This research was supported in part by NSF grants CNS 1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS 1460971, CSC
20163100 and CNS 1439672.

ABSTRACT Data Center Networks (DCNs) have become more extensively applied in cloud computing
in recent years. One important mission for DCNs is satisfying the fluctuation of on-demand resources
for tenants. During the scaling of Virtual Clusters (VCs), existing works fail to fully consider placement
techniques and the elasticity of the physical resource in the DCN at the same time. To address this, we
use elasticity to measure the scaling potential of VCs in terms of both computation and communication
resources. In this paper, we consider elastic scaling for existing VCs to maximize elasticity with the
constraint of communication cost in the DCN. We achieve this through a resource allocation scheme,
VCS, which comes with provable optimality guarantees for single VC scaling. After that, we extend our
scheme for the scaling of multiple VCs, and we prove that scaling multiple VCs for the over-time elasticity
maximization problem is NP-hard. Based on that, we present the MVCS algorithm for offline multiple VC
scaling, which can maximize over-time elasticity during a stable time period. Furthermore, we propose two
heuristic algorithms, S-OMVCS and A-OMVCS, using Bayesian parameter estimation to solve an online
scaling with both synchronous and asynchronous incoming rates. Extensive simulations demonstrate that
our elastic VC scaling placement schemes outperform existing state-of-the-art methods in terms of flexibility
in the DCN.

INDEX TERMS Data center networks (DCNs), elastic scaling, Virtual Cluster (VC), optimization, Virtual
Machine (VM) placement.

I. INTRODUCTION

Data Center Networks (DCNs) have become more exten-
sively applied in cloud computing in recent years. Applica-
tions based on the cloud generate a significant amount of
network traffic, and a considerable fraction of their runtime
is due to network activity [1]. As reported in [2], [3], the
resource available to tenants varies over time in EC2. One
major problem for cloud computing tenants is lack of perfor-
mance guarantee, which includes both resource limitations
and unpredictable application demands.

To illustrate this, we show the average CPU utilization
for the word count application in Hadoop (based on EC2
of Amazon [4]). We use four nodes to run this application:
three slaves (orange, light green, and green lines) and one
master (blue line). It is a three hours tracing result of the
CPU utilization for these three slaves. We observe from

Figure 1 that the word count application utilizes the CPU of
the master node only during the map part of the execution
(during the shuffle phase of the blue line). The three slaves
(reduce phase) require very little resource. For each slave,
the amount of resources required is time-varying. Since the
configurations of slaves are different, resource inefficiencies
may be encountered during the running period, as shown in
the last hour in Fig. 1. Therefore, efficiently provisioning
network resource for elastic scaling virtual clusters in the
cloud is a critical issue.

We propose an elastic placement strategy to deal with
resource scaling for the existing Virtual Clusters (VCs) in
the DCN. A set of Virtual Machines (VMs) that connect one
virtual switch is defined as a VC. Each VC not only has
computing requirements but also requires communications
among itself to complete the specified tasks for the applica-
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FIGURE 1. An example of tracing result for word count application on CPU utilizations.

tions. We use elasticity [5] to measure the growth potential of
a VC placement for both computation and communication.
We denote this as Physical Machine (PM) elasticity and
Physical Link (PL) elasticity. Our objective is to maximize
the elasticity during the placement of the VCs’ scaling re-
quests in the DCN under the resource and communication
cost constraints. This paper is based on existing DCN ar-
chitecture: a fat-tree. The capacities of PMs are slotted, and
each slot can only host one VM, as shown in Fig. 2. The
communication between VMs occurs through the PLs of
each VC. The corresponding communication demands are
determined by VM communication models. This paper uses
the hose model, a communication model used to calculate
bandwidth demand for VMs.

To maximize the elasticity in the DCN under the hose
communication model, we face one important challenge:
balancing the trade-off between communication cost and
elasticity during the VC placement while guaranteeing both
computation and communication resource scaling for one VC
under the DCN. Take Fig. 2 as an example; VC1 has 7 exist-
ing VMs. We assume the upper bound of the subtree root is in
the aggregation switch level. The scaling request for VC1 is
from 5 VMs. One extreme assignment for the scaling request
is to concentrated place all the scaling VMs into the PMs M1

and M2 under the switch S11, as shown in Fig. 2 (a). This
solution can save communication cost between existing VMs
and incoming ones. However, the elasticity of VC1 decreases
to 0, creating two bottleneck PMs, M1 and M2, with no
scaling potential. Another extreme assignment is placing the
VMs dispersedly, as shown in Fig. 2 (b). In this case, the elas-
ticity of VC1 will be min{ 2

5 ,
2
5 ,

3
5 ,

3
5 ,

4
5 ,

4
5} = 2

5 . However,
the communication cost under this assignment has already
moved beyond the upper bound of the subtree root, which
can not guarantee QoS for the users. To balance the trade-off
between communication cost and elasticity, we try to find a
solution between the two extreme assignments. In this paper,
we propose an optimal solution that makes a placement based
on the proportion of the remaining available capacities for

the scaling request under the limitation of communication
cost, as shown in Fig. 2 (c). Then, we extend our solution to
the online multiple VC scaling placement problem, which is
solved by a heuristic method with prediction. Our algorithm
can improve over-time elasticity using historical knowledge
and distribution to place the current scaling VCs.

In this paper, we jointly consider the placement and elas-
ticity adjustment problems for scaling VCs to maximize
elasticity with the constraint of communication cost in the
DCN. Our contributions can be summarized as follows:

• We show that there is a trade-off between elasticity and
communication cost for a VC scaling request. Given
one scaling request, the decreasing placement of the
elasticity may lead to an increase in the communication
cost. We prove the bound for the extra cost, and we
discuss the existence of an optimal solution during the
elasticity adjustment.

• We propose an algorithm, VCS, for the scaling request
of an existing VC under the constraints of resource and
communication costs, and we prove that it is an optimal
solution.

• We extend the single VC scaling placement problem for
multiple VCs. We also prove that it is NP-hard, and
we propose the MVCS algorithm for scaling resource
during a stable time period to maximize the over-time
elasticity of VCs.

• We describe the online condition for the multiple
VC scaling problem with both synchronous and asyn-
chronous incoming rates, and we propose two heuris-
tic algorithms, S-OMVCS and A-OMVCS using the
Bayesian parameter estimation.

• We conduct various simulations to compare our joint
optimization method with other state-of-art approaches.
The results are shown from different perspectives to
provide conclusions.

The remainder of this paper is organized as follows. Sec-
tion II surveys related works. Section III describes the model
and then formulates the problem. Section IV investigates

2 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

VMVC 1 VMVC 1Existing VMs: Scaling VMs:

(a)

Pod 0 Pod 1

VM
VM
VM

VM
VM VM VM

VM
VM

M1 M2 M3 M4 M5 M6 M8M7

VM
VM
VM

(b)

Pod 0 Pod 1

VM
VM
VM

VM
VM VM VM VM

VM

M1 M2 M3 M4 M5 M6 M8M7

VM
VM

VM

(c)

Pod 0 Pod 1

VM
VM
VM

VM
VM VM VM

VMVM

M1 M2 M3 M4 M5 M6 M8M7

VM
VM
VM

FIGURE 2. An example of different placements for single virtual cluster scaling.

elastic scaling for a single VC, and it proposes an optimal
solution. Sections V and VI extend the problem into elastic
scaling for multiple VCs and propose two heuristic algo-
rithms for offline and online conditions. Section VII includes
the experiments. Finally, Section VIII concludes the paper.

II. RELATED WORK
There are tremendous works about resource allocation for
VC scaling. It is a technique of crucial importance, which
means that researchers must find appropriate embedding
for virtual clusters in DCNs. This section provides a brief
overview of the relevant methodologies proposed to ad-
dress this problem. Since most research focuses on dynam-
ically adjusting cluster size without considering bandwidth
guarantees targeted by current network abstractions, several
methods have been proposed. [6] proposes scaling a virtual
network abstraction with a bandwidth guarantee. Efficient
algorithms are proposed to find a valid allocation for the
scaled cluster abstraction with optimization on the VM lo-
cality of the cluster. [7] proposes a virtual cluster abstraction
called Stochastic Virtual Cluster (SVC) to realize bandwidth
guarantee during the resource allocation. The framework and
algorithms ensure that the bandwidth demands of tenants on
a link are satisfied with a high probability while minimizing
the bandwidth occupancy cost on links.

Elasticity has been considered one of the central attributes
of cloud computing [8]. In cloud computing, elasticity is
defined as the degree to which a system is able to adapt
to workload changes by provisioning and de-provisioning
resources in an autonomic manner [9]. In order to define a
measure of the elasticity, [10] provides a set of benchmarks
for cloud computing performance. Elastic resource scaling
has attracted considerable attention in cloud computing [5],
[11]. [12] proposes a lightweight approach to enable cost-
effective elasticity for cloud applications; this is realized by
designing an automatic system. There are also a number
of works about scaling resources using a prediction-driven
method. [13]–[15] employ resource demand prediction to

achieve elastic resource allocation without assuming prior
knowledge of the applications in the cloud. [15] is slightly
different, as it uses VM replication to reduce application
start-up times.

A few works consider coordinated VC scaling on both
optimization of the VCs’ localities and the elastic resource
allocation. [16] proposes a system that allows tenants to
dynamically request and update minimum guarantees for
both network bandwidths and compute resources at runtime;
this is realized using the resource reservation method. [17]
studies survivable and bandwidth-guaranteed embedding of
virtual clusters, and it proposes a novel algorithm to jointly
optimize primary and backup embeddings of the virtual
clusters. These works on VC resource allocation fail to
fully consider both localities and elasticities for the scaling
requests in one determined time period. In this paper, we
jointly consider VC placement on localities and elasticities
with scaling fluctuation to maximize the over-time elasticity
during one time period with minimal extra cost in DCNs.

III. MODEL AND PROBLEM FORMULATION
A. PLATFORM MODEL
This paper focuses on the elastic VC scaling placement
problem for the hose communication model in fat-tree. We
jointly consider localities and elasticities during resource al-
location for VC scaling, and we use elasticity to measure the
growth potential for VCs, an important factor for weighting
flexibility during the placement. Our objective is to maximize
the elasticity for VCs with a communication cost constraint
in the DCN.

B. DATA CENTER MODEL
In this paper, we consider the fat-tree as our data center net-
work topology model. Fat-tree is an extended tree topology
which has been applied to DCNs by several researchers [18].
In fat-tree, each ✓-port switch in the edge layer is connected
to ✓

2 PMs [18]. Each PM in the fat-tree is denoted as Mi and
divided into multiple slots where VMs can be placed. The
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capacity of each PM is denoted by Ci, and the PMs in the
DCN are homogeneous. The PLs are denoted by L = {Lij},
and the capacity of PL is denoted by Bij . TSij denotes the
subtree under the root (physical switch) Sij that contains a
set of PMs and PLs. In this paper, we set the root (physical
switch) Sij as the locality, which we use to denote the
position of the virtual cluster Vi. There are two properties of
the locality, private and public. When the property is private,
the resource of the subtree TSij can only be used by Vi.
Otherwise, the resource under the subtree TS0

ij
can be used

by any VC.

C. VIRTUAL CLUSTER (VC)
The VC is an abstraction that allows each tenant to specify
both the virtual machines (VMs) and per-VM bandwidth
demand of its service [19]. Let Vi denote the ith existing VC
in the DCN. Each VC consists of a set of VMs and one virtual
switch where Vi =< Ni, Bi >. Ni is the number of VMs in
the ith VC, and Bi is the bandwidth demand between VMs
and the virtual switch. In this paper, we consider the hose
model based on the VC abstraction. In the hose model, each
customer specifies a set of endpoints to be connected with a
common endpoint-to-endpoint performance guarantee [20].

1) Communication Cost

Since a good locality means that the allocation of a virtual
cluster to reduce the communication latency among VMs, we
define a new function can measure communication cost. The
standard metric to evaluate communication cost is measuring
the embedded footprint [1], [21], [22]. During the VM place-
ment, we try to minimize the communication cost. For each
virtual request Vi,

m(Vi) :=
3X

j=1

��TSij

�� ·Hj · � (1)

��TSij

�� denotes the total amount of VMs under the subtree Lij

of virtual cluster Vi, as shown in equation (1). Hj is the hops
between PMs holding the VMs of Vi. Since the architecture
of the DCN is fat-tree in this paper, the value of Hj is H1 =
2, H2 = 4, H3 = 6. � is a constant value which denotes the
communication cost between each pair of VMs in Vi. The
communication cost of a virtual request can be calculated via
the following case distinction: (1). If all VMs of Vi place into
one PM, the communication cost m(Vi) = 0. (2). If Vi places
under the ToR switches or aggregation switches of a pod, the
communication cost m(Vi) = 2 ⇤

���SL0
i1

��� + 4 ⇤
���SL1

i1

���. (3).
If Vi places under the core switches of different pods, the
communication cost m(Vi) = 6 ⇤ |SLi3 |.

2) Elasticity

Let Ei denote the elasticity of Vi, which measures the growth
potential of Vi under the communication cost constraint. In
this paper, we use this factor to weigh the flexibility of the
placement of the VCs.

TABLE 1. Notations

Symbol Description
Mi PM in the DCN
Ci Capacity of the ith PM in the DCN
Lij PL in the DCN
Bij Capacity of PL in the DCN
Vi The ith existing VC in the DCN
Ni Existing VMs of Vi
N 0

i Scaling VMs of Vi
Bi Existing bandwidth demand of Vi
�Bi Scaling bandwidth demand of Vi
TSij Subtree of Vi under the locality (root) Sij

RM
Sij

Available computing resource in the subtree TSij for Vi

RL
Sij

Available communication resource in the subtree TSij for Vi

m(·) Communication cost of Vi
� Upper bound for communication cost
⇢i Scaling ratio for Vi
⇣i Adjust factor of the elasticity for Vi

Definition 1: Combinational elasticity is defined as Ei =
min{EM

i , EL
i }, where EM

i is defined as the minimum per-
centage of available VM slots among PMs under the subtree
TSij of Vi.

EM
i = min

Ci2TSij

{1�max
i

C⇤
i + C 0

i

Ci
} (2)

Similarly, EL
i is defined as the minimum percentage of

available communication resource (bandwidth) among PLs
under the subtree TSij of Vi, in equation (3).

EL
i = 1�max

ij

f(
P

Ci2TSij
(C⇤

i + C 0
i))

Bij
(3)

C⇤
i and C 0

i denote the number of existing and incoming VMs
of Vi belong to the PMs under the subtree TSij . Similarly,
f(
P

Ci2TSij
(C⇤

i +C 0
i)) denotes the communication demand

under the subtree TSij , where f(·) denotes the bandwidth
demand function of VM communications.

D. BASIC PROBLEM FORMULATION
1) Definition of VC Scaling Placement

In this paper, we consider the VC placement based on the
hose model and fat-tree. Let Vi =< Ni, Bi > denote the ith

VC, which contains several types of problem instances for
scaling up. The basic ones are either to increase the cluster
size on the computing resource from Ni to Ni +N i or to in-
crease the communication resource from Bi to �Bi. The most
difficult is to increase both computation and communication
resources, which range from Ni to Ni + N i and from Bi to
�Bi, i.e., Vi =< Ni, Bi > or Vi =< Ni + N 0

i , �Bi >. We
mainly focus on the latter case, combined resource scaling ,
and the algorithms we propose for it can also efficiently solve
the other two types of scaling problems.

2) Objective Function

Our objective is to maximize the elasticity of Vi with the con-
straint of communication cost. We use a constant � to denote
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the upper bound of the communication cost that is initialized
by the users based on the demands of the applications [21].
Our problem can be formally formulated as follows:

maximize Ei (4)
subject to 0  m(Vi)  �i (5)

C⇤
i + C 0

i  Ci (6)

f(
X

Ci2TSij

(C⇤
i + C 0

i))  Bij (7)

Variables are C 0
i and B0

ij , and Ei is derived. Others are
given, i.e., C⇤

i , B⇤
ij , and �i. Equation (5) shows the con-

straints on the communication cost m(Vi) where the value
should be greater than or equal to 0 with the upper bound
�i. Equation (6) shows the constraints on capacities of PMs,
in which the total number of existing and incoming VMs
C⇤ and C 0

i on the ith PM cannot exceed the capacity Ci.
Equation (5) is the link capacity constraint, which shows that
the bandwidth usage of both the existing and incoming VMs
on Lij under the subtree TSij can not exceed the link capacity
Bij . The major notations used in this paper are listed in Table
I.

IV. SINGLE VIRTUAL CLUSTER SCALING
This section proposes one optimal solution, VCS, that can be
applied to deal with the scaling of a single virtual cluster.

A. ALGORITHM AND DESCRIPTION
1) Initialization

We take the incoming scaling request for Vi with hN 0, �Bi
at time slot ti as the input, and the output is the occupation
state for Vi in the DCN. The initialization in line 1 is to find
the locality Sij of Vi and calculate the available physical
resource under the subtree TSij . The available resource con-
tains both computation resource RM

Sij
=

P
Mi2TSij

C 0
i and

communication resource RL
Sij

=
P

Lij2TSij
B0

ij . We also
initialize the upper bound of the communication cost �i for
Vi, which users usually set as the QoS guarantee.

2) Virtual Cluster Scaling (VCS)

For each scaling request, we try to find the appropriate
subtree to obtain enough physical resources. In lines 2 and 3,
we first compare the incoming scaling request hN 0, �Bi with
the total available physical resource, RM

Sij
and RL

Sij
, under

TSij . If the total amount of available physical resource cannot
satisfy the scaling request, the current subtree root will be
positively adjusted by the step TSij =TSLi,j+1

in line 5. This
process ends when the locality moves to the upper bound S0

ij .
We start to place scaling requests in line 6 using the function
VMP (N 0, �B), which is described in Algorithm 2.

3) VM Placement (VMP)

In this section, we propose an efficient algorithm to find
a valid allocation for the scaled virtual cluster with opti-
mization of the VMs’ localities. The initialization in line

Algorithm 1 Virtual Cluster Scaling (VCS)
Input: Scaling request Vi with hN 0

i , �Bii;
Output: DCN occupation state for Vi;

1: Initialize the initial locality Sij and communication cost
�i for Vi, and calculate the available physical resources
under the subtree TSij ;

2: Calculate the highest locality S0
ij based on the commu-

nication cost �i;
3: for Sij to S0

ij do

4: while RM
Sij

< N 0
i _RL

Sij
< N⇤

i ⇤ �Bi do

5: TSij =TSLi,j+1
;

6: end while

7: TSij  VMP (N 0
i , �Bi);

8: end for

1 calculates the partial elasticity under the subtree TSij ,
which is denoted as ETSij

. To adjust the partial elasticity
under TSij , we define a factor ⇣i. Before allocating the
computation resource, we check the scaling condition of
the communication resource in line 2, which can ensure
that the bandwidth Bi for each VM appropriately reserves
communication resource on physical links. If � is not equal to
1, the communication resource has to scale or release, and we
update the bandwidth capacities for the existing VMs of Vi

under the communication demand �Bi in line 3. Otherwise,
the communication resource does not have any scaling or
releasing. After that, we compute the available computation
and communication capacities under the subtree TSij with
the limitation of ETSij

in line 4. From lines 5 to line 9,
we start to allocate computation resource under the subtree
TSij , and we place N 0

i VMs into PMs based proportionally
on the remaining available capacities. If the total number
of available physical resources cannot satisfy the scaling
request, the current partial elasticity is negatively adjusted by
the step factor ⇣, as shown in lines 8 and 9. This process
ends when the partial elasticity ETSij

is 0. In line 10, the
communication demands of the placed VMs are evenly split
into paths that connect them under the subtree TSij .

B. OPTIMALITY ANALYSIS
Theorem 1: VCS is an optimal solution for the Vi placement
under the communication cost constraint �.
Proof: The maximum number of servers in a fat-tree is ✓3

4 .
We start to prove from ✓ = 2, which contains 2 PMs in
fat-tree. For the virtual cluster Vi, we suppose that VCS is
not an optimal solution, meaning that another solution O
will be the optimal one. Since the bandwidth resource is not
oversubscribed, the bottleneck of the elasticity exists on the
computation resource. Let Ĉa and Ĉb denote the remaining
available slots of PMs a and b under the subtree TSij of Vi.
In order to place the scaling N 0 VMs, we assume the optimal
solution O is {x, y} (x+ y = N 0), where x VMs are placed
on a and y VMs are placed on b. Similarly, we suppose the
solution calculated by VCS is {u, v} (u+ v = N 0), where u
VMs are placed on a and v VMs are placed on b. We suppose
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Algorithm 2 VM Placement (VMP)
Input: Scaling request Vi with hN 0

i , �Bii;
Output: DCN occupation state for Vi;

1: Initialize Ei and adjust factor ⇣i for Vi;
2: if � 6= 1 then

3: Update the capacities of PLs for existing VMs of Vi

according to the scaling Bi ! �Bi;
4: end if

5: Compute R0M
Lij

and R0L
Lij

according to Ei under TSij ;
6: while Ei > 0 do

7: if N 0
i  R0M

Lij
then

8: Place N 0
i VMs into PMs in TSij (proportion based

on the remaining available capacities of PMs);
9: else if N 0

i > R0M
Lij

then

10: Update Ei = Ei � ⇣i;
11: end if

12: end while

13: Communication demands of placed VMs are evenly split
into paths connecting them;

x > u, and we have y < v. The elasticity of Vi under the
optimal solution O is min{ Ĉa�x

C , Ĉb�y
C } if x > y. Then,

the value of the elasticity is Ĉa�x
C . If the elasticity under the

VCS solution is Ĉa�u
C , Ĉa�x

C > Ĉa�u
C . However, we have

x < u, which obeys our assumption that x > u. Therefore,
we can prove that VCS is an optimal solution when ✓ = 2.
We further assume that VCS is optimal when ✓ = k, and
we prove that it is also optimal when ✓ = k + 2. Each
k+ 2 port switch in the edge layer is connected to k+2

2 PMs.
We assume that vector X is the optimal solution and that
X = {x1, x2, ..., x k

2
, x k

2+1}. The placement of the items is
different than VCS. Since X is the optimal solution, each
part in its set is optimal; this is contrary to the assumption
that VCS is optimal when ✓ = k. Therefore, we can prove
that VCS is an optimal solution for the Vi placement under
the communication cost constraint �.

⌅

V. MULTIPLE VIRTUAL CLUSTER SCALING
In this section, we extend our work to the multiple VC scaling
problem. We assume that a set of VCs V already exists in
the DCN, and each VC uses the notation Vi to denote where
V = {V1, V2, ..., V$}. Multiple VCs may request to scale at
the same time, but each time slot can only deal with one VC
scaling request. We consider the performance of VCs in the
time period [0, T ] using over-time elasticity.

A. DESCRIPTION
Definition 2: Let the amount of the VCs be $; over-time

elasticity is the summation of the combinational elasticities
of Vi under the time slots during the whole time period [0, T ],
i.e.,

PT
i=0 Ei.

For offline multiple virtual cluster scaling, since the initial
distributions of the VCs are different, the processing order

for the multiple $ VCs may lead to different results. Take
Fig. 3 for example; three VCs exist in the DCN, and the
numbers of existing VMs for these users are 5, 2, and 7,
respectively. The communication costs for the three VCs
have already changed into the position of subtree root, which
is marked by cycles with different corresponding colors in
Fig. 3. When all three VCs send their scaling requests, we
schedule them in the order VC1!VC2!VC3, as shown in
Fig. 3 (a). Then, we have the elasticities VC1= 1

5 , VC2= 1
5 , and

VC3= 1
5 , respectively. The over-time elasticity for all three

VCs is 1
5+

1
5+

1
5 = 3

5 . When we change the scheduling order
to VC2!VC3!VC1, as shown in Fig. 3 (b), the elasticities
are VC1= 1

5 , VC2= 1
5 , and VC3= 2

5 , respectively. The over-
time elasticity for all three VCs under this scheduling strategy
is 1

5 + 1
5 + 2

5 = 4
5 .

Theorem 2: The MVCS placement for the over-time elastic-
ity maximization problem is NP-hard.
Proof: Given a set of scaling VCs, V = {V1, V2, ..., V$}.
Let the amount of existing VCs be $, and they request to
scale at the same time t. We assume the rest of the available
resource of the DCN at t is R. The communication cost of
each VC is related to the locality of its placement, which has
a limitation � defined by the uses. The goal is to place all
$ VCs using the fewest physical resources with determined
capacities under the communication cost �. We reduce the
original problem to the variable-sized bin-packing problem
[22], [23], an NP-hard problem that finds an assignment that
uses the fewest bins. Thus, the MVCS placement for the over-
time elasticity maximization problem is NP-hard. ⌅

Before describing the algorithm, we first introduce an
important parameter scaling ratio.
Definition 3: Let ⇢i denote the scaling ratio of the virtual
cluster i, which is the ratio between the scaling amount of
Vi and the maximum available physical resource RSij under
the subtree TSij .

⇢i =
Vi

RSij

(8)

We use ⇢i measure the scaling level of the virtual cluster
Vi. Since the physical resource RSij for Vi is limited by the
communication cost �i, the scaling amount of Vi should be
under the constraint in Equation (8). Therefore, the range of
the scaling ratio is 0 < ⇢i < 1.

B. ALGORITHM
Since MVCS placement is an NP-complete problem, we
propose a heuristic algorithm to find a consistent scaling
scheduling order that improves the over-time elasticity as
much as possible. We take the incoming scaling request set
V = {V1, V2, ..., V$} as the input, and the output is the
occupation state for V in the DCN.

The initialization in line 1 finds the localities Sij for
VCs and calculates the available physical resource under the
subtree TSij . Based on that, we initialize the scaling ratio
⇢i, which is the ratio between the scaling amount of Vi and
the available physical resource under the subtree TSij , i.e.
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FIGURE 3. An example of different placements for the scaling of multiple VCs.

Algorithm 3 Multiple Virtual Cluster Scaling (MVCS)
Input: Scaling set V = {V1, V2, ..., V$};
Output: DCN occupation state for V ;

1: Initialize the localities Sij and S0
ij , ⇢i and �i for VCs;

2: Sort VCs in the set V to V 0 by localities i =
argmini S0

ij ;
3: For VCs with the same localities, prioritize by scaling

ratio i = argmini ⇢i;
4: for i = 1 to i = $ in V 0

do

5: Place Vi into the DCN;
6: Same as Algorithm 1 form line 2 to line 5;
7: end for

0 < ⇢i < 1. After that, we initialize the upper bound of
the root position S0

ij based on the communication cost �i for
VCs in the set V . In line 2, we first sort VCs in the set V to V 0

by localities i = argmini S0
ij based on the communication

cost �i. Let V 0 be the sorting result of the scaling VCs. If
the level of S0

ij is the same for the VCs, let the lower scaling
ratio ⇢i have higher priority in line 3. From lines 4 to 6, we
start to place the VCs in the DCN by prioritizing the VCs in
the set V 0 with the lower localities and scaling ratios ⇢i. The
placement process for each VC is the same as in Algorithm
1, line 6.

VI. ONLINE MULTIPLE VIRTUAL CLUSTER SCALING
In this section, we describe the online condition for the multi-
ple VC scaling problem with synchronous and asynchronous
incoming rates.

A. SYNCHRONOUS ONLINE MULTIPLE VIRTUAL
CLUSTER SCALING (S-OMVCS)
In this section, we address the online multiple virtual cluster
scaling problem with a synchronous incoming rate. The
scaling requests of virtual clusters in set V are incoming
at the same time slot and also release at the same time
slot. Multiple VCs can make scaling requests simultaneously,

but a single time slot can only deal with one VC scaling
request. We consider the performance of VCs in a single
time period [0, T ] using over-time elasticity. For each virtual
cluster, the incoming scaling amount is uncertain, and we
need to preprocess existing virtual clusters, including priority
ranking and future prediction. The future prediction is based
on the Bayesian parameter estimation, as discussed below.
Let ⇢⇤i denote the maximum scaling ratio for the virtual
cluster Vi, which means that the flexibility of resources under
the subtree S0

ij should not beyond the communication cost
�i. The priority ranking for multiple scaling requests is the
same as in offline requests, which depend on both the upper
bound of the root position S0

ij and the scaling ratio ⇢i.

1) Bayesian Parameter Estimation for S-OMVCS

Based on the current incoming scaling Vi request, we use
Bayesian parameter estimation [24] to predict the future
fluctuation statement for each virtual cluster. We use the
historical fluctuation statement before Tn as our sample,
denoted as I = {N 0

i |i2[0,Tn]}. Let n denote the number of
samples in I, which means that the current location is at
the n + 1 time slot. As we move through the time slots,
the new observation samples are obtained, and the posterior
probability density function is sharpened to form the largest
spike near the true value of the parameter. We use Bayesian
parameter estimation based on uniform distribution to predict
the future information of the scaling virtual cluster Vi, and
each virtual cluster is independent and identically distributed.
We use the standard Gaussian distribution as the prior distri-
bution, i.e., µ0 = 0 and �20 = 1; this is the same as in [26].
Before doing the prediction, we first calculate the maximum
likelihood µ0 for the sample I, where µ0 = 1

n

Pn
i=1 N

0
i .

According to the prior and maximum likelihood values, we
have the posterior distributions µ = n

n+�2µ
0 and �2 = �02

n+�02 .
Based on the Bayesian estimation, we have the probability
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Algorithm 4 Synchronize Online Multiple Virtual Cluster
Scaling (S-OMVCS)
Input: Scaling set V = {V1, V2, ..., V$} at time slot ti;
Output: DCN occupation state for V ;

1: Initialize the localities Sij and S0
ij , ⇢i and �i for VCs;

2: for i = 1 to i = $ in V do

3: Estimate the fluctuating mean µi for Vi based on
bayesian parameter estimation;

4: Calculate the future scaling ratio ⇢⇤i based on the µi;
5: Relocate the locality property S⇤

ij based on the ⇢⇤i ;
6: Make resource reservations according to S⇤

ij for Vi;
7: end for

8: Sort VCs in the set V to V 0 by localities i =
argmini S

0⇤
ij ;

9: for i = 1 to i = $ in V 0
do

10: For VCs with the same localities, prioritize by scaling
ratio i = argmini ⇢⇤i ;

11: Place the scaling request Vi into the DCN;
12: Same as Algorithm 1 form line 2 to line 8;
13: end for

density function in Equation (9).

p(µi|I) =
1

(
p
2⇡)�

exp

"
� 1

2�2

nX

i=1

(µi � µ)2
#

(9)

2) Algorithm and Description

We take the set of scaling requests V arriving at time slot
ti as the input, and the output is the occupation state for
V in the DCN. Since the scaling requests of the virtual
clusters in set V are synchronously incoming, we use the
same initialization as MVCS (Algorithm 3, in line 1). In
lines 2 to 7, we start to estimate the future information for
the incoming virtual clusters. For each virtual cluster, we
first estimate the fluctuating amount of µi and � for Vi based
on Bayesian parameter estimation. Then, we calculate the
future scaling ratio ⇢⇤i based on the µi, and we relocate the
locality property S⇤

ij based on the ⇢⇤i . We use S⇤
ij for resource

reservation for Vi. In line 8, we sort VCs in the set V to V 0 by
localities i = argmini S

0⇤
ij and start to deploy each VC in V 0.

From lines 9 to 13, we start to deploy each VC in V one-by-
one based on the sorting order. VCs with the same localities
are prioritized by the scaling ratio i = argmini ⇢⇤i . In line
11, we start to place the Vi into the DCN, and the placement
process for each Vi is the same as Algorithm 1 from lines 2
to 8.

B. ASYNCHRONOUS ONLINE MULTIPLE VIRTUAL
CLUSTER SCALING (A-OMVCS)
In this section, we address the online multiple virtual cluster
scaling problem with an asynchronous incoming rate. In this
condition, the scaling requests of virtual clusters in set V are
incoming at different time slots and also release at different
time slots. For each time slot, the incoming scaling amount of
virtual clusters is uncertain. Let the fluctuation of incoming

numbers of the VCs with Gaussian distribution be N(µ̂, �̂2).
Since the scaling amount of the VCs is uncertain at each time
slot, if we use the same reservation scheme in Algorithm

4, resource utilization will be inefficient. Therefore, we need
to predict not only the scaling information for each virtual
cluster, but also the incoming amount of virtual clusters at
the next time slot. We preprocess each currently existing
virtual cluster in the same way as in the synchronous case.
In the asynchronous case, multiple VCs can make scaling
requests together at the same time slot, but each time slot
can only deal with one VC scaling request. We also consider
the performance of VCs in a single time period [0, T ] using
over-time elasticity.

1) Bayesian Parameter Estimation for A-OMVCS

In the asynchronous online scaling case, we first do the
prediction for the incoming scaling VCs. We use Bayesian
parameter estimation to predict the future fluctuation state-
ment for virtual clusters. Let i denote the incoming VCs
at time slot ti; we use the historical fluctuation statement
Z = {i|i2[0,Tn]} of VCs before Tn as our sample. Let
n denote the number of samples in Z, which means the
current location is at the n+1 time slot. We use the standard
Gaussian distribution as the prior distribution, i.e., µ̂0 = 0
and �̂20 = 1. Then, we calculate the maximum likelihood
µ̂0 for the sample Z, where µ̂0 = 1

n

Pn
i=1 i. According to

the prior and maximum likelihood values, we have posterior
distributions where µ̂ = n

n+�̂2
µ̂0 and �̂2 = �̂02

n+�̂02
µ̂0. Based

on the Bayesian estimation, we have the probability density
function in Equation (10).

p(µ̂i|Z) =
1

(
p
2⇡)�̂

exp

"
� 1

2�̂2

nX

i=1

(µ̂i � µ̂)2
#

(10)

2) Algorithm and Description

We use the same input and output settings as Algorithm

5, which includes i VCs at time slot ti. In line 1, we do
the same initialization as MVCS (Algorithm 3). Then, we
estimate the fluctuating mean µ̂i for incoming VCs based on
Bayesian parameter estimation in line 2. According to the
mean µ̂i, we calculate the scaling amount ̂i of VCs in line 3.
In lines 4 to 7, we start to estimate future information for each
of the incoming virtual clusters, and we sort VCs in the set V
to V 0 by localities i = argmini S

0⇤
ij . In lines 8 to 10, we make

resource reservations for the ̂ VCs in the set V 0 that has the
highest probability for scaling requests in the incoming time
slots. In lines 11 to 13, we start to place the  VCs into the
DCN, and the placement process is the same as in Algorithm

4 from lines 9 to 13.

VII. EXPERIMENTS
This section conducts extensive simulations to study elastic
VC scaling placement under three aspects: single VC scaling,
multiple VC scaling, and online multiple VC scaling. These
experiments are conducted to evaluate the performances of
the proposed algorithms. After presenting the datasets and
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Algorithm 5 Asynchronous Online Multiple Virtual Cluster
Scaling (A-OMVCS)
Input: Scaling set V = {V1, V2, ..., Vi} at time slot ti;
Output: DCN occupation state for V ;

1: Initialize the localities Sij and S0
ij , ⇢i and �i for VCs at

time slot ti;
2: Estimate the fluctuating mean µ̂i for incoming VCs

based on Bayesian parameter estimation;
3: Calculate the scaling amount ̂i of VCs based on the µ̂i;
4: for i = 1 to i =  in V do

5: Same as Algorithm 4 from line 3 to line 5;
6: end for

7: Sort VCs in the set V to V 0 by localities i =
argmini S

0⇤
ij ;

8: for i = 1 to i = ̂i in V 0
do

9: Make resource reservations according to S⇤
ij for Vi;

10: end for

11: for i = 1 to i = i =  in V 0
do

12: Same as Algorithm 4 form line 9 to line 13;
13: end for

settings, the results are shown from different perspectives to
provide insightful conclusions.

A. SINGLE VIRTUAL CLUSTER SCALING
1) Experiment Setting

The DCN is modeled as a fat-tree, in which the number of
switches’ ports are ✓ = 4, ✓ = 6, and ✓ = 8. Let the
amount of PMs in the fat-tree be fully connected with the
maximum numbers, which are 16, 54, and 128, respectively.
The supplied computing and communication resources of
the PMs and PLs are real numbers uniformly distributed
between 50 and 100 units. For each group with a different
switch’s port, we calculate elasticity after the scaling place-
ment process. The results are averaged 10 times for each
algorithm. We compare the proposed VCS algorithm with
the two benchmark algorithms in a number of trace-driven
settings.

• Equally Scaling (ES): the scaling request of Vi is evenly
divided into several pieces depending on the amount of
PMs in the sub-tree. It can obtain the load-balance for
each virtual request [1].

• Greedy Scaling (GS): the scaling request of Vi for the
PMs depends on the amount of available resource in the
sub-tree; PMs with high margins have a high priority.

2) Experiment Results

Fig. 4, Fig. 5, and Fig. 6 present the elasticity for the single
VC scaling condition, in which the numbers of the switches’
ports are ✓ = 4, ✓ = 6, and ✓ = 8, respectively. For each
group experiment, we use the same three algorithms: ES,
GS, and VCS, and we calculate averaged 10 times of the
elasticities for various scaling requests. Additionally, we have
the following observations: (i). The elasticity of the scaling
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FIGURE 4. The elasticity for single VC scaling under various fat-trees (✓ = 4).
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FIGURE 5. The elasticity for single VC scaling under various fat-trees (✓ = 6).
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FIGURE 6. The elasticity for single VC scaling under various fat-trees (✓ = 8).

VC depends on the architecture of the fat-tree. Since the
construction of DCNs is based on the number of switches’
ports, we can see that the elasticity of the VC with scaling
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FIGURE 7. The elasticity for the scaling of multiple VCs.

under the ✓ = 4 switch is much lower than that of the fat-
trees where ✓ = 6 and ✓ = 8. (ii). The elasticity of the scaling
VC depends on various placement algorithms. As shown in
Fig. 4, Fig. 5, and Fig. 6, the performance of GS decreases
significantly with the increase in the scaling of VC. ES’s
performance depends on the existing localities of the existing
VMs. Therefore, the fluctuation of FFRP is much larger in ES
than in other algorithms. Compared with ES and GS, VCS
has the best performance in elasticity.

B. MULTIPLE VIRTUAL CLUSTER SCALING
1) Experiment Setting

This section evaluates the elasticity of the scaling of multiple
VCs scaling and uses the same data set as the single VC
scaling problem. Set the VMs of the VCs scaled at one time
slot are evenly distributed between 0 and 50, the bandwidth
demands � scale between 0 and 1. Let the switch’s port be
✓ = 4, ✓ = 6, and ✓ = 8 for each group. In addition to the
proposed algorithms, three baseline algorithms are used:

• Random Schedule Scaling (RSS): the scheduling order
for the multiple VCs is random.

• Decreasing Schedule Scaling (DSS): the scheduling or-
der for the multiple VCs is decreasing.

• Increasing Schedule Scaling (ISS): the scheduling order
for the multiple VCs is increasing.

2) Experiment Results

Since the scale of the VMs ranges from 0 to 50, we calculate
the even value of the over-time elasticity under different �
between 0 and 1. We use the over-time elasticity to evaluate
the performance of the proposed algorithm, and we compare
it with three base-line algorithms: RSS, DSS, and ISS. Fig.
7 presents the over-time elasticity of the scaling of multiple
VCs using different schedule strategies. The number of scal-
ing VCs at the time slot is evenly distributed from 0 to 50. For
each time slot, we allow one VC to be processed. According
to the simulation results, we have the following observations:
(i). The volatility of the multiple scaling VCs is stable. As
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FIGURE 8. The over-time elasticity for S-OMVCS (online without prediction).
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FIGURE 9. The over-time elasticity for S-OMVCS (online with prediction).

shown in Fig. 7, the mean values are marked by red lines,
which are close to each other under different algorithms. (ii).
The over-time elasticity for the multiple VCs depends on
the scheduling order. Comparing these four algorithms, the
performance of RSS is the worst. The interval range of ISS
is better than that of DSS, which depends on the distribution
of existing VMs of the VCs. Compared with RSS, DSS, and
ISS, MVCS has the best performance in over-time elasticity.

C. ONLINE MULTIPLE VIRTUAL CLUSTER SCALING
1) Experiment Setting

This section evaluates the elasticity of online multiple VC
scaling, in which the arrival times of VCs are discretionary
and scaling amounts are randomly determined by tenants. We
divide the scaling into two parts: synchronous online multiple
VC scaling and asynchronous online multiple VC scaling.
We set the scaling frequency of the VCs to 1, which means
that each time slot has to process the scaling or releasing
requests. We run each of our simulations for 10 time slot
intervals. The parameters and symbols that we vary in our
simulations are over-time elasticity.
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FIGURE 10. The over-time elasticity for A-OMVCS.

2) Experiment Results

Since incoming scaling VCs are online, the placement for
VCs at the current time slot is important to incoming VCs in
future time slots. We compare our S-OMVCS algorithm with
the algorithm without prediction. Fig. 8 and Fig. 9 present a
comparison of performances for the two solutions by calcu-
lating the over-time elasticity under different distributions of
existing VCs with various capacities (✓ = 4, ✓ = 6, ✓ = 8,
✓ = 10, and ✓ = 12). For the online scaling, the uncertainty
of scaling VCs (in both size and number) leads to various
interval sizes of the elasticity. Increasing the switches’ ports
means an exponential scaling of PMs in the fat-tree, and the
over-time elasticities for the VCs will have a large growth.
As shown in Fig. 9, when the size of the fat-tree is not very
large (✓ = 4 and ✓ = 6), the advantage of online scheduling
with prediction is not obvious. When the size of the fat-tree
is scaling, (✓ = 8, ✓ = 10, or ✓ = 12), the gap between
these two solutions increase with the scale of the fat-tree.
The insights of resource allocation for S-OMVCS and A-
OMVCS are similar, but the main difference is in the resource
reservation. We compare our A-OMVCS algorithm with the
S-OMVCS algorithm for the asynchronous condition. Fig. 10
presents the performance for A-OMVCS by calculating the
over-time elasticity, and the gap between A-OMVCS and S-
OMVCS in over-time elasticity is not obvious. However, the
percentage of the reservation resource sharply decreases to
45% with an increase in the scale of the DCN, as shown in
Fig. 11.

VIII. CONCLUSION
This paper considers elastic scaling for existing VCs to maxi-
mize elasticity in the DCN with the constraint of communica-
tion cost. We achieve this using a resource allocation scheme,
VCS, which comes with provable optimality guarantees for
single VC scaling. After that, we extend our scheme to scale
for multiple VCs, and we prove that scaling multiple VCs for
the over-time elasticity maximization problem is NP-hard.
We propose heuristic algorithms MVCS, S-OMVCS, and A-

FIGURE 11. The resource reservation for S-OMVCS and A-OMVCS.

OMVCS for both offline and online conditions in the multiple
VC scaling problem. This paper focuses on the condition
that VCs scaling on both computation and communication
resources, which can also be adapted to each individual
resource. Extensive simulations demonstrate that our elastic
VC scaling placement schemes outperform existing state-of-
the-art methods in the DCN in terms of elasticity.
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