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Background
■Cloud Data Center Networks

Supporting cloud-based applications for large 
enterprises

■Virtual Cluster Placement
Solving the resource utilization problem in a 
cloud DCN.

■Motivation
◦ Balancing the allocation on physical resource 

to virtual clusters. 
◦ Guaranteeing both computation and 

communication demands for users. 



Problem Formulation
■ Definition
o Data Center Network: Fat-tree. 

o Virtual Cluster (VC): 
𝑽𝒊 = 𝑵𝒊, 𝑩𝒊

o Hose Model: 
𝒇𝒊 ( = 𝒎𝒊𝒏{𝒙,𝑵𝒊 − 𝒙} ( 𝑩𝒊

o Communication Cost: 
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𝑻𝑺𝒊𝒋: denotes the total amount of VMs 
under the subtree 𝑆:; of 𝑉:;
𝑯𝒋: the hops between PMs that 
holding the VMs of 𝑉:;
𝜸: is a constant value which denotes 
the communication cost between each 
pair of VMs in 𝑉:; 
𝒇𝒊((): communication demand;



Problem Formulation
§Elasticity (E): 𝒎𝒊𝒏{𝑬𝑴, 𝑬𝑳}
o EM : minimum percentage of 

available slots among PMs of Vi.

o EL : minimum percentage of available 
bandwidth among all PLs.

■ Challenges
o Balancing 𝑬𝑴 and 𝑬𝑳 to maximize 
𝑬. 

o Trade-off between E and the 𝒎.
Fig. 1. Fat-tree and Virtual Cluster. 
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Problem Formulation
■Problem: Determine the placement for the scaling VCs. 

𝑽𝒊 = 𝑵𝒊, 𝑩𝒊 −> 𝑽𝒊 = 𝑵𝒊 + 𝑵𝒊E, 𝜹𝑩𝒊 	

■Objective: Maximize 𝑬 for Vi under the constraints; 

𝑚𝑎𝑥𝑚𝑖𝑧𝑒	𝐸 = min{𝐸R, 𝐸S}

𝑓:( / (𝐶:∗ + 𝐶:E)) ≤ 𝐿:;
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subject to 

𝐶:∗ + 𝐶:E ≤ 𝐶:

0≤ 𝑚(𝑉:) ≤ Φ:

Notations:
𝑚((): communication cost;
𝐶:: PM capacity;
𝐿:: PL capacity;



Single Virtual Cluster Scaling (VCS)
• Step 1: Initialize Φ:, 𝑆:;	and 𝑅][^;

• Step 2: Update the locality 𝑆:;E based
on Φ:.

• Step 3: Hierarchically place 𝑁:E VMs
into PMs into Tsij based on 𝑆:;E ;
Ø Update PLs according to the scaling

request 𝐵: −> 𝛿𝐵:;
Ø Update PMs according to the

scaling VMs 𝑁: −> 𝑁: + 𝑁:E；

Fig. 1. An example of different placements for single virtual cluster scaling.
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Multiple Virtual Cluster Scaling (MVCS)
• Problem: 𝑉 = 𝑉d, 𝑉e, … , 𝑉g
•Objective: Maximize over time 
elasticity in time period 0, 𝑇 ;

Fig. 2. An example of different placements for multiple VCs scaling.
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Multiple Virtual Cluster Scaling (MVCS)
• Problem: 𝑉 = 𝑉d, 𝑉e, … , 𝑉g
•Objective: Maximize over time elasticity in time period 0, 𝑇 ;

Step 1: Initialize Φ for each V.

Step 2: Calculate each scaling ratio 𝜌: =
q[
rs[^

.

Step 3: Place the VCs prioritize in the ascending order of scaling ratio 𝜌:. 



Online Multiple Virtual Cluster Scaling 
(OMVCS)
• Problem: Online condition for the multiple VCs scaling; 

•Objective: Maximize the over time elasticity in time period 0, 𝑇 ;

Step 1: Estimate the fluctuating mean based on Bayesian parameter estimation; 

Step 2: Calculate the future scaling ratio 𝜌:∗;

Step 3: Relocate the locality for Vi based on 𝜌:∗;

Step 4: Sort VCs in the set V to V’ by localities 𝑖 = arg𝑚𝑖𝑛:𝑆:;∗ ; 

Step 5: For VCs with the same locations in the order of ascending scaling ratio 𝑖 =
arg𝑚𝑖𝑛:𝜌:∗; 



Evaluation
■Single Virtual Cluster Scaling
•Compare Algorithm: Equally Scaling (ES) and Greedy Scaling (GS); 

Equally Scaling (ES): scaling request of 𝑉: is evenly divided into several 
pieces depending on the amount of PMs in the sub-tree. 
Greedy Scaling (GS): scaling request of 𝑉:	for the PMs depends on the 
amount of available resource in the sub-tree. 

• Setting: The number of the switches’ ports: 𝜃= 4 , 𝜃= 6, 𝜃= 8; 



Evaluation
■Conclusion:
• The elasticity of the scaling VC depends on the architectures of the fat-tree.

• The elasticity for the scaling VC depends on various placement algorithms, 
25% improvement for ES, 11% improvement for GS. 

Fig. 3. The elasticity for single VC scaling under various Fat-trees.



Evaluation
■Multiple Virtual Cluster Scaling
•Compare Algorithm: 
ØRandom Schedule Scaling (RSS);
ØDecreasing Schedule Scaling (DSS);
ØIncreasing Schedule Scaling (ISS); 

• Setting:
ØThe number of the switches’ ports : 𝜃= 4 , 𝜃= 6, 𝜃= 8; 
ØThe VMs of the VCs scaled are evenly distributed between 0 and 50; 



Evaluation
■Conclusion 
•The volatility of the multiple scaling VCs 
is stable. 
• As shown in Fig. 4, the mean value of 

under are marked by red lines, which 
are close with each other under different 
algorithms. 

•The over-time elasticity for the multiple 
VCs depends on the scheduling order. 
•MVCS has the best performance in the 

over-time elasticity.
Fig. 4. The elasticity for multiple VCs scaling.



Evaluation
■Online Multiple Virtual Cluster Scaling
•Compare Algorithm: online multiple scaling without prediction. 

• Setting:
ØThe number of the switches’ ports 𝜃= 4 , 𝜃= 6, 𝜃= 8, 𝜃= 12; 
ØScaling amount of VCs are randomly determined by the tenants;  
ØSet scaling frequency to 1, each time slot has to process the scaling or 

releasing requests. 



Evaluation
■Conclusion 
•When the size of the Fat-tree is not 
very large ( 𝜃= 4 and 𝜃	= 6 ), the 
advantage of online scheduling with 
prediction is not obvious.

•When the size of the Fat-tree is 
scaling, such as 𝜃	= 8 , 𝜃	= 10 and 𝜃	= 
12 , the gap between these two 
solutions will increase with the scale 
of the Fat-tree. 

Fig. 5. The elasticity for online multiple VCs scaling.



Conclusion
• We first show that there is a trade-off between elasticity and the 

communication cost for VC scaling problem.

• We propose an algorithm, VCS, for the scaling request of an existing VC under 
the constraints of resource and communication costs; 

• We extend the single VC scaling placement problem into multiple VCs and 
prove that it is an NP-hard problem. 

• We propose MVCS and OMVCS algorithms for both offline and online cases;

• Extensive simulations demonstrate that our elastic VCs scaling placement 
schemes outperform existing state-of-the-art methods in terms of elasticity in 
the DCN.



Thank you very much!


