
Shuaibing Lua,b, Zhiyi Fanga, and Jie Wub

aCollege of Computer Science and Technology, Jilin University
bDepartment of Computer and Information Sciences, Temple University

Elastic Scaling of Virtual Clusters
in Cloud Data Center Networks

• Background
• Problem Formulation
• Single Virtual Cluster Scaling
• Multiple Virtual Cluster Scaling
• Online Multiple Virtual Cluster Scaling
• Evaluation
• Conclusion

Outline

Background
■Cloud Data Center Networks

Supporting cloud-based applications for large
enterprises

■Virtual Cluster Placement
Solving the resource utilization problem in a
cloud DCN.

■Motivation
◦ Balancing the allocation on physical resource

to virtual clusters.
◦ Guaranteeing both computation and

communication demands for users.

Problem Formulation
■ Definition
o Data Center Network: Fat-tree.

o Virtual Cluster (VC):
𝑽𝒊 = 𝑵𝒊, 𝑩𝒊

o Hose Model:
𝒇𝒊 (= 𝒎𝒊𝒏{𝒙,𝑵𝒊 − 𝒙} (𝑩𝒊

o Communication Cost:

𝒎 𝑽𝒊 =/|𝑻𝑺𝒊𝒋|
𝒌

𝒋5𝟏

(𝑯𝒋 (𝜸

𝑻𝑺𝒊𝒋: denotes the total amount of VMs
under the subtree 𝑆:; of 𝑉:;
𝑯𝒋: the hops between PMs that
holding the VMs of 𝑉:;
𝜸: is a constant value which denotes
the communication cost between each
pair of VMs in 𝑉:;
𝒇𝒊((): communication demand;

Problem Formulation
§Elasticity (E): 𝒎𝒊𝒏{𝑬𝑴, 𝑬𝑳}
o EM : minimum percentage of

available slots among PMs of Vi.

o EL : minimum percentage of available
bandwidth among all PLs.

■ Challenges
o Balancing 𝑬𝑴 and 𝑬𝑳 to maximize
𝑬.

o Trade-off between E and the 𝒎.
Fig. 1. Fat-tree and Virtual Cluster.

Communication

Potential Growth

VM Placement

𝑽 = 𝟓,𝑩

Problem Formulation
■Problem: Determine the placement for the scaling VCs.

𝑽𝒊 = 𝑵𝒊, 𝑩𝒊 −> 𝑽𝒊 = 𝑵𝒊 + 𝑵𝒊E, 𝜹𝑩𝒊 	

■Objective: Maximize 𝑬 for Vi under the constraints;

𝑚𝑎𝑥𝑚𝑖𝑧𝑒	𝐸 = min{𝐸R, 𝐸S}

𝑓:(/ (𝐶:∗ + 𝐶:E)) ≤ 𝐿:;

�

Z[∈][^

subject to

𝐶:∗ + 𝐶:E ≤ 𝐶:

0≤ 𝑚(𝑉:) ≤ Φ:

Notations:
𝑚((): communication cost;
𝐶:: PM capacity;
𝐿:: PL capacity;

Single Virtual Cluster Scaling (VCS)
• Step 1: Initialize Φ:, 𝑆:;	and 𝑅][^;

• Step 2: Update the locality 𝑆:;E based
on Φ:.

• Step 3: Hierarchically place 𝑁:E VMs
into PMs into Tsij based on 𝑆:;E ;
Ø Update PLs according to the scaling

request 𝐵: −> 𝛿𝐵:;
Ø Update PMs according to the

scaling VMs 𝑁: −> 𝑁: + 𝑁:E；

Fig. 1. An example of different placements for single virtual cluster scaling.

VMVC1 VMVC1Existing VMs: Scaling VMs:

Pod 0 Pod 1

VM
VM
VM

VM
VM VM VM

VMVM

M00 M01 M02 M03 M10 M11 M13M12

VM
VM
VM

 (b). VC2->VC3->VC1(a). VC1->VC2->VC3

Pod 0 Pod 1

VM
VM

VM
VM

VM
VM VM

Pod 0 Pod 1

VMVC 1
VMVC 2
VMVC 3

VMVC 1
VMVC 2
VMVC 3

Existing VMs: Incoming VMs:

M0 M1 M2 M3 M4 M5 M7M6 M0 M1 M2 M3 M4 M5 M7M6

VM
VM
VM

VM
VM VM VM

VM
VM

VM
VM
VM VM VM

VM
VM

VM
VM

VM
VM VM

VMVM VM
VMVM VM

VM

VMVM
VM

VM
VM
VMVM

VMVM VM VM VM
VM

VM
VM
VM

VM
VM

VM
VM

VM

Multiple Virtual Cluster Scaling (MVCS)
• Problem: 𝑉 = 𝑉d, 𝑉e, … , 𝑉g
•Objective: Maximize over time
elasticity in time period 0, 𝑇 ;

Fig. 2. An example of different placements for multiple VCs scaling.

𝒎𝒂𝒙𝒎𝒊𝒛𝒆	𝑬 =/𝑬𝒊

𝑻

𝒊5𝟎

𝟑
𝟓

𝟒
𝟓

Multiple Virtual Cluster Scaling (MVCS)
• Problem: 𝑉 = 𝑉d, 𝑉e, … , 𝑉g
•Objective: Maximize over time elasticity in time period 0, 𝑇 ;

Step 1: Initialize Φ for each V.

Step 2: Calculate each scaling ratio 𝜌: =
q[
rs[^

.

Step 3: Place the VCs prioritize in the ascending order of scaling ratio 𝜌:.

Online Multiple Virtual Cluster Scaling
(OMVCS)
• Problem: Online condition for the multiple VCs scaling;

•Objective: Maximize the over time elasticity in time period 0, 𝑇 ;

Step 1: Estimate the fluctuating mean based on Bayesian parameter estimation;

Step 2: Calculate the future scaling ratio 𝜌:∗;

Step 3: Relocate the locality for Vi based on 𝜌:∗;

Step 4: Sort VCs in the set V to V’ by localities 𝑖 = arg𝑚𝑖𝑛:𝑆:;∗ ;

Step 5: For VCs with the same locations in the order of ascending scaling ratio 𝑖 =
arg𝑚𝑖𝑛:𝜌:∗;

Evaluation
■Single Virtual Cluster Scaling
•Compare Algorithm: Equally Scaling (ES) and Greedy Scaling (GS);

Equally Scaling (ES): scaling request of 𝑉: is evenly divided into several
pieces depending on the amount of PMs in the sub-tree.
Greedy Scaling (GS): scaling request of 𝑉:	for the PMs depends on the
amount of available resource in the sub-tree.

• Setting: The number of the switches’ ports: 𝜃= 4 , 𝜃= 6, 𝜃= 8;

Evaluation
■Conclusion:
• The elasticity of the scaling VC depends on the architectures of the fat-tree.

• The elasticity for the scaling VC depends on various placement algorithms,
25% improvement for ES, 11% improvement for GS.

Fig. 3. The elasticity for single VC scaling under various Fat-trees.

Evaluation
■Multiple Virtual Cluster Scaling
•Compare Algorithm:
ØRandom Schedule Scaling (RSS);
ØDecreasing Schedule Scaling (DSS);
ØIncreasing Schedule Scaling (ISS);

• Setting:
ØThe number of the switches’ ports : 𝜃= 4 , 𝜃= 6, 𝜃= 8;
ØThe VMs of the VCs scaled are evenly distributed between 0 and 50;

Evaluation
■Conclusion
•The volatility of the multiple scaling VCs
is stable.
• As shown in Fig. 4, the mean value of

under are marked by red lines, which
are close with each other under different
algorithms.

•The over-time elasticity for the multiple
VCs depends on the scheduling order.
•MVCS has the best performance in the

over-time elasticity.
Fig. 4. The elasticity for multiple VCs scaling.

Evaluation
■Online Multiple Virtual Cluster Scaling
•Compare Algorithm: online multiple scaling without prediction.

• Setting:
ØThe number of the switches’ ports 𝜃= 4 , 𝜃= 6, 𝜃= 8, 𝜃= 12;
ØScaling amount of VCs are randomly determined by the tenants;
ØSet scaling frequency to 1, each time slot has to process the scaling or

releasing requests.

Evaluation
■Conclusion
•When the size of the Fat-tree is not
very large (𝜃= 4 and 𝜃	= 6), the
advantage of online scheduling with
prediction is not obvious.

•When the size of the Fat-tree is
scaling, such as 𝜃	= 8 , 𝜃	= 10 and 𝜃	=
12 , the gap between these two
solutions will increase with the scale
of the Fat-tree.

Fig. 5. The elasticity for online multiple VCs scaling.

Conclusion
• We first show that there is a trade-off between elasticity and the

communication cost for VC scaling problem.

• We propose an algorithm, VCS, for the scaling request of an existing VC under
the constraints of resource and communication costs;

• We extend the single VC scaling placement problem into multiple VCs and
prove that it is an NP-hard problem.

• We propose MVCS and OMVCS algorithms for both offline and online cases;

• Extensive simulations demonstrate that our elastic VCs scaling placement
schemes outperform existing state-of-the-art methods in terms of elasticity in
the DCN.

Thank you very much!

