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Abstract—With the integration of Artificial Intelligence (AI) and Internet of Things (IoT), the Federated Edge Learning (FEL), a 

promising computing framework is developing. However, there are still unsolved issues on communication efficiency and data 

security due to the huge models and unreliable transmission links. To address these issues, this paper proposes a novel 

federated edge learning system, called LightFed, where the edge nodes upload only vital partial local models, and successfully 

achieve lightweight communication and model aggregation. First, a novel model aggregation method Model Splitting and 

Splicing (MSS) and a Selective Parameter Transmission (SPT) scheme are proposed. By detecting the updating gradients of 

local parameters and filtering significant parameters, selective rotated transmission and efficient aggregation of local models are 

achieved. Second, a Training Filling Model (TFM) is proposed to infer the total data distribution of edge nodes, and train a filling 

model to mitigate the unbalanced training data without violating the data privacy of individual users. Moreover, a blockchain-

powered confusion transmission mechanism is proposed for defending the attacks from external adversaries and protecting the 

model information. Finally, extensive experimental results demonstrate that our LightFed significantly outperforms the existing 

FEL systems in terms of communication efficiency and privacy security. 

Index Terms—Federated Edge Learning, Communication Efficiency, Privacy Protection, Deep Neural Network 
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1 INTRODUCTION

ith the advancement of microprocessors and 5G com-

munication technologies, the storing and processing of 

massive data shift from the network center to the edge [1], and 

the Edge Computing (EC) paradigm becomes extensively uti-

lized [2]. Meanwhile, the rapid development of Artificial In-

telligence (AI) provides a solid foundation for mining the po-

tential value of edge data information in depth [3], [4]. There-

fore, Federated Edge Learning (FEL), a novel computing 

framework for AI fusion EC, was developing [5], [6]. Unlike 

other distributed computing frameworks, Edge Nodes (EN) in 

FEL never directly exchange source data, but instead a Global 

Server (GS) orchestrates ENs and aggregates the parameters 

of local AI models. This mode preserves node data privacy 

and allows for secure data sharing [7]. 

Although FEL solves the challenges of large computation 

volume and high storage capacity requirements for devices in 

traditional DL while also protecting the data privacy to some 

extent [5], [7], FEL still has many issues with communication, 

training efficiency and higher-level security assurance [8]. 

First, although nodes in basic FEL never communicate 

source data, the ENs should still upload local model parame-

ters to the GS periodically [7]. However, Deep Neural Net-

works (DNN) are now growing in size in tandem with the 

complexity of training tasks, and the model parameter 

amount is extremely high. For instance, the classical network 

structure UNet for analyzing medical images might include 

tens of millions of parameters [9]. The communication effi-

ciency between ENs and the GS will certainly be reduced if 

such a huge model is transmitted in each model aggregation. 

To address this issue, Wu et al. [10] and Wang et al. [11] adap-

tively modify the model aggregation frequency to reduce the 

communication amount. However, the redundant model ag-

gregation method FedAvg [7] is still kept in their schemes, 

which is not conductive to the communication efficiency. 

Therefore, a novel lightweight model aggregation technique 

should be suggested, which will function better with the com-

munication strategies used in the previous studies. 

Second, unlike centralized machine learning, the data dis-

tribution of ENs may not be uniform and compatible with the 

expectation of GS [12], resulting in a drop in training efficiency 

and the accuracy of global model. To compensate the impact 

of non-independent-identical distribution (non-IID) on FEL 

system, the Astraea framework introduces mediators into the 

FEL architecture to achieve the detection and adjustment for 

imbalanced client data [13]. In addition, FedHome imple-

ments the generation of approximately balanced dataset by a 

lightweight GCAE encoder [14]. The above methods indeed 

never leak the data of ENs, but it reveals the EN data distribu-

tion to the mediators or GS during data adjustment, which is 

still the privacy in a wide sense. The user profile is likely to be 

detected by the GS or external adversaries based on the data 

distribution [15]. Therefore, it is valuable and challenging to 

design a data adjustment strategy that does not reveal the data 

distribution of ENs. 

Despite the fact that FEL protects the source data, some 

attacks, such as inverse attack [16], [17], nevertheless exploit 

the local model to deduce the data features of ENs backwards.
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The GS can directly acquire the local models of ENs, while ex-

ternal adversaries may obtain model parameters by tapping 

the wireless channel, and ENs may infer the data distribution 

of other nodes by the inverse calculation of aggregation after 

receiving the global model [16]. Furthermore, this type of at-

tack is more effective in the case of data imbalance. Some 

works have applied differential privacy methods [18], [19], 

but they introduce noise while altering the local models, low-

ering the purity of models and maybe reducing the efficacy of 

training. As a result, we need to build a new general model 

encryption transmission scheme to secure the user privacy at 

a higher level without compromising model accuracy. 

To address the aforementioned issues with FEL, we pre-

sent a novel communication-efficient and secure FEL system 

LightFed. LightFed provides a lightweight aggregation 

method by reducing the parameter amount uploaded by ENs, 

and encrypts the parameter by quick hash transformations. 

Our primary contributions are as follows: 
• We first propose a lightweight model aggregation 
method Model Splitting and Splicing (MSS) and a Selective 
Parameter Transmission Protocol (SPT) that differ from classic 
FedAvg. In model aggregation, SPT enables automatic detec-
tion for model parameters and filters out parameter vectors 
with large gradients. The ENs should only rotatedly upload 
partial vectors to the GS, and the GS can achieve efficient ag-
gregation of local parameters. 

• A novel data adjustment method Training Filling Model 
(TFM) is suggested. TFM finds the minor classes in the train-
ing data by the global test result, fills the data gap and bal-
ances the dataset by training a filling model. It never reveals 
the data distribution of ENs and GS, thoroughly ensuring the 
user privacy. 

• Based on SPT, a blockchain-powered parameter confu-
sion transmission mechanism is proposed for the security of 
model information. The GS issues hash keys in the DAG 
blockchain for ENs. ENs can quickly shuffle the uploading pa-
rameters by the unique hash key to confuse external eaves-
droppers, accomplishing the lightweight model encryption. 

The rest of this paper is organized as follows. Section 2 

reviews the related work. The system model and research mo-

tivation are presented in Section 3. Section 4 introduces our 

novel FEL system LightFed. Then, Section 5 provides the ex-

perimental results and an engineering application of LightFed. 

Finally, conclusion and future work are given in Section 6. 

2 RELATED WORK 

Machine Learning (ML), as an emerging technique that digs 

deeply into the inherent rules and representation of data, has 

produced excellent results in processing types of data such as 

images [20], natural language [21], and sound [22]. Based on 

these results, ML can provide accurate prediction or decision 

for both civilian and industrial systems [23]. However, facing 

complex data processing tasks, ML models must execute com-

putation with massive sample data, which undoubtedly poses 

a challenge to the storage capacity and computing power of 

devices. Moreover, network failure and hardware failure are 

becoming more frequent as storage capacity of centralized 

nodes scales up [24]. To address these issues, distributed ML 

is proposed, which trains models in parallel across several 

computing nodes, reducing the load on central server and the 

training time. Petuum [25], GraphLab [26] and Parameter 

Server [27] are the classical distributed ML platforms. 

To further guarantee the data privacy of computing 

nodes, Google first proposed the concept of Federated Learn-

ing (FL) based on the theory of distributed ML [28]. If the com-

puting nodes are common edge nodes, it is called Federated 

Edge Learning (FEL) [5]. FEL advocates recruiting resource-

free edge nodes to achieve joint training of ML models. Each 

edge node holds private training data and never exchanges 

data directly during training, but shares updated model pa-

rameters. A global server (GS) aggregates the local models by 

weightedly averaging the model parameters from edge nodes 

to obtain a global model with better performance, which is the 

classical FedAvg algorithm [7]. The privacy-preserving and 

scalability of FEL have led to its rapid adoption in various 

fields, such as healthcare [29], industrial control [30], traffic 

monitoring [31].  
FEL lowers the application barrier for distributed ML, 

however owing to the intrinsic restrictions in FEL, there are 
still some issues with communication efficiency and security. 
In addition to the aforementioned strategies to reduce com-
munication frequency, Konecny et al. [32] employed model 
compression approaches to reduce the size of local models to 
improve the uplink communication. Smith et al. [33] investi-
gated that multi-task federated learning can naturally deal 
with the problem of large communication volume in conven-
tional federated learning, and suggested the novel approach 
MOCHA to improve the communication. However, varying 
form the above studies, LightFed innovates the aggregation 
method by splitting local models and considers different up-
date patterns of parameters. Second, with the development of 
attack techniques, Melis et al. and Hitaj et al. proposed novel 
attack methods to obtain data features by stealing model pa-
rameters [16], [17], and higher-level security defenses are yet 
to be proposed. Lu et al. [34] enhanced the security perfor-
mance of federation learning by introducing global block-
chain and local DAGs. Dai et al. [35] proposed a fusion AI and 
blockchain distributed resource sharing platform, improving 
the security of resource allocation at edge nodes. However, 
considering the access overhead of models in the blocks in 
previous research, LightFed provides a lightweight block-
chain empowered encryption method integrated to the model 
transfer, where the blocks are only used to store hash keys 
with small volume. 

3 SYSTEM MODEL AND RESEARCH MOTIVATION 

3.1 System Model 

The LightFed proposed in this paper enables secure and fast 
federated model training by recruiting heterogeneous ENs, 
widely used in various distributed ML scenarios, including 
UAV-assisted rescue [36], weather data prediction [2], traffic 
flow monitoring [31], etc. The basic components of LightFed 
are shown in Fig. 1, primarily including a global server and 
edge nodes. (1) Global Server (GS): There are some devices 
equipped with high-performance servers, such as UAVs, 
small base stations, RSUs, etc. They act as the initiators and 
controllers of federated learning tasks, and orchestrates the 
training of nodes and aggregates local models. Meanwhile, 
some GSs hold private data, e.g., UAVs obtain image data 
through aerial photography, and can also participate in model  
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Fig. 1 System model and applications 

Table 1 
Main symbols and their meanings 

Symbol Meaning 
𝑵𝑖 The edge node set in 𝑖-th aggregation 

𝒘𝑖 The global model after 𝑖-th aggregation 

𝒘𝑖
𝑎 The local model of 𝑛𝑎 after 𝑖-th aggregation 

𝔻𝑎 The local training set of 𝑛𝑎 

𝒞 The communication efficiency indicator 

𝒮 The data security indicator 

𝑎𝑐𝑐𝑔
𝑖  The global test accuracy after 𝑖-th aggregation 

ℬ The data unbalance indicator 

𝒮𝑔
𝑖 , 𝒮𝑎

𝑖 , 𝒮𝑒
𝑖 The defending indicators of GS, 𝑑𝑎 and external 

adversary 

𝑚𝑟
𝑖  The parameter redundancy in 𝑖-th aggregation 

𝑑𝑟 The decay ratio for parameter redundancy 

𝑚𝑎
𝑖  The transmission amount of 𝑛𝑎 in 𝑖-th aggrega-

tion 

𝒩𝑣
𝑙 The vector number in 𝑙-th layer of model 

𝜉𝑏 , 𝜉𝑢 The thresholds for LBP and SUP 

𝒘𝑖
𝑓𝑖𝑙𝑙

 The filling model in 𝑖-th aggregation 

𝜌𝑐
𝑖  The filling ratio for class 𝑐 in 𝑖-th aggregation 

𝐹𝑢𝑛𝑖𝑡
𝑖  The unit size of filling data in 𝑖-th aggregation 

 
training as trainers. (2) Edge Nodes (EN): a huge number of 
heterogeneous mobile smart devices, such as smart vehicles 
on the road, cellphones of pedestrians, smart cameras and sen-
sors, etc., are in charge of receiving global model from the GS 
and updating local models. To indicate the available EN set, 
we define 𝑵 = {𝑛1, 𝑛2, . . . 𝑛𝑖 , . . . }. These ENs have limited com-
putational resources and the capacity to collect data from var-
ious locations and motion trajectories. Therefore, they may ob-
tain unique data to assist in improving the generalization ca-
pability of models. 

3.2 Basic FEL Model 

We introduce basic federated learning using an image recog-
nition training task. By federated learning, ENs can use their 
image data to assist GS in training image recognition models. 
First, the GS determines the model type and size, such as the 
classical Convolutional Neural Network (CNN) or Support 
Vector Machine (SVM), etc. [37], and initializes the global 
model parameter as 𝒘0 , which is sent to the ENs that have 
verified their identities. EN 𝑛𝑎 starts the local parameter up-
date once it receives the global model. First 𝑛𝑎 needs to define 

the loss function 𝑙𝑛𝑎
(𝒘𝑖

𝑛𝑎) , as shown in Equation (1). 𝔻𝑎 

denotes the private dataset of 𝑛𝑎, 𝒘𝑖
𝑛𝑎  is the local model pa-

rameter updated by 𝑛𝑎 in the 𝑖-th round, and 𝒙𝑗  and 𝑦𝑗  are the 

𝑗-th image sample in 𝔻𝑎 and its corresponding label, respec-

tively. 𝑓(𝒘𝑖
𝑛𝑎 , 𝒙𝑗 , 𝑦𝑗) then characterizes the difference between 

the predicted label of sample 𝒙𝑗  and its true label 𝑦𝑗  according 

to the model parameter 𝒘𝑖
𝑛𝑎 . The cross-entropy loss function 

and the logarithmic loss function, for example, are commonly 
employed [37]. 

𝑙𝑛𝑎
(𝒘𝑖

𝑛𝑎) =
1

|𝔻𝑎|
∑ 𝑓(𝒘𝑖

𝑛𝑎 , 𝒙𝑗 , 𝑦𝑗).
|𝔻𝑎|
𝑗=1                   (1) 

After several rounds of local parameter update, 𝑛𝑎  and 
other ENs selected by GS upload the local parameters to GS 
for the first model aggregation to obtain the global model 𝒘1. 
The goal of model aggregation is to find the optimal model 
parameters 𝒘∗  with the minimum average prediction loss 
over all ENs, i.e., maximizing the generalization ability of 
model, as shown in Equation (2). After the GS aggregates the 
local models, the new global model is issued to ENs again to 
start rounds of local parameter update. 

𝒘∗ = min
𝒘

1

|𝑵|
∑ 𝑙𝑛𝑎

(𝒘𝑖
𝑛𝑎)

|𝑵|
𝑎=1 .                       (2) 

3.3 Problem Statement 

Basic FEL, as previously noted, makes use of distributed com-
puting resources to solve the limitations of traditional ML, but 
it still faces many problems to implement a secure and effi-
cient federal edge system. In this subsection, we state our 
goals and define the corresponding performance metrics. 

• Communication Efficiency. As metioned above, the de-
centralization of data and computation in FEL leads to a 
higher communication cost. Therefore, the first goal of Light-
Fed is to achieve a lightweight and efficient model communi-
cation strategy without degrading the model accuracy. We de-
fine 𝒞 as a metric of communication efficiency, where 𝐼 is the 
total number of model aggregations in the training task, and 

𝑎𝑐𝑐𝑔
𝑖  is the accuracy of the global model on the global test set 

after the 𝑖-th aggregation. |𝑾𝑖| denotes the total number of 
parameters transmitted during the 𝑖-th model aggregation. 

𝒞 =
1

𝐼
∑

𝑎𝑐𝑐𝑔
𝑖

|𝑾𝑖|
𝐼
𝑖=1 .                                     (3) 

• Data Security. Due to the emergence of inversion attacks, 
the goal of privacy protection rises from source data security 
to model security. We primarily investigate three types of at-
tackers: GS, ENs, and external adversaries. There is a premise 
that the first two types of attackers are “honest and curious” 
[38]: they follow basic communication protocols and learning 
patterns, but they exploit the data received to get as much in-
formation as possible.  

We define 𝒮 to denote the security of model transmission, 

as shown in Equation (4). 𝒮𝑔
𝑖 , 𝒮𝑎

𝑖  and 𝒮𝑒
𝑖  denote the perfor-

mance indicators of defending the attacks from GS, ENs and 
external adversaries, respectively, and 𝜗𝑔, 𝜗𝑑 and 𝜗𝑒 are their 

weight coefficients. Equation (5) illustrates the calculation of 

𝒮𝑔
𝑖 , where 𝔽𝑑𝑒𝑡

𝑖  is the data features detected by GS at the 𝑖-th 

model aggregation, and 𝔽𝑡𝑎𝑟 is the true data features of the at-
tacked target. ‖∙‖2 is used to calculate the difference between 

𝔽𝑑𝑒𝑡
𝑖  and 𝔽𝑡𝑎𝑟. 𝒮𝑎

𝑖  and 𝒮𝑒
𝑖  are calculated in the similar way. 

𝒮 =
1

𝐼
∑ (𝜗𝑔𝒮𝑔

𝑖 +
𝜗𝑑

|𝑵𝑖|
∑ 𝒮𝑎

𝑖|𝑵𝑖|
𝑎=1 + 𝜗𝑒𝒮𝑒

𝑖)𝐼
𝑖=1 .                (4) 
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Fig. 2 The comparison of fixed transmission and rotated transmission 

on loss and global accuracy 

 

𝒮𝑔
𝑖 = ‖𝔽𝑑𝑒𝑡

𝑖 − 𝔽𝑡𝑎𝑟‖
2

.                              (5) 

• Data Balance. The non independent identical distribution 
(non-IID) of EN data significantly affects the convergence 
speed and accuracy of FEL [13]. Moreover, to ensure the data 
privacy, ENs refuse to disclose their data distribution to the 
GS for the data adjustment. Under this premise, designing a 
mechanism for GS to snoop the training data profile and adap-
tively adjust the data distribution without requesting for EN 
privacy is a key issue. 

We define ℬ as a metric of the unbalance of training data 
distribution, as shown in Equation (6). 𝐶 is the total number of 
data classes, ∑ |𝔻𝑎|𝑛𝑎∈𝑵  is the amount of data used to update 

the model before the 𝑖-th aggregation, and ∑ |𝔻𝑎
𝑗

|𝑛𝑎∈𝑵  is the 

number of samples in class 𝑗 . The main symbols and their 
meanings in this paper are represented in Table 1. 

ℬ =
1

𝐼
∑ √∑ (

∑ |𝔻𝑎|𝑛𝑎∈𝑵𝑖

𝐶
−∑ |𝔻𝑎

𝑗
|𝑛𝑎∈𝑵𝑖
)

2
𝑐
𝑗=1

𝐶
.𝐼

𝑖=1                       (6) 

3.4 Research Motivation 

(1) Motivation of Model Splitting and Splicing (MSS) 

To reduce model transmission, we first explore the efficacy of 

model splitting and splicing (MSS) for aggregation. In other 

words, each EN is responsible for transmitting partial param-

eters, e.g., one of the layers in the model, instead of the com-

plete model. The GS receives distinct model segments up-

loaded by ENs and aggregates the models in a spliced manner. 

Note that this aggregation approach presupposes that ENs 

and the GS apply neural networks with same structure and 

size. 

We first simulate two ENs for model splicing experiments. 

The EN datasets are created by sampling on the sorted MNIST 

dataset using a truncated Gaussian distribution. Therefore, 

the samples in each local dataset are unbalanced, meeting the 

non-IID in FEL assumption. The ENs upload model segments 

for splicing after every 5 epochs of local update. We first fix 

the layers transmitted by ENs. For example, in a two-layer 

model, EN 1 and EN 2 always uploads the first and the second 

layer respectively. The curves of training loss under fixed 

transmission are shown in the upper part of Fig. 2(a). The loss 

of both ENs decreases significantly during the early training 

phase, but after 20 epochs, the loss of both ENs begins to al-

ternatively surge when the model is spliced. The blue curve in 

Fig. 2(b) shows the global accuracy of fixed transmission also 

decreasing in the later phase. This is because the fixed 

transmission makes the parameters of different layers updat-

ing only on the local training set of one particular EN, without 

touching other datasets. The excessive bias of the local model 

cannot be mitigated, resulting in a decrease in global accuracy. 

To solve the problem, we try to introduce a rotated transmis-

sion strategy, in which EN 1 and EN 2 alternately upload the 

model parameters, and the loss curves are given in the lower 

part of Fig. 2(a). Compared to fixed transmission, rotated 

transmission allows each layer of the model updating alter-

nately on the two local datasets, resulting in improved model 

homogeneity and accuracy. To summarize, MSS aggregation  

is viable, but the rotated transmission mechanism must be ap-

plied to avoid the excessive local bias of parameters. 

(2) Motivation of Selective Paramter Transmission (SPT) 

In the training of neural networks, the update strength and the 

contribution to model convergence are not equivalent for each 

layer and even each parameter [12]. Therefore, we further 

speculate that ENs even have no need to transmit the com-

plete layers by ignoring the parameters with little contribution. 

To explore the update of parameters in FEL, we performed the 

following simulation experiments to obtain Fig. 3. 

The first convolution layer of model is partitioned into 16 

vectors in sequence. In Fig. 3(a), we observed some vectors, 

such as vector 1 and vector 9, have substantial variations of 

update across ENs, while vector 2 and vector 3, have lesser 

difference. (b) shows the parameter difference after 10 epochs 

of local update. Due to the different data distributions on the 

ENs, the same initial model trained on the respective datasets 

leads to a larger bias in distinct directions as the training 

epochs increase. Then we shrink the standard deviation of the 

data sampling distribution of the ENs, i.e., the 𝜎 in the Gauss-

ian distribution, to make the data distribution of the ENs more 

inhomogeneous. After that ENs update locally by 10 epochs, 

and (c) was obtained. Comparing (c) and (b), the gap between 

the model parameters of ENs is much larger, which demon-

strates the impact of data inhomogeneity on the model update 

direction. (d) shows the standard deviation of parameters be-

tween the local model of one EN and the global model after 

two rounds of aggregation with FedAvg. Compared to the 

separate training in (c), the overall difference in parameter up-

date is reduced, and the model aggregation mitigates the un-

desirable bias of local models.  

In summary, the update strength of the model parameters 

on ENs varies with the data distribution and aggregation. For 

the local parameters less different from the global model or 

with high similarity across ENs, repeated transmission is less 

necessary than other parameters with obvious update. There-

fore, to further reduce the communication amount, we need 

to design a selective parameter transmission protocol based 

on MSS, and then ENs can adaptively select significant param-

eters for transmission. 

4 OUR PROPOSED LIGHTFED 

4.1 Overview of LightFed 

The key components and workflow of LightFed are depicted 
in Fig. 4. First, the GS initializes the model parameters and se-
lects EN group to establish connections, and then broadcasts 
the model to ENs. Meanwhile, according to the concept of 
MSS, the GS splits the model into smaller parameter blocks, 
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(a) (b) (c) (d) 

Fig. 3 The heatmaps of the standard deviation of the parameters of the first convolution layer. (a) Standard deviation of the parameters of ENs, 
𝜎=10000, 𝑡𝑙𝑜𝑐=5. (b) Standard deviation of the parameters of ENs, 𝜎=10000, 𝑡𝑙𝑜𝑐=10. (c) Standard deviation of the parameters of ENs, 𝜎=1000, 
𝑡𝑙𝑜𝑐=10. (d) Standard deviation of the parameters of EN and GS applying FedAvg, 𝜎=1000, 𝑡𝑎𝑔𝑔=2. 

 
which are composed of several parameter vectors. For each 
parameter block, each EN is assigned to transmit partial pa-
rameter vectors after local update. Then the GS collects the 
vectors uploaded by ENs and spliced them into complete pa-
rameter blocks to achieve the model aggregation. To solve the 
data imbalance, the GS analyzes the data distribution after ag-
gregating model and samples filling data from its dataset to 
train the filling model. Moreover, to prevent external adver-
saries from stealing model information, the GS sets up block-
chain-powered hash keys for ENs to encrypt data. The follow-
ing subsections go through the specifics of LightFed. 

4.2 Details of Model Splitting and Splicing (MSS) 

(1) Model splitting. We assume that the GS and ENs apply the 
model with same structure. There are 𝐿 layers in the model 

and 𝒩𝑣
𝑙 parameter vectors in the 𝑙-th layer. Therefore, the GS 

can split the total ∑ 𝒩𝑣
𝑙𝐿

𝑙=1  parameter vectors into 𝑏 parameter 

blocks, each of which contains 
∑ 𝒩𝑣

𝑙𝐿
𝑙=1

𝑏
 vectors. Assume that the 

GS selects EN group 𝑵𝑗  at the 𝑗-th round of aggregation, and 

each EN needs to transmit partial vectors in each parameter 
block. 

(2) Parameter assignment and rotated transmission. The GS 
employs a rotation counter to regulate the parameters ENs up-
loading in model aggregation, as seen in the lower right cor-
ner of Fig. 4. The rotation counter follows the concept of ro-
tated transmission, i.e., the 𝑗-th EN in the 𝑖-th round of aggre-
gation must upload the parameters transferred by the 𝑗+1-th 
EN in the 𝑖 −1-th round. For example, in Fig. 4 the GS selects 
4 ENs to train the model, and in the 1st round of aggregation, 
the rotation counter assigns EN 2 to transmit vector 5 to vector 
12 in each parameter block, while in the 2nd round EN 2 needs 
to upload vector 1 to vector 8, which are the parameters up-
loaded by EN 1 in the last aggregation. In this way, each EN 

can upload its local model to GS in batches after at most |𝑵𝑗| 

rounds of aggregation without replacing ENs. It is noted that 
every two or more adjacent ENs transmit parameters with 
overlapping parts. For example, in the 1st aggregation, both 
EN 1 and EN 2 upload vector 5 to vector 8, which is called 
parameter redundancy. When aggregating models, the GS 
weightedly averages the redundant vectors provided by EN 1 
and EN 2. The purposes are mainly the following. 1) Provide 
a backup for some lost parameters due to undesirable com-
munication conditions. 2) Achieve the average aggregation of 
partial parameters, which helps to further eliminate excessive 
local bias. 3) Calculate the difference between local models 
and select the parameter vectors with larger update strength 

to focus on in the next round of aggregation. This will be de-
scribed detailedly in (3). 

The parameter redundancy amount 𝑚𝑟 is adaptively ad-
justed by GS. In the early training phase, the update directions 
of local models are inconsistent and the global model has not 
reached convergence, so it is more likely a large number of 
parameter vectors are excessively biased, as Fig. 3(c). There-
fore, we need larger 𝑚𝑟 for mitigating local bias and detecting 
the vectors with large update difference. However, in the late 
phase, as the model is about to converge the update difference 
between local models becomes smaller, and 𝑚𝑟  can be low-
ered to further reduce the parameter transmission and shorten 
the training period. To implement the adaptive parameter re-
dundancy, we define the calculation of 𝑚𝑟 which is related to 
the convergency of model, as shown in Equation (7). 𝑖 is the 

aggregation round, and ∆𝑎𝑐𝑐𝑔
𝑖  is the difference between the 

global accuracy of 𝑖-th round and that of the last round. 𝜗𝑎𝑐𝑐 

and 𝜗𝑖 are the weighting factors of ∆𝑎𝑐𝑐𝑔
𝑖  and 𝑖, respectively. 

𝜆𝑟 is the correlation coefficient, and 𝑑𝑟 is the decay exponent, 
which takes values from -1 to 0. The vector number to be trans-

mitted by each EN 𝑚𝑎
𝑖  is shown in Equation (8), where |𝔻𝑘| is 

the data amount of the 𝑘-th EN. For cases where new ENs join 
the training or there are ENs outages causing the EN number 

changes, the GS can quickly adjust 𝑚𝑎
𝑖  by Equation (9) and 

simply send the starting position and length of the new trans-
mitting parameter segments to ENs.  

𝑚𝑟
𝑖 = ⌈𝜆𝑟(𝜗𝑎𝑐𝑐∆𝑎𝑐𝑐𝑔

𝑖 + 𝜗𝑖𝑖)
𝑑𝑟

⌉.                           (7) 

𝑚𝑎
𝑖 = ⌈

|𝔻𝑎|

∑ |𝔻𝑘|
|𝑵𝑖|

𝑘=1

(
∑ 𝒩𝑣

𝑙𝐿
𝑙=1

𝑏
+ |𝑵𝑖|𝑚𝑟

𝑖 )⌉.                    (8) 

(3) Selective parameter transmission. Based on the deviation 
map of local models in Section 3.4, we classify the model pa-
rameter vectors into the following three types. The GS and 
ENs will detect the type of vectors and implement different 
transmission and aggregation strategies. 

• Large Bias Parameters (LBP). LBP are the parameter vec-
tors significantly updating compared to the previous global 
model and have large difference on local models, i.e., the vec-
tors detected by parameter redundancy in (2). We specify two 
thresholds 𝜉𝑏  and 𝜉𝑢 for determining the types of parameter 
vectors. Thus, the parameter vectors satisfying Equation (9) 
are LBP in the 𝑖-th round of aggregation. 𝜎𝑏(𝒗𝑖

𝑎) denotes the 
variance of the vector 𝒗𝑖 in multiple local models, where 𝑽𝑖 is 
the vector list of 𝒗𝑖  collected by GS, and 𝑽�̅�  is the average 
value of 𝑽𝑖. 𝜎𝑢(𝒗𝑖

𝑎) denotes the difference of 𝒗𝑖 in the model of 

𝑛𝑎, and the corresponding vector 𝒗𝑖
𝑔

 in the global model. 
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𝒗𝑖 ∈ LBP, 𝜎𝑏(𝒗𝑖
𝑎) > 𝜉𝑏 ∧ 𝜎𝑢(𝒗𝑖

𝑎) > 𝜉𝑢.                        (9) 

𝜎𝑏(𝒗𝑖
𝑎) =

1

|𝑽𝑖|
∑ ‖𝒗𝑖

𝑗
− 𝑽�̅�‖2

.
|𝑽𝑖|
𝑗=1                             (10) 

𝜎𝑢(𝒗𝑖
𝑎) = ‖𝒗𝑖

𝑎 − 𝒗𝑖
𝑔

‖
2

.                                  (11) 

Algorithm 1  SPT Protocol 

Input: 𝑫, 𝐼𝑎𝑔𝑔 

Output: 𝒘𝐼𝑎𝑔𝑔+1 

1:   GS initializes the global model 𝒘0 and LBP list 
2:   for 𝑖 = 0. . . 𝐼𝑎𝑔𝑔: 

3:     GS selects 𝑵𝑖 and sends 𝒘𝑖 

4:     GS computes 𝑚𝑟
𝑖  by Equation (7) 

5:     for 𝑛 in 𝑵𝑖: 

6:       GS computes 𝑚𝑎
𝑖  by Equation (8) 

7:     end for 

8:     GS updates rotation counter by 𝑚𝑎
𝑖  and LBP list 

9:     GS issues vector index list to 𝑵𝑖 
10:    for 𝑛 in 𝑵𝑖: 
11:      𝑛 updates 𝒘𝑖

𝑛 for several epochs 
12:      𝑛 creates vector list based on vector index list 
13:      𝑛 detects SUP and replaces SUP by placeholders  
14:      𝑛 uploads vector list 
15:    end for 
16:    GS receives vector lists from 𝑵𝑖 and detects LBP 
17:    GS updates LBP list 
18:    GS splices the vector lists to 𝒘𝑖+1 
19:  end for 
20:  return 𝒘𝐼𝑎𝑔𝑔+1 

For LBP, the GS weightedly averages them to ensure the 
correction of local bias and the generalization of model. In ad-
dition, the GS marks these LBP and adds their indexes to the 
parameter transmitting list, commanding more ENs to addi-
tionally upload these parameter vectors in next aggregation 
than just the ENs in their turn for transmitting these vectors. 
This allows the GS to enhance the aggregation of these vectors 
in the next round. 

• Large Update Parameters (LUP). LUP are the parameter 
vectors significantly updating compared to the previous 
global model but less different across local models, i.e., 
𝜎𝑏(𝒗𝑖

𝑎) ≤ 𝜉𝑏 ∧ 𝜎𝑢(𝒗𝑖
𝑎) > 𝜉𝑢. This indicates that the directions of 

LUP on local models are consistent, so for LUP, the GS re-
quires locally updated vectors for direct model splicing, but 
have no need to collect more LUP from other ENs for average 
aggregation. 

• Small Update Parameters (SUP). SUP are the parameter 
vectors that are not significantly updated compared to the 
previous global model and differs little across local models, 
i.e., 𝜎𝑏(𝒗𝑖

𝑎) ≤ 𝜉𝑏 ∧ 𝜎𝑢(𝒗𝑖
𝑎) ≤ 𝜉𝑢. Therefore, it is unnecessary to 

upload SUP when aggregating models. SUP can be detected 
by the ENs themselves. If one SUP is found in the list of up-
loading parameter vectors, a very short placeholder is used to 
replace it instead, telling the GS that this vector is hardly up-
dated. For example, in Fig. 4 vector 3 and vector 6 of EN 1 and 
vector 7 of EN 2 are SUP, which are replaced with placehold-
ers before the upload to further reduce the transmission cost. 

It is noted that the types of parameter vectors are not con-
stant and will change with the model training. The GS and 
ENs should periodically update the types of parameter vec-
tors so that the transmission strategy can be adapted to the 
training situation. Moreover, the LBP is detected by GS based 
on the parameter vectors collected from ENs, while SUP is de-
termined by each EN itself. It is likely that the vector 𝒗𝑖

𝑎 in the 
local model of 𝑛𝑎 is updated to a small extent and defined as 

SUP, but the vector at the same position 𝒗𝑖
𝑏 in the local model 

of 𝑛𝑏 is updated significantly and is of type LUP or LBP. Fi-
nally, Algorithm 1 illustrates the main steps of SPT protocol. 

4.3 Training Filling Model (TFM) Mechanism 

Because the EN data is non-IID, without the data distribution 

of each EN, GS may select ENs all lacking training samples of 

a specific class when the aggregating model, leading a drop in 

the accuracy of global model. Therefore, to mitigate the impact 

of non-IID data on model performance, the nodes in FL need 

to adjust the training data [13]. 
On the left side of Fig. 5, the data adjustment approach 

used in prior research is illustrated. To begin, each EN pro-
vides the GS its data distribution information. The GS then 
compares the received information to its own test data distri-
bution and informs ENs on data adjustment strategies. The 
strategies can identify major and minor classes, i.e., classes 
with excessive and undersized samples, and direct ENs to 
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downsample major classes and perform data augmentation 
on minor classes [13]. This guarantees that the distribution of 
the local training data is consistent with the test data of GS. 
This approach, however, never considers the data privacy se-
curity of ENs or its applicability in realistic scenarios. ENs 
should first submit the original data distribution to the GS to 
update the training data, however the honest-and-curious GS 
may infer some personal traits of ENs based on the data dis-
tribution. Obviously, the private information of ENs is ex-
posed. Second, in practice, some dishonest ENs may be reluc-
tant to make changes to their private data and instead con-
tinue training models with the original data after obtaining 
the adjustment strategies, which is hard to detect in time for 
GS. As a result, such dishonest ENs may have an impact qui-
etly on the global model performance in the long term. 

To preserve the data privacy of ENs while enhancing the 
robustness of data adjustment approach, the scheme of train-
ing filling model proposed is called Training Filling Model 
(TFM), as illustrated on the right side of Fig. 5. The EN group 
uploads local model fragments to the GS first, followed by 
model aggregation by the GS. The global model is obtained 
after aggregation, and GS tests it on its dataset. It is worth not-
ing that the test is run by data label classes, which not only 
tests the global accuracy, but also shows the performance of 
the global model on each class statistically. It is reasonable to 
speculate that if samples of a class are substantially missing 
from the training data, then the trained model will perform 
poorly on the test data of this class. As a result, by comparing 
the test accuracy of the global model on each class, the classes 
with accuracy below the mean are identified as minor classes. 
Then the GS samples data of minor classes from its training 
set to form a filling dataset, which is then used to train a filling 
model. However, there are some GSs that are not equipped 
with enough training data on them, which is the reason why 
they have to release federated learning tasks. For this situation, 
we provide a targeted recruitment strategy. GS will only select 
part of the EN group as trainers, while other ENs are also 
available for rich training data. Therefore, GS can recruit them 
as targeted trainers for training the filling model. Targeted 
trainers need to train with data meeting GS requirements, i.e., 
data from minor classes detected by GS through testing, and 
have no need to use all the training data as ordinary trainers. 
In this way, GS can divide the required filling dataset into 
multiple portions and release the tasks to avaliable ENs, and 
declare the reward for targeted training. Then the eligible ENs 
can accept the tasks and sample data from their own training 
datasets and add certain noise (data from other classes) to 
them, thus migrating the model overfitting and shielding their 
data distribution from the outside. After GS receives these 
trained filling models, it first applies its own test data to vali-
date the effect of the models. Once the effect of the filling mod-
els is verified, the GS can aggregate them with the global 
model. By aggregating the filling model and global model, the 
data gap in ENs can be bridged. In addition, if the data gap in 
a given class is too wide for the GS and targeted ENs to fill 
with all of their local data, they can utilize data augmentation 
techniques to transform the current data and generate new 
training examples. 

As indicated in Equation (12), We define 𝑎𝑐𝑐𝑔
𝑖 (𝑐) as the 

test accuracy of the aggregation model in the 𝑖-th round for 

class 𝑐 on the global test set, and 𝜌𝑐
𝑖  as the filling ratio of class 

𝑐 in the 𝑖-th aggregation round. Equation (13) illustrates the  
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Fig. 5 The comparison between the filling model method and the data 
adjustment method in previous work 

calculation of the filling data amount of class 𝑐, where 𝐹𝑢𝑛𝑖𝑡
𝑖  is 

the filling data unit size defined by the GS. When the filling 
model is trained, the GS performs a weighted average of the 
global model and the filling model to obtain the final global 
model 𝒘𝑖+1. 

𝜌𝑐
𝑖 = 𝑚𝑎𝑥 (0,

1

𝐶
∑ 𝑎𝑐𝑐𝑔

𝑖 (𝑗)𝐶
𝑗=1 − 𝑎𝑐𝑐𝑔

𝑖 (𝑐)).            (12) 

𝐹𝑐
𝑖 = 𝜌𝑐

𝑖 𝐹𝑢𝑛𝑖𝑡
𝑖 .                                 (13) 

𝒘𝑖+1 =
∑ |𝔻𝑘|

|𝑵𝑖|

𝑘=1 𝒘𝑖
𝑎𝑔𝑔

+∑ 𝐹𝑐
𝑖𝐶

𝑐=1 𝒘𝑖
𝑓𝑖𝑙𝑙

∑ |𝔻𝑘|
|𝑵𝑖|

𝑘=1
+∑ 𝐹𝑐

𝑖𝐶
𝑐=1

.                     (14) 

This approach of training filling model offers the follow-
ing advantages over the data adjustment approach in prior 
work. First, the initiative of data gap detection and filling is 
moved from ENs to the GS, which prevents the misleading 
data adjustment behaviors of dishonest ENs and enhances the 
practicality and robustness of approach. Second, instead of di-
rectly touching the data distribution of ENs, the GS infers the 
overall data distribution of EN group from the aggregated 
global model and fills the data gaps by model aggregation, 
which is more thorough and ensures the data privacy of ENs. 
Algorithm 2 depicts the main steps of TFM mechanism. 

4.4 Lightweight Defense Scheme for Multi-Attackers 

Although FEL does not exchange the source data of ENs, the 
model still retains the relative information, as stated in the 
Problem Statement. By stealing the complete local model, in-
version attack etc. can deduce the data distribution of users 
[17]. In FEL, GS, ENs, and external adversaries may all consti-
tute a danger to data privacy [16]. Following that, we will de-
velop the appropriate lightweight defenses for various attack-
ers. 

• GS. The concept of local model splitting and rotated 
transmission makes the GS get segments of local models and 
the complete local models are not available, which ensures 
data security to some extent. In Section 4.2, the parameter re-

dundancy 𝑚𝑟
𝑖  controls the transmission amount 𝑚𝑎

𝑖  for each 

EN by Equation (9). However, when 𝑚𝑟
𝑖  is excessively large, 

ENs need to transmit the complete local models, and the pa-
rameter transmission strategy will degenerate to basic FEL. 
Therefore, to avoid GS from acquiring too large local model 

segments, we need to constrain 𝑚𝑎
𝑖 , i.e., 𝑚𝑎

𝑖 ≤ (1 − 𝛾𝑔
𝑖 )

∑ 𝒩𝑣
𝑙𝐿

𝑙=1

𝑏
,  
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Algorithm 2  TFM Mechanism 

Input: 𝐹𝑢𝑛𝑖𝑡
𝑖  

Output: 𝒘𝑖+1 

1:   GS receives the vector lists and aggregates → 𝒘𝑖
𝑎𝑔𝑔

 

2:   for 𝑐 = 1. . . 𝐶: 

3:     GS tests the accuracy of 𝒘𝑖
𝑎𝑔𝑔

 on class 𝑐 

4:     GS appends 𝑎𝑐𝑐𝑔
𝑖 (𝑐) to 𝑨𝒄𝒄𝑔

𝑖  

5:   end for 

6:   GS compute the mean of 𝑨𝒄𝒄𝑔
𝑖  → 𝑎𝑐𝑐𝑚𝑒𝑎𝑛

𝑖  

7:   for 𝑐 = 1. . . 𝐶: 

8:     GS computes 𝐹𝑐
𝑖 by Equation (12) and (13) 

9:   end for 

10:  if GS has enough training data: 

10:    GS samples and forms the filling dataset 𝔻𝑓𝑖𝑙𝑙  

11:    GS trains filling model 𝒘𝑖
𝑓𝑖𝑙𝑙

 using 𝔻𝑓𝑖𝑙𝑙  

12:  end if 

13:  else: 

13:    GS recruits targeted ENs 𝑵𝑖
𝑡𝑎𝑟 

13:    𝑵𝑖
𝑡𝑎𝑟train 𝑾𝑖

𝑓𝑖𝑙𝑙
= {𝒘𝑖,1

𝑓𝑖𝑙𝑙
, . . . , 𝒘

𝑖,|𝑵𝑖
𝑡𝑎𝑟|

𝑓𝑖𝑙𝑙
} 

13:  end else 

12:  GS computes 𝒘𝑖+1 by Equation (14) 

13:  return 𝒘𝑖+1 

where 𝛾𝑔
𝑖  is the defense coefficient against GS, which can be 

determined by GS and EN group after game negotiation. The 

larger 𝛾𝑔
𝑖  is, the smaller 𝑚𝑎

𝑖  is and the better the defense effect 

is. From this, we can obtain 𝑚𝑟
𝑖  after subjecting to the defense 

constraint as: 
|𝔻𝑎|

∑ |𝔻𝑘|
|𝑵𝑖|

𝑘=1

(
∑ 𝒩𝑣

𝑙𝐿
𝑙=1

𝑏
+ |𝑵𝑖|𝑚𝑟

𝑖 ) < (1 − 𝛾𝑔
𝑖 )

∑ 𝒩𝑣
𝑙𝐿

𝑙=1

𝑏
, 

i.e., 𝑚𝑟
𝑖 <

[(1−𝛾𝑔
𝑖 ) ∑ 𝒩𝑣

𝑙𝐿
𝑙=1 ] ∑ |𝔻𝑘|

|𝑵𝑖|

𝑘=1 −∑ 𝒩𝑣
𝑙𝐿

𝑙=1 |𝔻𝑎|

𝑏|𝔻𝑎||𝑵𝑖|
. 

• ENs. In basic FEL, the curious EN may infer the data dis-
tribution of other ENs by computing the difference between 
the global model and its own local model, i.e., the inverse cal-
culation of FedAvg, especially when the EN number is small 
[16]. However, in our LightFed, MSS has changed the model 
aggregation method to “averaging-splicing”, so the global 
model is no longer a simple weighted average of all local mod-
els, and the above inference method fails. Secondly, in Section 
4.3, the training and aggregation of the filling model disturbs 
the original data distribution of ENs, thus resisting the prying 
of malicious ENs into the data privacy of other ENs. Due to 
TFM, the GS has removed the apparent data imbalance of EN 
data by aggregating filling model before issuing the new 
global model. Meanwhile, the original data distribution fea-
tures of ENs are also hidden. Therefore, when a malicious EN 
gets the new global model, it can no longer accurately infer 
the data distribution of other ENs by inverse FedAvg. 

• External Adversaries. Malicious external attackers may 
eavesdrop on the channel during the model training process 
to get the model segments uploaded by ENs. According to the 
law of parameter rotation transmission, the external adver-
sary can retain the state of eavesdropping for multiple aggre-
gations, and collects distinct local model segments of ENs and 
splices them into a complete model, thus spying on the user 
privacy. Moreover, the external adversary either listens to the 
downlink, and the steals and directly applies the global model  
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Fig. 6 The comparison of blockchain-powered parameter confusion 
transmission mechanism and model blockchain in previous work. 

 
issued by GS. Therefore, for malicious external adversaries, 
we must achieve a higher defense goal, namely, to prevent ex-
ternal adversary from getting any valid model segment. 

The blockchain-powered parameter confusion transmis-
sion mechanism is proposed for defending external adversary, 
as shown in Fig. 6. Before attending the federal training, GS 
applies to the authorities for opening a DAG blockchain and 
sends a random initial global model to the initial block. Any 
user can access the initial block because it has no specified per-
missions. Second, the ENs chosen by GS read and validate the 
model in the initial block before the local training. The block-
chain then breaks into several branches, each of which corre-
sponds to one EN. The hash key block on the branch is used 
to hold the hash key function published by GS, which is 
unique to each EN. The job of hash key function ℋ is to mess 
up the sequence of the parameter vectors sent on the link be-
tween ENs and GS, i.e., parameter confusion transmission, 
thus achieving the encrypted communication. For instance, 

for EN 𝑛𝑎, it will transform the uploading vector list 𝕍𝑎
𝑖 , i.e., 

the random mapping of 𝕍𝑎
𝑖  to itself, to obtain ℋ𝑎(𝕍𝑎

𝑖 ). The GS 

can inversely infer to recover 𝕍𝑎
𝑖  based on ℋ𝑎 after receiving 

the confusing data stream, while other users without ℋ𝑎 can-
not get the correct order of the model fragments even if they 

eavesdrop on ℋ𝑎(𝕍𝑎
𝑖 ). To ensure the security of the hash key, 

the permission of each hash key block is set by GS when pub-
lishing it, and only authenticated ENs can get the private key 
from GS and open the corresponding hash key blocks to read 
their own hash keys, as shown in Fig. 6. 

5 PERFORMANCE ANALYSIS 

5.1 Experiment Setup 

In this section, we implement the algorithms above using the 
Keras framework and verify the performance of the novel FEL 
system on the generic datasets MNIST, Fashion MNIST and 
CIFAR-10, including model convergence, model accuracy, 
communication efficiency and data security. 

To simulate the non-IID of the local data of ENs, we apply 
a truncated Gaussian distribution on the datasets after sorting 
by labels, sampling with different means and standard devia-
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(a) The loss and validation ac-
curacy of ENs applying Light-

Fed 

(b) The comparison of SPT and 
FedAvg on the test accuracy of 

global model 

(c) The transmitted vector num-
ber reduction under different 

thresholds 

(d) The comparison of SPT and 
FedAvg on the communication 

efficiency indicator 𝑙𝑔(𝒞) 

Fig. 7 The performance on model accuracy and communication efficiency [7] 

Table 2 The performance comparison between SPT and FedAvg on various model structures, datasets and EN group scales 

 MNIST Fashion MNIST CIFAR-10 

SPT FedAvg SPT FedAvg SPT FedAvg 

𝑎𝑐𝑐𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 𝑎𝑐𝑐𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 𝑎𝑐𝑐𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 𝑎𝑐𝑐𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 𝑎𝑐𝑐𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 𝑎𝑐𝑐𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 

FCN 51.43% 81.78% 46.68% 82.54% 35.58% 57.56% 37.92% 58.28% - - - - 

CNN 59.58% 94.55% 62.66% 94.98% 47.18% 80.77% 47.11% 76.03% 43.13% 51.16% 42.73% 52.38% 

AlexNet 53.19% 94.88% 55.41% 93.11% 39.84% 77.10% 43.66% 75.80% 39.44% 52.38% 40.12% 50.42% 

DenseNet 54.77% 93.44% 53.52% 94.95% 39.48% 73.18% 40.55% 74.44% 40.66% 52.17% 41.49% 52.56% 

ResNet 47.51% 79.90% 46.54% 75.25% 36.13% 71.70% 37.24% 70.91% 37.56% 43.83% 37.00% 44.95% 

 EN Number= 5 EN Number= 7 EN Number= 9 

SPT FedAvg SPT FedAvg SPT FedAvg 

|𝑾|̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 |𝑾|̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 |𝑾|̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 |𝑾|̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 |𝑾|̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 |𝑾|̅̅ ̅̅ ̅ 𝑎𝑐𝑐𝑔 

FCN 69.16M 81.78% 219.36M 82.54% 101.41M 82.26% 307.11M 85.97% 173.23M 82.72% 394.86M 86.64% 

CNN 25.68M 94.55% 92.34M 94.98% 49.58M 94.94% 129.28M 94.20% 90.22M 94.92% 166.21M 94.84% 

AlexNet 33.30M 94.88% 73.69M 93.11% 53.04M 94.95% 103.17M 95.08% 82.36M 95.98% 132.64M 96.39% 

DenseNet 26.62M 93.44% 85.20M 94.95% 48.66M 93.72% 119.28M 94.19% 93.44M 94.02% 153.37M 95.14% 

ResNet 63.63M 79.90% 220.86M 75.25% 104.52M 87.87% 309.21M 82.18% 139.02M 88.01% 397.55M 84.79% 

tions to form the local dataset for each EN. Next, we apply 
LightFed to various network structures such as basic CNN, 
AlexNet and DenseNet for training image recognition tasks.  

5.2 Performance on Accuracy and Communication 

Fig. 7 depicts the performance of LightFed on model accuracy 
and communication. We simulated 6 ENs with different local 
data volume and data distribution for 10 rounds of model ag-
gregation. Fig. 7(a) illustrates the loss and validation accuracy 
of each EN, which both all converge after 50 local epochs. Sec-
ond, we discover that the training loss of ENs improves sig-
nificantly in the first epoch after the model aggregation, but 
the loss decreases to a lower value as the local update pro-
gresses. This is because the GS takes fragments of multiple lo-
cal models and splices them into a global model, and the data 
features of different ENs are fused. As a result, the newly ag-
gregated global model is less adaptive to local training data 
than the previous local model. The global test accuracy of SPT, 
rotated transmission and FedAvg are compared in Fig. 7(b). 
SPT outperforms the rotated transmission because it selec-
tively transmits parameters, marks parameters with high up-
date strength and focuses on their aggregation: SPT converges 
faster in the early stage of model training and has same peak 
accuracy with the other two schemes, resulting in efficient 
model aggregation. Fig. 7(c) depicts the transmission reduc-
tion under various thresholds applying SPT. When 𝜉𝑏 and 𝜉𝑢 
are larger, ENs detect more SUP unnecessary to be transmit-
ted as the model aggregation rounds increase, and the number 
of LBP continues to decrease, resulting in a significant 

reduction in the parameter number uploaded by ENs, lower-
ing the communication overhead between ENs and GS. When 
𝜉𝑏  and 𝜉𝑢  are small, however, the number of SUP decreases 
while additional LBP to be transmitted increases, which in-
creases parameter aggregation redundancy, and the total 
number of parameterstransmitted even increases significantly 
compared to the original scheme. Therefore, in practice, deter-
mining the proper 𝜉𝑏  and 𝜉𝑢  based on the gradient of the 
model parameters is critical for the reduction of redundant pa-
rameters transmitted without compromising the model test 
accuracy. Fig. 7(d) compares the performance of SPT and Fe-
dAvg on the communication efficiency index 𝒞. We convert 𝒞 
to lg(𝒞) for comparison since the magnitude of 𝒞 is too tiny. 
Compared with FedAvg, SPT significantly improves on the 
metric lg(𝒞) due to the significant transmission reduction and 
the undiminished model accuracy. To further demonstrate the 
communication efficiency and scalability of LightFed, we ap-
plied models such as AlexNet, DenseNet to implement feder-
ated training on MNIST, Fashaion MNIST and CIFAR-10 to 
obtain Table 2. From Table 2, first we see that the global model 
accuracy 𝑎𝑐𝑐𝑔 has a larger improvement than 𝑎𝑐𝑐𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅, the av-

erage accuracy of local models on the global test set. Second, 
compared with FedAvg, LightFed significantly reduces the 
parameter transfer |𝑾|̅̅ ̅̅ ̅ without compromising the model ef-
fectiveness, and is able to adapt to changes in EN group scale, 
demonstrating that LightFed can be applied flexibly to differ-
ent model structures and training tasks. 
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5.3 Performance of TFM 

To demonstrate the effectiveness of the filling model for filling 
the data gap, we intentionally scaled down the EN number to 
3, so that their total local training data distribution as shown 
in the blue curve in Fig. 8(a) with obvious data gaps: class 0-2 
and class 9 have almost no training samples. However, after 
the GS tests the accuracy of the global model on all classes of 
data, as well as sampling from its own data to get the filling 
dataset based on the test accuracy, the superimposed data dis-
tribution of GS and ENs is shown as the red curve in Fig. 8(a). 
Comparing the two data distribution curves, the data distri-
bution is more balanced after adding the filling dataset, and 
the previous data gaps are filled by the GS data. Then, Fig. 8(b) 
illustrates the boosting effect of filling model on the global test 
accuracy. Each bar is formed by stacking the test accuracy on 
different classes, and the tiny bars with different shades indi-
cate different classes in the dataset. Before aggregating the fill-
ing model, there are almost no light blue tiny bars at the bot-
tom of the blue bar and the height of dark blue tiny bar at the 
top is small, indicating that the model without filling model 
has poor performance on class 0-2 and class 9 due to the data 
gaps. Therefore, the overall test accuracy is lower than 0.6. 
However, after aggregating the filling model, it is obvious that 
the model has a good effect on the classes with terrible test 
accuracy before, and the global test accuracy continues to im-
prove, with the peak exceeding 0.9, even better than that of 
Fig. 7(b). The comparison above fully illustrates the superior-
ity of the filling model in improving the model accuracy. 

The filling dataset for training the filling model above is 
sampled by GS during the first model aggregation round, and 
will not be changed during the subsequent training process. 
However, as the local model is continuously updated, the test 
accuracy of the global model after each aggregation varies, so 
the filling dataset capacity and the proportion of each class 

should be adjusted. Therefore, we propose a time-varying fill-
ing dataset strategy based on the constant filling dataset, i.e., 
the GS resamples the filling data according to the latest test 
results after each model aggregation. The test accuracy of all 
classes of data continues to increase with the model training 
progress and the filling model being fused, according to sim-
ulated experiments. As a result, in the latter stage of training, 
the GS unnecessarily supplies the large-capacity filling da-
taset as the earlier stage, which helps GS train the filling model 
with less overhead. Fig. 8(c) shows the efficiency of the con-

stant and time-varying filling model, denoted by lg (
𝑎𝑐𝑐𝑔𝑙𝑜𝑏𝑎𝑙

|𝔻𝑓𝑖𝑙𝑙|
), 

where |𝔻𝑓𝑖𝑙𝑙| is the capacity of the filling dataset. The effi-

ciency of the time-varying filling model improves considera-
bly with aggregation rounds and surpasses that of the con-
stant filling model. Finally, Fig. 8(d) compares the perfor-
mance of the three schemes on the data imbalance metric ℬ. 
The constant filling model only adjusts the data distribution 
in the first model aggregation, and then the training data re-
mains unchanged, while the time-varying filling model ad-
justs adaptively based on the latest test results of the model, 
achieving better balanced training data and lower extra train-
ing cost. 

5.4 Performance of Model Protection 

The error of the EN data distribution detected by GS in Light-
Fed is shown in Fig. 9(a). The yellow curve indicates the de-
tection error of the data distribution of EN target inferred from 
the local test results, which is always lower than 0.25, while 
the detection error of GS according to the collected model 
fragments is higher than 0.5, and more EN participants bring 
the larger error. This indicates that discontinuous model frag-
ments can hide the local data features of EN target to a certain 
extent and effectively resist the inversion attack of GS. Fig. 9(b) 
shows the detection error of the external adversary for 
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the data distribution of EN target under different vector sizes. 
Similarly, the detection accuracy of external adversary is sig-
nificantly reduced and the detection results are very unstable 
compared to that based on the local test results of the EN tar-
get. This is due to the fact that the external adversary can only 
eavesdrop on the model fragments encrypted by random hash 
keys and is unable to recover them. The failure of model frag-
ments scrambles the detection of external adversary. Fig. 9(c) 
shows the availability of the encrypted global model captured 
by external adversary. We use 100𝑎𝑐𝑐 as a comparison metric 
and see that the accuracy of global model captured by adver-
sary is significantly lower, indicating that under blockchain-
powered confusion transmission, the external adversary is un-
able to not only peek into the local data distribution of ENs 
but also effectively apply the trained global model. Finally, Fig. 
9(d) shows the trend of the security indicator 𝒮. As the EN 
number increases and the vector size reduces, 𝒮 is gradually 
improved. More EN participants reduce the data exposure of 
an individual EN, and smaller vector size increases the diffi-
culty of recovering encrypted model fragments, which are 
both conductive to the defense against attackers. 

5.5 Engineering Applications 

Fig. 10 illustrates an engineering application of LightFed, 
called federated rescue system. Due to the high-risk and ur-
gency of rescue tasks, UAV is of great advantage as a tiny and 
agile detection tool when rescuers cannot easily access the dis-
aster area [36]. Applying LightFed, it is promising to utilize 
the free resource of smart edge nodes around the disaster area 
to achieve joint model training. The UAV first determines im-
portant sample classes, such as targets to be rescued (cars, hu-
mans, etc.) and available rescue resources (fire hydrants, etc.), 
and then establishes connections with surrounding edge 
nodes (smart vehicles, smart cameras, etc.). The recorders of 
vehicles and cameras store many images of vehicles, pedestri-
ans in postures: standing normally, lying down due to traffic 
accidents, etc. According to the workflow of LightFed de-
scribed above, smart vehicles and cameras can update local 
models and upload them using lightweight encryption and 
protocol, enabling the UAV to quickly aggregate and improve 
the accuracy of global model. By splitting aerial images and 
applying the global model, the UAV can detect and locate im-
portant targets in the captured area, and then send the detec-
tion information to the rescue center for guidance. 

6 CONCLUSION AND FUTURE WORK 

This paper proposes a novel FEL system LightFed, aiming to 
achieve lightweight and secure AI model transmission and ag-
gregation. First, the aggregation method MSS based on model 
splitting and the SPT scheme are introduced to reduce the data 
amount in the uplink of system. Second, TFM mechanism is 
designed to mitigate the local data imbalance while ensuring 
the data privacy of edge nodes. In addition, we propose a 
blockchain-powered confusion transmission strategy against 
multi-attackers to resist inversion attacks and secure the 
model with low extra cost. For the future in this paper, we 
plan to focus on the resource wastage caused by unbalanced 
computing power of ENs, and design aggregation strategies 
to further improve the system efficiency. 

ACKNOWLEDGMENT 

This work is supported in part by the National Natural Sci-

ence Foundation of China (No. 62072475, No. 61772554) and 

Independent Exploration and Innovation Project for Graduate 

Students of Central South University (2021zzts0750). 

REFERENCES 

[1] Z. Ning et al., “Distributed and Dynamic Service Placement in Pervasive 
Edge Computing Networks,” IEEE Transactions on Parallel and Distributed 
Systems, vol. 32, no. 6, pp. 1277-1292, 2021. 

[2] J. Yan, S. Bi, Y. J. Zhang and M. Tao, “Optimal Task Offloading and Re-
source Allocation in Mobile-Edge Computing with Inter-User Task De-
pendency,” IEEE Transactions on Wireless Communications, vol. 19, no. 1, 
pp. 235-250, 2020. 

[3] L. Huang, S. Bi and Y. J. A. Zhang, “Deep Reinforcement Learning for 
Online Computation Offloading in Wireless Powered Mobile-Edge 
Computing Networks,” IEEE Transactions on Mobile Computing, vol. 19, 
no. 11, pp. 2581-2593, 2020. 

[4] T. Huang, W. Lin, W. Wu, L. He, K. Li and A. Y. Zomaya, “An Efficiency-
Boosting Client Selection Scheme for Federated Learning With Fairness 
Guarantee,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, 
no. 7, pp. 1552-1564, 2021. 

[5] X. Lin, J. Wu, J. Li, X. Zheng and G. Li, “Friend-as-Learner: Socially-
Driven Trustworthy and Efficient Wireless Federated Edge Learning,” 
IEEE Transactions on Mobile Computing, doi: 10.1109/TMC.2021.3074816. 

[6] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learning: 
Concept and Applications,” ACM Trans. Intell. Syst. Technol, vol. 10, no. 2, 
2019.  

[7] B. McMahan, E. Moore, D. Ramage, S. Hampson, “Communication-Ef-
ficient Learning of Deep Networks from Decentralized Data,” Proceed-
ings of the 20th International Conference on Artificial Intelligence and Statistics, 
vol. 54, pp. 1273-1282, 2017. 

[8] L. U. Khan, W. Saad, Z. Han, E. Hossain and C. S. Hong, “Federated 
Learning for Internet of Things: Recent Advances, Taxonomy, and Open 
Challenges,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 
1759-1799, 2021. 

[9] X. Li, H. Chen, X. Qi, Q. Dou, C. -W. Fu and P. -A. Heng, “H-Dense UNet: 
Hybrid Densely Connected UNet for Liver and Tumor Segmentation 
From CT Volumes,” IEEE Transactions on Medical Imaging, vol. 37, no. 12, 
pp. 2663-2674, 2018. 

[10] W. Wu, L. He, W. Lin, R. Mao, “Accelerating Federated Learning Over 
Reliability-Agnostic Clients in Mobile Edge Computing Systems,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 32, no. 7, pp. 1539-1551, 
2020 

[11] S. Wang et al., “Adaptive Federated Learning in Resource Constrained 
Edge Computing Systems,” IEEE Journal on Selected Areas in Communica-
tions, vol. 37, no. 6, pp. 1205-1221, 2019. 

[12] X. Wu, X. Yao and C. -L. Wang, “FedSCR: Structure-Based Communica-
tion Reduction for Federated Learning,” IEEE Transactions on Parallel and 
Distributed Systems, vol. 32, no. 7, pp. 1565-1577, 2021. 



12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 

 

[13] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan and L. Liang, “Self-Balancing 
Federated Learning With Global Imbalanced Data in Mobile Systems,” 
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 59-
71, 2021. 

[14] Q. Wu, X. Chen, Z. Zhou and J. Zhang, “FedHome: Cloud-Edge based 
Personalized Federated Learning for In-Home Health Monitoring,” 
IEEE Transactions on Mobile Computing, doi: 10.1109/TMC.2020.3045266. 

[15] Y. Qu et al., “Decentralized Privacy Using Blockchain-Enabled Feder-
ated Learning in Fog Computing,” IEEE Internet of Things Journal, vol. 7, 
no. 6, pp. 5171-5183, 2020. 

[16] B. Hitaj, G. Ateniese, and F. P-Cruz, “Deep Models Under the GAN: In-
formation Leakage from Collaborative Deep Learning,” Proceedings of the 
2017 ACM SIGSAC Conference on Computer and Communications Security, 
Association for Computing Machinery, New York, NY, USA, pp. 603–618, 
2017. 

[17] L. Melis, C. Song, E. De Cristofaro and V. Shmatikov, “Exploiting Unin-
tended Feature Leakage in Collaborative Learning,” IEEE Symposium on 
Security and Privacy, pp. 691-706, 2019. 

[18] Y. Lu, X. Huang, Y. Dai, S. Maharjan and Y. Zhang, “Differentially Pri-
vate Asynchronous Federated Learning for Mobile Edge Computing in 
Urban Informatics,” IEEE Transactions on Industrial Informatics, vol. 16, no. 
3, pp. 2134-2143, 2020. 

[19] K. Wei et al., “Federated Learning With Differential Privacy: Algorithms 
and Performance Analysis,” IEEE Transactions on Information Forensics 
and Security, vol. 15, pp. 3454-3469, 2020. 

[20] G. Wang, et al, “Deep learning for tomographic image reconstruction,” 
Nat Mach Intell, vol. 2, pp. 737–748, 2020. 

[21] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, C. Li, “Adversarial Attacks on 
Deep-learning Models in Natural Language Processing: A Survey,” 
ACM Trans. Intell. Syst. Technol, vol. 11, no. 3, 2020. 

[22] Z. Mushtaq, S. Su, “Environmental sound classification using a regular-
ized deep convolutional neural network with data augmentation,” Ap-
plied Acoustics, vol. 167, 2020. 

[23] Q. Zhang, C. Zhou, Y. Tian, N. Xiong, Y. Qin and B. Hu, “A Fuzzy Prob-
ability Bayesian Network Approach for Dynamic Cybersecurity Risk 
Assessment in Industrial Control Systems,” IEEE Transactions on Indus-
trial Informatics, vol. 14, no. 6, pp. 2497-2506, 2018. 

[24] Y. Qu and N. Xiong, “RFH: A Resilient, Fault-Tolerant and High-Effi-
cient Replication Algorithm for Distributed Cloud Storage,” 2012 41st In-
ternational Conference on Parallel Processing, pp. 520-529, 2012. 

[25] E. P. Xing et al., “Petuum: A New Platform for Distributed Machine 
Learning on Big Data,” IEEE Transactions on Big Data, vol. 1, no. 2, pp. 49-
67, 2015. 

[26] Y. Low, et al, “GraphLab: A New Framework For Parallel Machine 
Learning”, arXiv preprint, arXiv: 1408.2041, 2014. 

[27] M. Li et al, “Scaling distributed machine learning with the parameter 
server,” Proc. 11th USENIX Symp. Operating Syst. Des. Implementation, pp. 
583–598, 2014. 

[28] A. Hard, et al, “Federated Learning for Mobile Keyboard Prediction,” 
arXiv preprint, arXiv: 1811.03604, 2018. 

[29] M. Hao, H. Li, G. Xu, Z. Liu, and Z. Chen, “Privacy-aware and Resource-
saving Collaborative Learning for Healthcare in Cloud Computing,” 
Proceedings of the International Conference on Communications (ICC), Dublin, 
Ireland, pp. 1–6, 2020. 

[30] B. Liu, L. Wang, M. Liu, and C.-Z. Xu, “Federated Imitation Learning: A 
Novel Framework for Cloud Robotic Systems With Heterogeneous Sen-
sor Data,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3509–3516, 
2020. 

[31] Y. Liu, J. J. Q. Yu, J. Kang, D. Niyato and S. Zhang, “Privacy-Preserving 
Traffic Flow Prediction: A Federated Learning Approach,” IEEE Internet 
of Things Journal, vol. 7, no. 8, pp. 7751-7763, 2020. 

[32] J. Konečný, et al, “Federated learning: Strategies for improving commu-
nication efficiency,” arXiv preprint, arXiv:1610.05492, 2016. 

[33] V. Smith, C. K. Chiang, M. Sanjabi, A. Talwalkar, “Federated multi-task 
learning,” arXiv preprint, arXiv:1705.10467, 2017. 

[34] Y. Lu, X. Huang, K. Zhang, S. Maharjan and Y. Zhang, “Blockchain Em-
powered Asynchronous Federated Learning for Secure Data Sharing in 
Internet of Vehicles,” IEEE Transactions on Vehicular Technology, vol. 69, 
no. 4, pp. 4298-4311, 2020. 

[35] Y. Dai, D. Xu, S. Maharjan, Z. Chen, Q. He, and Y. Zhang, “Blockchain 
and deep reinforcement learning empowered intelligent 5G beyond,” 
IEEE Netw., vol. 33, no. 3, pp. 10–17, 2019. 

[36] W. Chen, Z. Su, Q. Xu, T. H. Luan, R. Li, “VFC-Based Cooperative UAV 
Computation Task Offloading for Post-disaster Rescue,” IEEE INFO-
COM 2020 - IEEE Conference on Computer Communications, Toronto, ON, 
Canada, pp. 228-236, 2020. 

[37] X. Niu, C. Y. Suen, “A novel hybrid CNN–SVM classifier for recognizing 
handwritten digits,” Pattern Recognition, vol. 45, no. 4, pp. 1318-1325, 2012. 

[38] S. Liu, J. Yu, C. Hu, M. Li, Y. Wang, “Traceable Multiauthority Attribute-
Based Encryption with Outsourced Decryption and Hidden Policy for 
CIoT,” Wireless Communications and Mobile Computing, pp. 1-16, 2021. 

 

Jialin Guo is currently a student at the School of 

Computer Science and Engineering, Central 

South University, China. His research interests in-

clude edge computing and wireless sensor net-

works. 

E-mail: guojialin@csu.edu.cn. 

 

 
 
Jie Wu is the Director of the Center for Net-

worked Computing and Laura H. Carnell profes-

sor at Temple University. He also serves as the 

Director of International Affairs at College of Sci-

ence and Technology. He served as Chair of De-

partment of Computer and Information Sciences 

from the summer of 2009 to the summer of 2016 

and Associate Vice Provost for International Af-

fairs from the fall of 2015 to the summer of 2017. Prior to joining Tem-

ple University, he was a program director at the National Science 

Foundation and was a distinguished professor at Florida Atlantic Uni-

versity. His current research interests include mobile computing and 

wireless networks, routing protocols, network trust and security, dis-

tributed algorithms, and cloud computing. 

E-mail: jiewu@temple.edu. 
 

Anfeng Liu is a Professor with School of Com-

puter Science and Engineering of Central South 

University, China. His major research interest is 

wireless sensor networks, Internet of Things, in-

formation security, edge computing and 

crowdsourcing. 

E-mail: afengliu@mail.csu.edu.cn. 

 

 

Neal N. Xiong is current an Associate Professor 

at Department of Computer Science and Mathe-

matics, Sul Ross State University, Alpine, TX 

79830, USA. He received his both PhD degrees 

in Wuhan University, and Japan Advanced Insti-

tute of Science and Technology, respectively. 

Before he attended Northeastern State Univer-

sity, he worked in Georgia State University, and 

Colorado Technical University (full professor 

about 5 years), Northeastern State University 

about 14 years. His research interests include Cloud Computing, Se-

curity and Dependability. 
E-mail: xiongnaixue@gmail.com. 

https://arxiv.org/abs/1408.2041
mailto:afengliu@mail.csu.edu.cn

