
Task Allocation for Stream Processing with
Recovery Latency Guarantee

Hongliang Li∗†, Jie Wu†, Zhen Jiang‡, Xiang Li∗, and Xiaohui Wei∗
∗College of Computer Science and Technology, Jilin University, Changchun, China

†Department of Computer and Information Sciences, Temple University, Philadelphia, USA
‡Department of Computer Science, West Chester University of Pennsylvania, West Chester, USA

Email: lihongliang@jlu.edu.cn, jiewu@temple.edu, zjiang@wcupa.edu, {lxiang, weixh}@jlu.edu.cn

Abstract—Stream processing applications continuously process
large amounts of online streaming data in real-time or near
real-time. They have strict latency constraints, but they are
also vulnerable to failures. Failure recoveries may slow down
the entire processing pipeline and break latency constraints.
Upstream backup is one of the most widely applied fault-tolerant
schemes for stream processing systems. It introduces complex
backup dependencies to tasks, and increases the difficulty of
controlling recovery latencies. Moreover, when dependent tasks
are located on the same processor, they fail at the same time
in processor-level failures, bringing extra recovery latencies that
increase the impacts of failures. This paper presents a correlated
failure effect model to describe the recovery latency of a stream
topology in processor-level failures for an allocation plan. We
introduce a Recovery-latency-aware Task Allocation Problem
(RTAP) that seeks task allocation plans for stream topologies that
will achieve guaranteed recovery latencies. We present a heuristic
algorithm with a computational complexity of O(n log2 n) to
solve the problem. Extensive experiments were conducted to
verify the correctness and effectiveness of our approach.

Keywords-Stream processing, task Allocation, fault-tolerance,
upstream backup, recovery latency

I. INTRODUCTION

Stream processing applications are in high demand in vari-

ous areas, including analyzing social networks, trading high-

frequency stocks, and monitoring and controlling production

lines. This has led to a rapid increase in the popularity of

a new computing paradigm known as the Stream Processing

Model (SPM) [1], [2].

Stream processing applications share a common character-

istic – strict latency constraint. That is, they must provide a

fast and accurate response. A stream processing application

takes data stream(s) as input, performs a series of predefined

functions (tasks), and generates output in the form of data

streams again. It is usually modeled as a Directed Acyclic

Graph (DAG) of tasks, i.e. Stream Topology [3]. The pro-

cessing latency of a stream topology is the end-to-end elapsed

time from the entrance of a set of input data to the emission

of the corresponding output data [3]. Existing works focus on

balancing latencies among multiple paths by assigning each

task appropriate physical resources; this is know as the task
allocation problem [3]–[5] for SPM.

However, when extra time is needed for the recovery of

a failed task, especially when a hardware issue forces the

recovery of all the tasks allocated to a processor, the slowdown

of a single task and the possible accumulated impact of all

delayed tasks will suspend the processing. This will slow down

the entire processing and may break the latency constraints.

Stream processing scheme performs “one-pass” processing

over stream data on the fly without storing them [6], which

is entirely different from the traditional “process-after-store”

mode. The SPM can be more vulnerable to failures [7], [8]

than other big-data processing schemes (e.g. [9]). This unique

characteristic poses a novel fault-tolerant problem [1], [10].

In recent years, the upstream backup scheme [10]–[13]

has been widely applied because of its small Fault-Tolerant

(FT) overhead (compared to the one needed in the active

replication scheme [14]). Each task can maintain a backup

of its output data for its downstream tasks. Upon failure, all

of the upstream backup tasks replay backup data, and the

recovering task reprocesses the data to recover the previous

status; this introduces task recovery latency [10], [11]. The

recovery latency of a stream topology is the largest recovery

latency of its tasks [8], [14].

However, the impact of correlated failures is not considered

in literature. An allocation plan may put multiple tasks on

one processor to share physical resource [3], [4]. This is very

common in practice due to the use of the modern CPU core. In

such a case, tasks located on the same processor fail together

during a processor-level failure. The recovery latency of a

stream topology is affected by the task allocation plan.

The purpose of this paper is to study the relationship

between recovery latency and task allocation plan and to

present a comprehensive approach to compute task allocation

plans that provides recovery latency guarantee. The main

contributions are summarized as follows:

• We present a quantitative model that describes the re-

lationship between the recovery latency and the task

allocation plans of a stream topology.

• We introduce the Recovery-latency-aware Task Alloca-

tion Problem (RTAP) and discuss how it differs from

classic task allocation problems.

• We propose a heuristic algorithm based on the topology

information to compute task allocation plans with recov-

ery latency guarantee, and present simulation results to

verify the correctness and effectiveness of our approach.

2017 IEEE International Conference on Cluster Computing

2168-9253/17 $31.00 © 2017 IEEE

DOI 10.1109/CLUSTER.2017.10

379

II. PROBLEM FORMULATION

A. Task Allocation Problem for Stream Topology

A stream topology is usually modeled as a DAG G(V,A)
[3], where the vertices V = {vi|i ∈ 1, .., n} represent tasks
and arcs A = {a(vi, vj)|vi, vj ∈ V } represent connections

between tasks. For each task v ∈ V , resource requirement (wv)

is given, reflexing the computing capacity needed by the task

according to its input data rate [3]. The task allocation problem

in failure-free scenario seeks to map all tasks to processors to

a minimum set of processors, while satisfying all the resource

requirements of the task.

B. Correlated Failure Effect Model

We assume that each task performs upstream backup [10],

[11]. Upon failure, a task will restart and reset to its previous

backup state. Corresponding backup data are then replayed

from the upstream task(s) to the recovering task.

The recovery process of a task introduces a recovery latency

(hv = rv + tv) that consists of two parts [8]: (1) upstream
latency (rv), the time consumed retrieving backup data, and

(2) reprocessing latency (tv), the time spent reprocessing data.

The former is related to the task’s checkpoint interval, and it

can be estimated using the methods in [8], [11], [15]. In this

paper, we assume that tv , v ∈ V , is given as an input.

We propose the correlated failure effect model for repro-

cessing latency. Assuming that task v is recovering, and Uv

is the set of adjacent upstream tasks of v, task v can obtain

backup data right away (rv = 0). Otherwise, when upstream

task u ∈ Uv fails at the same time as v, the backup data on

u is lost. Face with such correlated failures, the downstream

task (v) must wait for its dependent upstream task (u ∈ Uv)

to finish recovery before necessary backup data becomes

available again. Let the binary variable fv denote the healthy

status of a task. We define the upstream latency recursively

as Eq.(1). When multiple adjacent tasks on the same path fail

together, the effect of the delay can be cascading.

rv :=

{
0 ∀u ∈ Uv : fu = 0

max
u∈Uv,fu=1

hu otherwise (1)

C. Recovery Latency under Processor Failure

Kp denotes the set of tasks placed on processor p, Kp =
{v|v ∈ V,Φ(v) = p, p ∈ P}. When tasks in Kp fail together,

rv = max{ max
u∈Uv,Φ(u)=Φ(v)

hu, 0}. The recovery latency of a

processor p under such a failure is H(p) = max
v∈Kp

hv . The

reprocessing latency of a stream topology is equal to the

largest recovery latency of any processor where H(G) =
max
p∈P

H(p) = max
v∈V

hv . Note that the above model supports

scenario where the processors have independent failure rates

and concurrent fails.

D. Task Allocation with Recovery Latency Guarantees

Problem RTAP (Recovery-latency-aware Task Allocaiton
Problem (RTAP)). Given a stream topology graph G(V,A),
the available processor set P = {pi|i ∈ 1, ..,m}, and the

recovery latency upper bound H̄ , find the task allocation
Φ = V → P according to task weight wv that occupies
the minimum number of processors while satisfying recovery
latency constraints.

The objective function seeks to minimize the number of

occupied processors, subject to the resource and recovery

latency constraints. Such a RTAP problem is NP-hard since it

generates the classic Bin Packing Problem (BPP) [16]. From

this point on, we use the terms items and tasks interchangeably,

and bins and processors are also used interchangeably. A

processor and its resource capacity are hereafter referred to as

a bin and its width, and a task and its weight are hereafter

referred to as an item and its width. The height of a bin

represents the recovery latency threshold H̄ . The height of

an item corresponds to the reprocessing latency (tv) of a task.

As shown in Fig. 1, different task allocation plans may lead

to different recovery latencies. Case I packs all tasks into one

processor, i.e. K = {a, b, c, d}, like typical 2SP approaches. It

does not waste the width of a bin, but causes correlated task

failures that introduce high upstream latencies. Cases II and III

spread out tasks to avoid such a situation, but they introduce

resource waste. Case III achieves the smallest recovery latency.

There is a trade-off between the recovery latency of the stream

topology and the amount of resources in use.

We assume that both the height and width of a bin (item) are

normalized to 1. Variable xij represents the allocation decision

for mapping task i to processor j. Variable yj represents

whether processor j is used. A valid model for the RTAP

corresponds to Eqs.(2)-(7).

minimize Y =

m∑
j=1

yj (2)

subject to
n∑

i=1

wixij ≤ 1, j ∈ {1, ..,m} (3)

m∑
j=1

xij = 1, i ∈ {1, .., n} (4)

H(G) = max
v∈V

hv � H̄ (5)

yj ∈ 0/1, ∀j ∈ {1, ..,m} (6)

xij ∈ 0/1, ∀i ∈ {1, .., n}, ∀j ∈ {1, ..,m} (7)

III. APPROACH

This RTAP is a new problem. The most similar variation of

the BPP to the RTAP is the Two-Dimensional Strip Packing

Problem (2SP) [17]. The main challenge in RTAP is that item

height (recovery latency) is related to both the partial solution

(task allocation plan) and the stream topology. There are few

efficient exact algorithms for the BPP. Any exhaust search

algorithm for the RTAP will be impractically time-consuming.

We first propose three greedy algorithms based on well-known

2SP approaches; these are used as benchmarks in experiments.

We then propose a fast topology-aware heuristic algorithm.

380

Figure 1: Trade-off between latency and resource: an examples of different task allocation plans.

A. Extension of 2SP Approaches [17] considering Recovery

Next-Fit Decreasing Height (NFDH), First-Fit Decreasing
Height (FFDH), and Best-Fit Decreasing Height (BFDH) are

widely-applied “level-oriented” algorithms [17] for the 2SP

problem. We extend these 2SP algorithms and design greedy

algorithms NFDH, FFDH, and BFDH. Items are sorted in

descending order according to their heights, breaking ties by

decreasing the width. These algorithms then pack one item at

each step based on the 2SP strategies used. At each round,

before putting an item into a bin, a function is applied to

update the current level height H(p) – the height of the highest

item in the bin. This function introduces an extra O(log n)
time complexity. Then, the estimated recovery latency of

the current item is examined according to Eq.(5). The time

complexity of all these algorithms is O(n log2 n).

B. Comprehensive Solution with a Heuristic Algorithms

We propose a heuristic A that sorts items in descending

order according to packing “hardness”. We design our al-

gorithm according to the observation that tasks with more

adjacent tasks are more likely to cause correlated failures. We

introduce a new metric for sorting the items: the Weighted

Upstream Degree (WUD). WUDv = |Uv|
n ·∑u∈Uv

tu. When

a task is packed into a bin with its adjacent upstream tasks,

its upstream latency increases. This may make the task unfit

for the bin. Even worse, when a task is packed with its

adjacent downstream tasks, extra heights are introduced to the

downstream tasks. This may result in a change in the current

partial solution and in the backtracking of tasks as they become

unfit for the bin.

In order to avoid these backtracking situations and acceler-

ate the packing process, items are first ordered by their WUD

values, breaking ties by breadth-first traversal orders, and then

partition into groups. The partitioning seeks to avoid putting

tasks that may break recovery latency in the same group.

Then the algorithm apply One-dimensional Bin Packing (1BP)

strategies [17]. We implement three heuristic algorithms (A-

NF, A-FF, and A-BF) using different 1BP strategies to explore

the effects of different packing methods.

Algorithm 1 A (G,P, H̄)

Input: A stream topology graph G(V,E), processor set P , and
recovery latency constraint H̄

Output: Task allocation Φ
1: Sort items according to combined weight degree (WUD);
2: Partition items into Groups {G′1, G′2, .., G′

q};
3: for i ∈ {1, .., q}, Group G′

i; do
4: Apply 1BP on G′

i according to constraint (5) to get Φi;
5: Φ := Φ ∪ Φi ;
6: end for
7: return Φ;

Computing the weighted upstream degree for each item and

sorting items introduces O(log n) computations. The same

thing happens when packing each item that current packing

solution is examined and items’ estimated heights are updated,

costing O(log n) extra computations than 1BP approaches.

It is easy to prove that the computational complexity of

AlgorithmRTAP is O(n log2 n), but due to space limitations,

we omit the details in this paper.

IV. SIMULATION RESULTS

A. Experimental Settings

We conduct simulations to illustrate: (1) the performance

of the proposed algorithms compared to 2SP-based algorithms,

(2) the efficiency of our approach for different types of stream

topologies. We use three 2SP greedy algorithms (NFDH,

FFDH, and BFDH) as benchmarks, and test the proposed three

heuristic algorithms (A-NF, A-FF, and A-BF).

Three types of stream topologies from stream processing ap-

plications are used as our previous paper [8]. “Tree” topology

is a topology where each task has exactly one downstream

task. “Guru” topology (SignalGuru) is a sequential-dominated

topology that has longer paths than others, and “Senti” topo-

logy (Twitter Sentiment) is a parallel-dominated topology with

a large amount of parallel tasks. Each of the three topologies

is further extended into two test cases with different amounts

of tasks and edges, denoted as S-Type and L-Type.

381

B. Experimental Results

We test the proposed algorithms on all test instances to

measure performance, in terms of the number of processors

(#bins) used and the algorithm execution time (milliseconds),

as shown in Table I. Among the three greedy 2SP-based

algorithms, A-NF performs the worst while A-BF has the best

result. Using a group function based on topology information,

the heuristic algorithms proposed in this paper outperform the

2SP-based algorithms. A-BF uses the best-fit strategy after

a grouping process and has the best results. Overall, the

proposed group-based heuristics use 15-25% fewer processors

than the 2SP-based benchmarks. The grouping function in-

volves an extra searching procedure in each task, and this can

be time-consuming when the degree of each task is large.

However, the proposed algorithms have a polynomial time

complexity so that they can compute task allocation plans for

the test instances in ms-level time.

Table I: Performance of different algorithms

Algorithm S-Tree L-Tree S-Guru L-Guru S-Senti L-Senti
Y ms Y ms Y ms Y ms Y ms Y ms

FFDN 30 22 125 130 32 22 82 14 38 22 45 23

NFDN 36 98 149 93 38 12 89 12 47 13 54 13

BFDN 29 11 113 131 32 17 81 14 38 18 45 16

RATP-FF 23 37 135 329 27 68 72 37 32 33 40 48

RATP-NF 44 51 165 268 39 40 84 49 43 38 56 47

RATP-BF 21 37 101 305 25 33 71 42 30 35 41 48

Note: Y is the amount of bins used.

We also monitor the use of groups and bins in the allocation

plans. Fig. 2 shows the results and highlights the relationship

between the number of groups and the number of bins; this

illustrates the effect of the grouping function (A step 1). We

show the results from large topologies (L-Tree, L-Guru, and L-

Senti). For each topology, we show the best and worst results.

As we can see, the packing results are worse when items are

partitioned into more groups. This is because tasks that are

partitioned into different groups will not be packed into the

same processor. Let G′
g denote a group, then vi can be put

into G′
g if and only if ∀vj ∈ G′

g, hj + ti <= H̄ . But two

tasks in two groups are not necessarily backup dependent and

there is a possibility that they can be packed into the same

processor. As a result, more partition groups lead to much

stricter constraints, and therefore, can waste more resource.

Note: ∗ indicates worst cases.

Figure 2: The effect of the number of groups.

V. RELATED WORK

The task allocation problem is one of the fundamental issues

in distributed systems. Related works on stream processing

systems propose models with the objectives of balancing

workload [4] and minimizing latency [3], [5]. Related works

have been focusing on the task allocation problem in a failure-

free scenario that does not take the effects of failures into

account. The proposed RTAP problem (as well as the related

task allocation problem) is related to the Bin Packing (BP)

problem. For the general BP problem and the two-dimensional

BP problem, please refer to [16], [17]. The main challenge of

RTAP is that the item heights (recovery latency) are related

to both the partial packing solution (task allocation plan) and

the stream topology.

Although Fault-Tolerant (FT) and reliability in distributed

systems [18] have already been widely studied, SPM intro-

duces new challenges [1]. Existing FT approaches enable

stream processing systems to recover from task failures with

a short recovery latency [7], [8], [10], [11], [13]. The up-

stream backup model [11] is one of the most widely applied

approaches. However, it introduces recovery latencies. Recent

research [8], [13], [14] studies FT strategies for stream pro-

cessing applications with a focus on better resource utilization

and recovery performance. In our previous work [8], a task-

level failure effect model is proposed to make backup plans

with minimum overhead and guaranteed task recovery latency.

However, correlated task failures caused by task allocation

plans are not considered. To the best of our knowledge, this

is the first work to study the recovery latencies caused by

correlated task failures in stream processing systems.

VI. CONCLUSIONS

This paper focuses on a task allocation strategy for distrib-

uted stream processing systems considering processor failure

effects. We propose a novel, quantitative, correlated failure

effect model to describe the relationship between the recovery

latency and task allocation plans (the packing of tasks into

processors) of a stream topology. We introduce the Recovery-

latency-aware Task Allocation Problem (RTAP) based on the

model and propose an approach to compute the task allocation

plan with a recovery latency guarantee and a time complexity

of O(n log2 n). The proposed method is effective (using 15%-

20% fewer resource compared to benchmarks) and efficient

(using ms-level time), which makes it applicable to real

production environments making both off-line task allocation

decisions and on-line task reallocation decisions.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (NSFC) (grant 61602205), by the Major

Special Research Project of the Science and Technology

Department of Jilin province (grant 20160203008GX), by the

China Scholarship Council, and by the NSF of the U.S. (grants

CNS 1629746, CNS 1564128, CNS 149860, CNS 1461932,

CNS 1460971, CNS 1439672, CNS 1301774, and ECCS

1231461).

382

REFERENCES

[1] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” ACM SIGMOD Record, vol. 34, no. 4, pp.
42–47, 2005.

[2] G. Hesse and M. Lorenz, “Conceptual survey on data stream processing
systems,” in Parallel and Distributed Systems (ICPADS), 2015 IEEE
21st International Conference on. IEEE, 2015, pp. 797–802.

[3] R. Eidenbenz and T. Locher, “Task Allocation for Distributed Stream
Processing,” in IEEE INFOCOM 2016 - The 35th Annual IEEE Inter-
national Conference on Computer Communications, 2016, pp. 1–9.

[4] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
placement for distributed stream processing applitions,” in Proceedings
of the 10th ACM International Conference on Distributed and Event-
based Systems. ACM, 2016, pp. 69–80.

[5] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing with
latency guarantees,” in Distributed Computing Systems (ICDCS), 2015
IEEE 35th International Conference on. IEEE, 2015, pp. 399–410.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM, 2002, pp. 1–16.

[7] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@
twitter,” in Proceedings of the 2014 ACM SIGMOD international con-
ference on Management of data. ACM, 2014, pp. 147–156.

[8] H. Li, J. Wu, Z. Jiang, X. Li, and X. Wei, “Minimum backups
for stream processing with recovery latency guarantees,” IEEE Trans-
actions on Reliability, vol. PP, no. 99, pp. 1–12, 2017. DOI:
10.1109/TR.2017.2712563.

[9] H. Li, X. Wei, Q. Fu, and Y. Luo, “Mapreduce delay scheduling
with deadline constraint,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 3, pp. 766–778, 2014.

[10] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu,
and Z. Zhang, “Timestream: Reliable stream computation in the cloud,”
in Proceedings of the 8th ACM European Conference on Computer
Systems. ACM, 2013, pp. 1–14.

[11] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,
and S. Zdonik, “High-availability algorithms for distributed stream
processing,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on. IEEE, 2005, pp. 779–790.

[12] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. ACM, 2013, pp.
725–736.

[13] L. Su and Y. Zhou, “Tolerating correlated failures in massively parallel
stream processing engines,” in Data Engineering (ICDE), 2016 IEEE
32nd International Conference on. IEEE, 2016, pp. 517–528.

[14] T. Heinze, M. Zia, R. Krahn, Z. Jerzak, and C. Fetzer, “An adaptive
replication scheme for elastic data stream processing systems,” in
Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems. ACM, 2015, pp. 150–161.

[15] A. Salama, C. Binnig, T. Kraska, and E. Zamanian, “Cost-based fault-
tolerance for parallel data processing,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 285–297.

[16] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
Journal of computer and system sciences, vol. 9, no. 3, pp. 256–278,
1974.

[17] E. G. Coffman Jr, J. Csirik, G. Galambos, S. Martello, and D. Vigo,
“Bin packing approximation algorithms: survey and classification,” in
Handbook of Combinatorial Optimization. Springer, 2013, pp. 455–
531.

[18] J. Wu, Distributed system design. CRC press, 1998.

383

