260

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1,

Towards the Tradeoffs in Designing Data
Center Network Architectures

Dawei Li, Jie Wu, Fellow, IEEE, Zhiyong Liu, and Fa Zhang

Abstract—Existing Data Center Network (DCN) architectures are classified into two categories: switch-centric and server-centric
architectures. In switch-centric DCNs, routing intelligence is placed on switches; each server usually uses only one port of the Network
Interface Card (NIC) to connect to the network. In server-centric DCNs, switches are only used as cross-bars, and routing intelligence
is placed on servers, where multiple NIC ports may be used. In this paper, we formally introduce a new category of DCN architectures:
the dual-centric DCN architectures, where routing intelligence can be placed on both switches and servers. The dual-centric philosophy
can achieve various tradeoffs in designing DCN architectures. We propose three novel dual-centric DCN architectures: FCell,
FRectangle, and FSquare, all of which are based on the folded Clos topology. FCell is a power-efficient DCN architecture, with a larger
diameter and lower bisection bandwidth than FSquare and FRectangle. FSquare is a high performance DCN architecture, in which the
diameter is small and the bisection bandwidth is large; however, the DCN power consumption per server in FSquare is high.
FRectangle significantly reduces the DCN power consumption per server, compared to FSquare, at the sacrifice of some networking
performances. By investigating FCell, FRectangle and FSquare, and by comparing them with existing architectures, we demonstrate

JANUARY 2017

that, the three novel dual-centric architectures enjoy the advantages of both switch-centric designs and server-centric designs, have
various nice properties for practical data centers, and provide flexible tradeoff choices in designing DCN architectures.

Index Terms—Data center network (DCN), power consumption, end-to-end delay, bisection bandwidth, dual-centric design

1 INTRODUCTION

DATA centers have become important infrastructures for
supporting various cloud computing services. These
vary from web search, email, video streaming, and social
networking [1], [2], [3], to distributed file systems such as
GFS [4], and distributed data processing engines, such as
MapReduce and Dryad [5], [6]. The Data Center Network
(DCN), which defines how the servers and various other
components are interconnected, has significant influences
on the quality of the services that the data center can pro-
vide to the applications that it hosts.

Performance versus Power. Two important performance
metrics for a DCN architecture are end-to-end delays in the
DCN and the bisection bandwidth. End-to-end delays trans-
late directly to applications’ response times in various situa-
tions. Bisection bandwidth provides key information on the
potential throughput that the network can provide and the
fault-tolerance capabilities. As servers are becoming more
and more power efficient, the DCN tends to consume 50
percent of the total IT power [7]; thus, the DCN power con-
sumption has become an important issue. To provide low

o D. Liand |]. Wu are with the Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122.

E-mail: {dawei.li, jiewu j@temple.edu.

o Z. Liu is with State Key Laboratory for Computer Architecture, Institute of
Computing Technology, Chinese Academy of Sciences, Beijing 100190,
China. E-mail: zyliu@ict.ac.cn.

o F. Zhang is with Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing
100190, China. E-mail: zhangfa@ict.ac.cn.

Manuscript received 15 Mar. 2016; revised 11 Aug. 2016; accepted 5 Sept.
2016; Date of current version 14 Dec. 2016.

Recommended for acceptance by X. Wang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2016.2610970

end-to-end delays and high bisection bandwidth, large
numbers of networking devices are usually used in DCNs.
For example, in Fat-Trees [8], three levels of switches are
used, resulting in high DCN power consumption. BCube [9]
needs three or more levels of switches to scale the network
to a considerable size; besides, BCube needs to use several
Network Interface Card (NIC) ports on each server, which
also contribute to the DCN power consumption. To achieve
a low DCN power consumption, other designs use signifi-
cantly fewer networking devices. For example, in DPillar
[10], SWCube, SWKautz [11], DCell [12], BCN [13], and
FiConn [14], the number of switches used is largely
reduced, though a small number of extra NIC ports (typi-
cally less than 4) are required on servers. The DCN power
consumption of these architectures is generally less than
that of Fat-Trees and BCubes; however, these architectures
rely heavily on servers for packet forwarding. Since servers
usually have much greater processing delays than switches,
especially when servers’ packet forwarding schemes are
software-based, the end-to-end delays in these architectures
are much greater; besides, these architectures also have a
lower bisection bandwidth. Can we achieve high perform-
ances and low power consumption at the same time?
Switch-Centric versus Server-Centric. Existing DCN architec-
tures have been classified into two categories: switch-centric
and server-centric architectures [15]. In switch-centric designs
[71, [8], [16], routing intelligence is placed on switches; servers
are equipped with one NIC port, and are not involved in for-
warding packets for other servers. In server-centric designs
[9], [10], [11], [12], [13], [14], switches are only used as cross-
bars, and routing intelligence is placed on servers; servers are
usually equipped with multiple NIC ports, and act as both
computing and packet forwarding nodes. Switch-centric
architectures enjoy the fast switching capability of switches,

1045-9219 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LI ET AL.: TOWARDS THE TRADEOFFS IN DESIGNING DATA CENTER NETWORK ARCHITECTURES 261

but switches are less programmable than servers. Although
Software Defined Networking (SDN) technologies, such as
OpenFlow and Network Function Virtualization (NFV),
increase the programmability on high-end switches, we are
considering commodity-of-the-shelf low-end switches as
most architectures use them to reduce the cost of constructing
large scale DCNs. Server-centric architectures enjoy the high
programmability of servers, but servers usually have larger
processing delays than do switches. Can we combine the
advantages of both categories?

Scalability versus Flexibility. In DCNs, scalability requires
that the networking devices, typically the switches, rely on
a small amount of information, which does not increase sig-
nificantly with the network size, to make efficient routing
decisions. Flexibility means that expanding the network in a
fine-grained fashion should not destroy the current architec-
ture or replace the networking devices. Since modern data
centers usually have large network sizes, scalability is an
important requirement. Also, data centers require flexible
growth of network size after initial deployment, due to the
rapidly increasing needs. Regular architectures are gener-
ally highly scalable, but do not support flexible growth of
the network size due to their rigid topologies. Some regular
architectures are able to increase the network size, but have
certain limitations. For example, FiConn supports coarse-
grained growth; because adding one level to the architec-
ture will make the network size increase by tens, or even
hundreds of times, which does not reflect practical needs;
expanding DCell and BCube requires adding more NIC
ports on all of the existing servers. Recent works have pro-
posed random networks, such as Jellyfish [17], Scafida [18],
and Small-World Data Center [19], to provide arbitrary-
grained flexibility; however, due to their irregularity, net-
working devices need to use large routing tables for efficient
routing, making them unable to scale to a large network
size. Can we design both scalable and flexible DCN
architectures?

In this paper, we consider the tradeoffs (in all of the
above-mentioned three aspects) in designing DCN architec-
tures. Our main contributions are as follows.

e First, we propose a unified path length definition,
and consequently, a unified diameter definition, to
characterize the end-to-end delays in a general DCN.
Also, a DCN power consumption model is presented
to characterize the power efficiency of general DCNs.

e Second, we introduce a new category of DCN archi-
tectures, i.e., the dual-centric DCN architectures, to
complement the current classifications. To the best of
our knowledge, we are the first to formally introduce
this dual-centric design philosophy. We propose
three novel typical dual-centric architectures: FCell,
FRectangle, and FSquare.

e Third, based on our unified path length, diameter
definitions and DCN power consumption model for
general DCNs, we conduct quantitative comparisons
between FCell, FRectangle, and FSquare and several
typical existing DCN architectures. Results show
that FCell, FRectangle, and FSquare reflect various
tradeoff choices between network performances and
DCN power consumption.

e We show that dual-centric architectures can have
appealing properties for practical DCN designs.
Routing simulations are conducted for the three pro-
posed architectures to justify their performances
under various traffic patterns and loads.

The rest of the paper is organized as follows. Section 2
presents the unified path length, DCN diameter definitions,
and DCN power consumption model. We describe our
novel DCN architectures, FCell, FRectangle, and FSquare in
Sections 3, 4, and 5, respectively. We review related existing
works in Section 6. Quantitative comparisons among sev-
eral architectures are provided in Section 7. Supporting sim-
ulations are conducted in Section 8. Conclusions and future
directions are described in Section 9.

2 PRELIMINARIES

To characterize the end-to-end delays between two servers
in a DCN, the concept of diameter is usually used, which is
defined as the maximum length of the shortest path
between any pair of two servers. However, for switch-cen-
tric and server-centric architectures, path lengths are calcu-
lated differently in existing works. For switch-centric
architectures, the length of a path is calculated as the num-
ber of links in the path [20], [21]; for server-centric architec-
tures, the length is calculated as the number of servers in
the path (source and destination excluded) between the two
servers, plus 1 [9], [10], [11], [12], [13], [14]. A diameter of
six in Fat-Tree means something totally different from a
diameter of six in BCube. However, a lot of works still com-
pare these two different kinds of diameters [12], [15], [20],
[21]. This somewhat confuses the understanding of end-to-
end delays in general DCNs.

In a DCN, the end-to-end delay of a packet from a source
server to a destination server consists of the delays on all the
devices that the packet traverses. The devices include
switches, servers and links. Referring to the classic delay
models in [22], we investigate various sources of end-to-end
delays in the DCN. In this paper, we assume that all the
switches and servers are homogeneous. Packets on switches
and servers experience three important delays: processing
delay, transmission delay, and queuing delay; we denote them as
dwp, dy, dgand d,p, d,y, d, , for switches and servers, respec-
tively. The processing delay is the time required to examine
the packet’s head and determine where to direct the packet.
Queuing delays largely depend on network traffic conditions
and routing protocols. Currently, our focus is on the architec-
tures of DCNs; thus, we do not consider the queuing delay
explicitly in the modeling, and assume that d,, ;=d,, ,=0.

Switches can operate in two modes: store-and-forward
and cut-through. In store-and-forward mode, a switch
needs to receive all the flits of the packet before it forwards
the packet to the next device. The total delay on the switch
is dy=dyp+dy ;. The typical value of d,,, is around 2 ps [23].
.t = Spacket /Thit, Where Spqcie is the size of the packet and
Ty is the data transmission rate. Sj..e¢ Varies between 64
and 1,514 bytes. Given data transmission rate r,;=1 Gbps,
dy+ varies from about 0.5 us to about 10 us. In cut-through
mode, a switch starts forwarding the packet when it
receives the first flit of the packet. Thus, the transmission
delay is negligible, and the total delay is around
du,':dw,pZQ HS.

262 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1,

The packet forwarding scheme on a server can be imple-
mented in either software or hardware. In software-based
forwarding, the processing delay on a server, d,, is much
higher than that on a switch, with a typical value of about
10 ps [23]. Depending on CPU load and NIC configuration,
this value varies significantly. In hardware-based forward-
ing, d,, can be close to the processing delay on a switch
[24]. The overall delay on a server is d,=d,,;,+d,;, where d,;
can be calculated in the same way as d,,;. Based on the typi-
cal values, d, is generally one to several times of d,,.

Network links have propagation delay, d;=Lyni/(nc),
where Lj,;, is the length of the link, 7 is a constant around
0.7, and cis the speed of light in vacuum. Since the length of
links in a data center is usually less than 10 meters, the prop-
agation delay on a link is usually less than 10/(0.7 x 3 x 10%)
s= 0.048 pus. Compared with the typical delays on switches
and servers, the propagation delay is negligible.

Unified Path Length and Diameter Definitions. In general
DCNs, both switches and servers may be used for packet
forwarding. Denote the numbers of switches and servers in
a path, P from a source server to a destination server by
npy, and np, (excluding the source and the destination),
respectively. We define the path length of P as follows:

dP = nP,wdw + (nP,v + 1)d117 (1)

where 1 is added to np,, because the delay on the source
server should be included as part of the end-to-end delay.
The above path length definition applies to all general
DCNs. If we assume that d,=d,=1, the above path length
definition is consistent with the path lengths in a switch-
centric architecture. If we assume that d,=1 and that d,, is
negligible, the above path length definition is consistent
with the path lengths in a server-centric architecture. Under
this unified path length definition, we define the diameter of
a general DCN as the maximum path length (based on (1)) of
the shortest paths between all pairs of servers in the DCN

d = maxdp, 2
PecP

where P is the set of shortest paths between all pairs of serv-
ers in the DCN.

Again, queueing delays are not considered explicitly in
the modeling. However, queueing delays may have differ-
ent influences on the average packet delivery time in an
architecture. Generally, when an architecture has a low
bisection bandwidth, more queueing delays will be
involved, and thus, the average packet delivery time for
that architecture will be increased.

DCN Power Consumption Model. We consider the power
consumption of all DCN devices. A switch’s power con-
sumption, p,, is part of the DCN power consumption. For a
server in a switch-centric architecture, only the NIC’s power
consumption, p,;. belongs to the DCN power consumption.
Ina DCN where the server can be used for packet forwarding
for other servers, the power consumption of the server’s
packet forwarding engine should also be included as the
DCN power consumption. We denote p,, as the power con-
sumption of the server’s packet forwarding engine (either
the CPU core’s power consumption for software-based for-
warding [25] or the additional hardware’s power

JANUARY 2017

consumption for hardware-based forwarding [24]), and
denote the extent to which a server is involved in packet for-
warding by «. The overall DCN power consumption can be cal-
culated as follows: Pden= wpw+nnicva71,1',1’,+aN1!pfwd/ where
N, and N, are the numbers of switches and servers in the
DCN, respectively, and n,;. is the average number of NIC
ports used on a server. Since different DCNs can hold differ-
ent numbers of servers, we define the DCN power consump-
tion per server as the power efficiency metric of a general DCN

pv = pd(er/NU = prw/Nu + NpicPnic + ap fuwd- 3)

For switch-centric architectures, a=0. For DCNs where serv-
ers are involved in packet forwarding for other servers, o
depends on various factors; for simple and fair compari-
sons, we choose a=1. A practical value of p,, for a switch
with 48 1 Gbps ports is about 150 Watts [26]; a practical
value of p,;. for 1 Gbps NIC port is two Watts [27]. As
reported in [25], when software-based forwarding is used,
the CPU cores can be in reserved or shared models, which
correspond to different py,; values, varying around five
Watts if NIC ports are 10 Gbps. The value for py,g will be
lower if NIC ports are 1 Gbps. In hardware-based forward-
ing, ps,q may also have quite different values [24].

Notice that practical power consumptions of devices also
depend on the current traffic density; we use the simplified
static power consumption model to provide a unified com-
parison metric for all architectures. Existing works apply
the same strategy to come up with meaningful comparisons
among different architectures [21]. In a later section (Sec-
tion 7), we will investigate how different power consump-
tion values influence the comparisons among different
architectures.

3 FCELL

One motivation of our work is to design high performance
architectures with low DCN power consumption. An intui-
tive remedy for switch-centric architectures, such as Fat-Tree,
is to reduce the levels of switches. However, this makes the
DCN unable to scale to a practically large size. Thus, we con-
sider using interconnections among servers to scale the net-
work. In this and the following two sections, we present three
novel DCN architectures that belong to the dual-centric cate-
gory: FCell, FRectangle, and FSquare. The three architectures
are all based on the folded Clos topology [16], and use the
same basic building block. Each server in these architectures
uses two NIC ports. The reason why we consider servers
with two NIC ports is that practical servers usually come
with two NIC ports, one for primary use and one for backup.
This is a common fault-tolerant design. Thus, the second port
is seldom used. In our paper, we design novel architectures
that can better utilize two-port servers, and do not sacrifice
the fault tolerance. We will first describe the basic building
block, and then introduce them one by one. We demonstrate
the tradeoffs (between server-centric and switch-centric, and
between scalability and flexibility) of our three proposed
architectures by using FCell as an example in this section.
Discussions on the dual-centricness and tradeoff between
scalability and flexibility of FRectangle and FSquare are simi-
lar, and are omitted due to the page limit.

LI ET AL.: TOWARDS THE TRADEOFFS IN DESIGNING DATA CENTER NETWORK ARCHITECTURES 263

CRONORONGRoNGRO

Fig. 1. The basic building block: Cluster. We consistently use rectangles
to represent switches and circles to respresent servers, if not otherwise
specified.

3.1 Basic Building Block

The basic building block is called a cluster. In each cluster,
there are two levels of switches: n level 1 switches and n/2
level 2 switches. Every level 1 switch is connected to
every level 2 switch. Then, there are n/2 ports remaining
on every level 1 switch; we use these ports to connect n/2
servers. Thus, the switches and servers in one cluster form a
simple instance of the folded Clos topology. The numbers
of switches and servers in each cluster are 3n/2 and n?/2,
respectively. The interconnections of a cluster with n=4 is
shown in Fig. 1. In all of our discussions, we assume n>4.

A level 1 switch is also called a Top of Rack (ToR) switch.
When the servers align in a row, as in FRectangle or
FSquare, we call it a row ToR switch; when the servers align
in a column, we call it a column ToR switch.

3.2 FCell Construction

An FCell built from servers with two NIC ports and
switches with n ports is denoted by FCell(n). An FCell(n)
consists of n?/2+1 clusters. Servers in all of the n?/2+1
clusters are interconnected in a similar way to that of DCell
[12]. Simply put, each of the n?/2 servers in a cluster is
directly connected to another server in each of the other
n? /2 clusters. Thus, if we regard each cluster as a single
node, the n? /2+1 clusters will form a complete graph. We
denote a server by q;j, which represents the jth server in
the ith cluster, V0 <i<n?/2,0<j<n?/2—1. The interconnec-
tion rules we use are: server a;,1; is connected with server
aij, Vi<j<n?/2—1,¥0<i< n?/2—1. Fig. 2 shows the inter-
connections of an FCell(4).

3.3 Routing in FCell

We present two basic routing schemes: shortest path rout-
ing (SRouting) and detour routing (DRouting), to show that
FCell reflects a tradeoff between switch-centric and server-
centric designs. Notice that, the two basic routing schemes
are also useful for practical routing protocol design.

3.3.1 Shortest Path Routing

We denote the source and destination servers by a; ; and ay
(0<i,k<n?/2 and 0<j,1<n?/2—1), respectively. Then, the
ith and the kth clusters are called source and destination
clusters, respectively.

If a; ; and ay,; are in the same cluster, i.e., i=k, a;; sends
the packet to its level 1 (ToR) switch, which checks whether
the destination is in the local rack. If the destination is in the
local rack, the level 1 switch forwards the packet to the des-
tination. Otherwise, it forwards the packet to a randomly
chosen level 2 switch; the level 2 switch checks which rack
the destination is in, and forwards the packet to the corre-
sponding level 1 switch, i.e., the |I/(n/2)|th level 1 switch,
which forwards the packet to the destination directly.

Fig. 2. FCell(4).

If a; ; and ay; are not in the same cluster, based on serv-
ers’ interconnection rules in FCell, the source server can
determine the two servers (one in the source cluster,
denoted by a;,, and one in the destination cluster, denoted
by aj,,) that connect the source and destination servers.
Then, a; ; forwards the packet to a;,, within the source clus-
ter. After that, a;,, sends the packet to ay,, directly, since
they are directly connected. Finally, a;,, forwards the
packet to a;; within the destination cluster.

We can see that, in all cases, the source server can deter-
mine all the server(s) in the path (including the destination)
before sending the packet. Since the servers have high
programmability and the decision logic is quite simple, we
place the task of determining all the servers in the path on
the source server. The source server initializes a server stack
(srv_stk) that pushes the servers from the last one to the first
one in the path, and indicates whether they are the true des-
tination of the packet. For example, for the case where a; ;
and a;; are not in the same cluster, and ¢ <k, j#£k—1, i#(, all
the servers in the shortest path are a;;—i, ai;, and ay
(including the destination). The source server labels ay; as
the true destination and labels a; ;1 and a;; as fake destina-
tions. Then, it pushes a;, a;.; and a;j—; into srv_stk one by
one. When sending the packet to a ToR switch, the source
server uses the next server of the packet as the temporary
destination, based on which, switches make decisions
within the local cluster.

When another server in the DCN receives the packet, it
pops the srv_stk of the packet. If the popped value is a true
destination, the server consumes the packet. If the popped
value is a fake destination, it checks whether the next server
in the path of the packet is in the local cluster. If yes, it sends
the packet to its ToR switch, using the next server as the
temporary destination. Otherwise, it sends the packet to the
next server directly.

When a switch receives the packet, only the destination
(either fake or true) set by the previous sending server is vis-
ible to the switch. We call this destination a temporary desti-
nation. The switch makes forwarding decisions based on

264 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1,

this temporary destination. The behaviors of switches are
similar to the case when the real source and destination are
within the same local cluster.

Notice that, instead of randomly choosing, a level 1
switch can wisely choose a level 2 switch, if related informa-
tion is available, and if it has the intelligence to do so. Thus,
levels 1 and 2 switches can help with load-balancing, traffic-
aware, fault-tolerant or even multi-path routing within the
local cluster.

3.3.2 Detour Routing

The problem with the shortest path routing is that, if servers
in two clusters have intensive communications, the link that
directly connects the two clusters will become congested.
To solve this problem, a detour routing scheme can be
applied. Instead of determining the shortest path from the
source to the destination directly, the source server can
choose to detour the packet to a randomly chosen interme-
diate cluster before the packet arrives at the destination
cluster; we call the intermediate cluster the relay cluster.

After choosing the relay cluster, also based on servers’
interconnection rules in FCell, the source server can deter-
mine the first relay server (in the relay cluster), which has a
direct connection with a server in the source cluster, and the
second relay server (in the relay cluster), which has a direct
connection with a server in the destination cluster. Then,
the detour path consists of the shortest path from the source
server to the first relay server, the shortest path from the
first relay server to the second relay server, and the shortest
path from the second relay server to the destination server.
The source server initializes the srv_stk by pushing the serv-
ers from the last one (the destination) to the first one in the
detour path, and then sends the packet into the network.
All the routing logics on other servers, level 1 switches and
level 2 switches need not to be changed, compared with the
shortest path routing scheme.

Notice that, instead of randomly choosing the relay clus-
ter, if related information, such as the traffic conditions in
other clusters, is available at the source server, the source
server can make wiser decisions for choosing the relay clus-
ter. Thus, detour routing provides the basic mechanism for
load balancing, traffic-aware, fault-tolerant, and even multi-
path routing among clusters in the network.

FCell serves as a good example of dual-centric architec-
tures, where both switches and servers can have some
degree of routing intelligence. As indicated, switches and
servers in FCell can help with load-balancing, traffic-
aware, and fault-tolerant, and even multi-path routing
within the local cluster, and among clusters, respectively.
Besides, the number of servers in the shortest paths
(excluding the source and the destination) is upper
bounded by 2; even in a basic detour path, the number of
servers is upper bounded by 4. Thus, FCell enjoys both the
fast switching capability of switches and the high program-
mability of servers, without significantly increasing the
end-to-end delays.

3.4 FCell Basic Properties

Property 1. In an FCell(n), the number of switches is N,, = 3n
(n? + 2)/4, and the number of servers is N, = n?(n* + 2) /4.

JANUARY 2017

Proof. There are n’/2 + 1 clusters, each with 3n/2 switches
and n?/2 servers. O

Property 2. The diameter of an FCell(n) is d = 6d,, + 3d,.

Proof. The diameter is defined as the maximum length of
the shortest path between two servers. Obviously, the
longest shortest path in an FCell is between two servers
that are not in the same cluster. We consider two serv-
ers, a; ; and a;;, which are not in the same cluster, i.e.,
i # k. Without loss of generality, we assume that
0<i<k <n?/2. According to the interconnection rules
of FCell, the server a;;_; in the ith cluster, and the
server ay; in the kth cluster are directly connected. The
shortest path from server q; ; to server a;; consists of at
most three segments: 1) the shortest path from server
a;; to server a;;—; in the ith cluster, 2) the path
from server a;;_; to server a;;, and 3) the shortest path
from server a;; to server a;; in the kth cluster. Notice
that, the shortest path from a;; to a@;;—1 includes at
most three switches; also, the shortest path from ay; to
ap,; includes at most three switches. Thus, the shortest
path from a,;; and a;; includes at most six switches,
and at most two servers (excluding the source and des-
tination). According to (1) and (2), the diameter of an
FCell(n) is d = 6d,, + 3d,. O

We assume that all the links in a DCN have a unit band-
width, 1. Then, the bisection bandwidth of a DCN is the
minimal number of links to be removed to partition the
DCN into two parts of “equal” sizes that differ by at
most 1. We conjecture that FCell has the following

property.
Property 3. The bisection bandwidth of an FCell(n) is BxN, /4.

Proof. The bisection bandwidth of a complete graph with
N nodes, when N is even, is N/2x N/2= N?/4. The rea-
son is quite straightforward. The cut partitions the N
nodes into two equal sets, each consisting of N /2 nodes.
Since each node in one set has a link to every node in
the other set, the total number of links in the cut is
N/2xN/2=N?/4. When N is odd, the bisection band-
width is (N+1)/2x(N—1)/2=(N?—-1)/4. As has been
mentioned, for the FCell architecture, we can regard
each of the (n?/2+1) clusters as a single node; then,
these nodes form a complete graph. Besides, within each
cluster, the architecture has a much greater bisection
bandwidth, just like Fat-Tree and folded-Clos. For a cut
to have a minimum number of links, it should try to
avoid cutting through the clusters. Thus, the cut should
cut between clusters. As a result, the bisection band-
width of FCell is approximately equal to the bisection
bandwidth of a complete graph with (n?/2+1) nodes:

B~1/4(n?/24+1)*~ N, /4. 0

Property 4. The DCN power consumption per server of an
FCE”(”) is pV:'?’pw/n + 2pnic + P fwd-

Proof. The switch-number to server-number ratio in an
FCell(n) is N,,/N,=3/n; in FCells, all servers are equipped
with two NIC ports, and servers may be involved in for-
warding packets for other servers. 0

LI ET AL.: TOWARDS THE TRADEOFFS IN DESIGNING DATA CENTER NETWORK ARCHITECTURES

We further investigate the number of parallel paths
between two servers in our proposed DCN architectures.
We consider two types of parallel paths: intra-cluster
switch-disjoint parallel paths, and inter-cluster server-dis-
joint parallel paths.

Definition 1. The number of intra-cluster switch-disjoint paral-
lel paths between two servers is the number of distinct paths
that do not share the same switches, excluding the source and
destination switches, within the cluster.

Definition 2. The number of inter-cluster server-disjoint paral-
lel paths between two servers is the number of distinct paths
that do not share the same servers, excluding the source and
destination servers, across the clusters.

It is easy to notice that, the number of switch-disjoint par-
allel paths in every cluster (the basic building block) is n/2,
because there are n/2 level 2 switches. We are more inter-
ested in the number of inter-cluster server-disjoint parallel
paths. Since in practice, the delay on servers is generally
much larger than that of switches, we focus on the number
of servers in the server-disjoint parallel paths.

Property 5. The number of inter-cluster server-disjoint parallel
paths between two servers (belonging to two different clusters),
with length n,d,+Hn,+1)d,, where n,<2, is at most 2.

Illustration. Actually, we have simplified the shortest
path routing in our previous discussion. In some rare cases,
we can find other shortest paths using other approaches,
and even the shortest path generated by the previous algo-
rithm may have greater length than other approaches. We
give an example here. We take a3 and as in an FCell(4) as
the source and destination. Using the previous shortest
path algorithm, we generate the path as: ag2—ao:
—ag,0—0a2; its length is 6d,+3d,. However, we can have
another path: ag 9—as3 o—az2—as9; its length is 3d,+3d,. The
condition for these rare cases it that, the source and destina-
tion both connect to the same other cluster.

Property 6. The number of inter-cluster server-disjoint parallel
paths between two servers (belonging to two different clusters),
with length n,,d,+(n,+1)d,, where n,<4, is n*/2.

Illustration. Here, we are actually counting the number of
paths that are detoured at most once. For a detoured path
generated by the detour routing procedure, the number of
clusters involved is 3. In each of the three clusters, at most
two servers will be included in the path (including the
source and destination). Thus, there will be at most a total
of six servers in a detour path. We can see that each detour
path will be a path length n,d,+Hn+1)d, where n,<4.
Excluding the source cluster and the destination cluster, we
have n?/2—1 choices to select a relay cluster. Thus, the num-
ber of detour paths will be at n?/2—1. Plus the shortest path
(from the source to the destination) whose length is at most
6d,+3d,, we will have n?/2 parallel paths between two serv-
ers (belonging to two different clusters), with length
Ny dyt(n,+1)d,, where n,<4.

3.5 FCell Scalability and Flexibility
FCell has good scalability due to its regularity. As can be
seen in the basic routing schemes, switches in FCell only

265

need local information for packet forwarding; thus, the
routing table size on each switch can be kept small. Servers
only need basic configuration parameters of FCell for packet
forwarding. In other words, they both need a small amount
of information to make efficient routing decisions. Thus,
FCell is highly scalable.

Unlike various rigid regular architectures, FCell supports
flexibility quite well, i.e., it allows fine-grained incremental
growth of its network size. We call the FCell(n) constructed
previously in this paper a complete FCell(n). FCell supports
two fundamental ways to expand the network.

The first way is to expand a complete FCell. In this case, we
require that the level 2 switches have a number of ports
reserved for future expansion. Using one reserved port on
each of the level 2 switches, we are able to add one level 1
switch with n/2 servers to each cluster, by connecting the
added level 1 switch with each of the n/2 level 2 switches in
the cluster. We call the cluster with n/2 added servers an
expanded cluster. After this, each of the n*/2+1 expanded clus-
ters in the FCell(n) will have n/2(n/2+1) servers, among
which, n/2 added servers are not directly connected to other
servers. Thus, we are allowed to add n/2 expanded clusters
into the current architecture. Adding the first expanded clus-
ter, the (n?/2)th server of the ith expanded cluster is con-
nected to the ith server in the newly added expanded cluster,
which becomes the (n? /2+1)th expanded cluster, V0<i<n?/2.
Adding the second expanded cluster, the (n?/2+1)th server
of the ith expanded cluster is connected to the ith server in the
newly added (n%/2+2)th expanded cluster, V0<i<n?/2+1.
Continuing this process until adding the (n/2)th expanded
cluster, the (n?/2+n/2—1)th server of the ith cluster is con-
nected to the i server in the newly added (n?/2+n/2)th
expanded cluster, V0<i<n?/2+n/2—1.

Fig. 3a shows adding one level 1 switch and 2 servers to
each cluster of the complete FCell(4). Fig. 3b shows adding
one expanded cluster to the existing architecture. Fig. 3c
shows adding the second expanded cluster. Dashed lines rep-
resent added links compared with the existing architecture.

Notice that, the original interconnections among
switches and servers are never modified. The original archi-
tecture consists of No9nal=p2(n? 4 2)/4 servers. After
expanding, the architecture consists of N¢Panded— (n2/24
n/2)(n?/2+n/2+1) servers. The increase of the number of
servers for n=24 is from 83,232 to 90,300, i.e., an increase of
8.49 percent. The increase for n=48 is from 1,328,256 to
1,384,152, i.e., an increase of 4.21 percent. In this way, FCell
supports a fine-grained incremental growth of network
size, without modifying its original interconnections.

We have used one reserved port on each of the level 2
switches. If there are k ports reserved for future expansion
on each level 2 switch, the expanded architecture can reach
(n?/2+4nk/2)(n?/2+nk/2+1) servers. For k=n, it indicates
a size of approximately 4 times of the original size; we argue
that this meets typical requirements of network size growth.
We have to admit that having reserved ports on level 2
switches is a drawback. However, only one third of the
switches need to have reserved ports; this cuts down the
extra initial investment for future expansion.

FCell supports another way of expanding its network
size. Instead of using n2/ 2+1 clusters, we can use

266 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1,

LleiElelslels)cle)

(c) Adding the second expanded cluster.

Fig. 3. lllustration of flexible expansion. In (b) and (c), each cluster is sim-
plified by a rectangle enclosing circles.

m+1 < n*/2+1 clusters to build an incomplete FCell, by con-
necting the first m (< n?/2) servers in all of the m+1 clus-
ters. The method for adding clusters to an incomplete FCell
is similar to that of expanding a complete FCell. This pro-
vides the possibility of flexibly adding servers, without
reserving ports on the level 2 switches. Of course, the two
ways to expand the network can be combined. When
expanding an incomplete FCell makes the FCell complete,
we can further expand the complete FCell.

Since the original interconnections among switches and
servers are never modified, after expanding the network,
very limited information needs to be updated for switches
and servers to make efficient routing decisions. Therefore,
scalability of FCell is well maintained.

4 FRECTANGLE

4.1 FRectangle Construction

FRectangle is constructed with two dimensions. Each col-
umn of the architecture is our basic building block, the clus-
ter. In each row, n switches are used to interconnect n?
servers. Each row of the FRectangle architecture chooses
one type of interconnections from the following;:

e Type A interconnections: For servers in the ith row,
ai;,0<j<n®=1, if kn<j<kn+n—1,(0<k<n-1),
then a; ; is connected to the kth switch in this row.

JANUARY 2017

POEOOHOVOOOOVOO
POV

Fig. 4. FRectangle(4).

e Type B interconnections: For servers in the ith row,
a;j,0<j<n?=1, if j%n=*k, (0<k<n-—1), then qa;; is
connected to the kth switch in this row.

We let FRectangle choose from the two types of intercon-
nections in an interleaved fashion: if ¢%2=0, the ith row
chooses the type A interconnections; if :%2=1, the ith row
chooses the type B interconnections. An FRectangle con-
structed by switches with n ports is denoted FRectangle(n).
Fig. 4 shows an FRectangle(4). Notice that we only draw the
zeroth column, the zeroth and the last rows; other columns
and rows are represented by grey dashed lines.

4.2 Routing in FRectangle
Before presenting the routing scheme, we introduce some
characteristics in FRectangle.

Characteristic 1. For fwo servers that belong to the same type of
rows, the communication between them may or may not need a
row of a different type to relay.

Illustration Given two servers in the same row, a;; and
a;;, we first consider the case when %2 = 0, i.e., the row is
a type A row. If |j/n] = |l/n], then a;; and q;; are con-
nected to the same row ToR switch, i.e., the |j/n|th ToR
switch in the row; otherwise, they are not connected in this
row. For the case when %2 = 1, the discussions are similar.
Moreover, for two servers, a;; and a;; that belong to the
same type of rows. The communication between them may
need a row of a different type to relay. Taking
1%2 = k%2 =0 as an example, if |j/n] # |[I/n], without
using a type B row, a;; and a;; will never be connected;
thus, the communication between a;; and a;; must need
server(s) in a type B row to relay.

Characteristic 2. For a rack of n/2 servers that are connected to
the same column ToR switch, there exists at least one server
belonging to a type A row, and at least one server belonging to
a type B row.

Illustration. There are n/2 > 2 servers connecting to the
kth column ToR switch in the jth column, i.e., servers a2 j,
Qi j2+1js - - » Qhnj2+n/2—1,5- SiNCe rows choose type A and type
B interconnections in an interleaved fashion, this character-
istic follows directly.

LI ET AL.: TOWARDS THE TRADEOFFS IN DESIGNING DATA CENTER NETWORK ARCHITECTURES 267

Now, we are ready to consider the detailed shortest path
routing in FRectangle. We denote the source and destination
servers by a;; and ay; (0<4,k<n?/2 —1and 0<j,1<n’-1),
respectively. If a; ; and a;; are in the same column, i.e., j=I,
the shortest path will be within the column. This case is
essentially the same as the basic case in FCell, and requires
no further explanation.

In the following, we consider the general cases where q; ;
and ay, are not in the same column. Based on the observed
characteristics, the types of rows that the source and desti-
nation belong to make the most important difference. Thus,
we classify the cases according to the row types of the
source and destination servers.

Case 1. The source, a;; belongs to a type A row, and the
destination, a;; belongs to a type B row, i.e., i%2 = 0 and
k%2 = 1. A packet from a; ; to a;; does not need to traverse
servers in rows other than the ith row and the kth row.
Notice that, a; j is connected to the |j/n]th row ToR switch
in the ith row; besides, servers, a; j/nn, @i |j/n|n+1> @i, j/n|n+2,
<5 @ |j/n|n+n—1 are also connected to the |j/n]th row ToR
switch in the ith row. Notice also that, a;; is connected to
the (I%n)th row ToR switch in the kth row; besides, servers,
e (1%n) s ey (1%n)+n > O (%m)+2n5 - -+ > B (I%n)+(n—1)n are also con-
nected to the ({%n)th row ToR switch in the kth row. Thus,
we can find the column number ¢* = |j/n|n + (1%n), such
that ;. is connected to the same row ToR switch as a;,
and that ay .+ is connected to the same row ToR switch as
ap;. We use a; .+ and ay, .+ as the first relay server and the sec-
ond relay server, to help forward packets from a;; to a;.
Notice that the shortest path from a; .+ to a .~ is in the same
column and requires no further explanation. Thus, the
shortest path from a;; to a;; consists of three segments: the
path from q; ; to a; ., which includes the [j/n]th row ToR
switch in the ith row, the shortest path from a;. to ay.,
and the path from aj+ to ay;, which includes the (1%n)th
row ToR switch in the kth row. Cases where q; ; is identical
to a; .+, and/or ay is identical to ay,, are just special cases
which require no further explanation.

Case 2. Source q; j belongs to a type B row, and destina-
tion ai; belongs to a type A row, i.e., i%2 = 1 and k%2 = 0.
The situation is very similar to the previous one. The short-
est path can be constructed by reversing the source and des-
tinations; thus, we omit further discussion here.

Case 3. Source a; ; and destination a;; both belong to type
A rows, i.e., i%2=k%2=0. We need to consider which col-
umns that the source and destination are in. Notice that in
this case, whether i is or is not equal to k£ makes little differ-
ence. If |j/n]=[l/n], then g, ; is connected to the | j/n|th row
ToR switch in the ith row, and ay, is also connected to the
|j/n]th (|I/n]th) row ToR switch in the kth row. Thus, we
can choose a;; as the relay server for forwarding packets from
a;; to ayy. The shortest path consists of two segments: the
path from a; ; to a;;, and the shortest path from a;; to a;; in
the Ith column. Notice that, we can also choose qy; as the
relay server. If | j/n]#[l/n], according to Characteristic 1, we
need servers in a type B row to relay packets from a; ; and
a.;. We choose a server that connects to the same column
ToR switch as of a; ;'s, and that belongs to a type B row as the
first relay server; we denote the server as a,~ ;. Notice that, we
can always succeed in choosing a,:; according to

|
isource

I first relay server

second relay server third relay server destination

Fig. 5. Shortest path for the case when the source and destination both
belong to type A rows.

Characteristic 2. The second relay server is chosen as
@y |1/n|ng%n, Which connects to the same (j%n)th row ToR
switch in the r*th row, as a,+ ; does. The third relay server is
chosen as aj |1/ |nij%n, Which connects to the same |I/n|th
row ToR switch in the kth row, as a;,; does. The shortest path
from a,« |1/, nijoin O k|1/n|nsj%n 1S Within the (|1/n]n+j%n)th
column, and requires no further explanation. Then, the
shortest path from a; ; to a;,; consists of at most four seg-
ments: the path from a;; to the first relay server, which
includes one switch; the path from the first relay server to
the second relay server, which includes one switch; the short-
est path from the second relay server to the third relay server,
which includes at most three switches; and the path from the
third relay server to a;;, which includes one switch. Path 1 in
Fig. 5 is the shortest path if we choose the first relay server in
the same column as of a; ;’s. We can actually choose the first
relay server in the same row as of a; ;’s; a simpler way to see
this is that we can swap the roles of the source and destina-
tion, and still choose the first relay server in the same column
as of the new source’s. Path 2 in Fig. 5 is an alternative short-
est path from the source to the destination.

Case 4. The source q¢; ; and destination a;,; both belong to
type B rows. The shortest path construction is similar to the
case when they both belong to type A rows. We omit further
discussions here.

4.3 FRectangle Basic Properties

Property 7. In an FRectangle(n), the number of servers is
N, = n'/2, and the number of switches is N,, = 2n?.

Proof. In an FRectangle(n), there are n?/2 rows and n? col-
umns of servers. Thus, N,=n*/2. In each column, there
are 3n/2 switches; in each row, there are n switches.
Thus, N,,=3n/2xn?+nxn?/2=2n>. 0

Property 8. FRectangle(n) has a diameter of d=6d,,+4d,,.

Proof. According to the shortest path routing scheme in
FRectangle, the maximum length of the shortest path is
achieved in the case when the source and destination
belong to rows of the same type. In this case, the shortest
path consists of at most four segments: the paths from the
source to the first relay server, from the first relay server
to the second relay server, from the second relay server to
the third relay server, and from the third relay server to
the destination. The first, second, and the fourth segment
each consist of only one switch. The third segment is a
shortest path between two servers in the same column,
and thus consists of at most three switches. According to
Egs. (1) and (2), the diameter of FRectangle is d=3d,, +
3dy+(34+1)d,=6d,+4d,. O

268 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1,

o
=
N
w

©O® OO 06 &N

© 006006
©O0O00000&
© 0000006 &
QOO0
©O 06606 &
©O 06606 6
© 00000606

Fig. 6. FSquare(4). We consistently use rectangles to represent
switches and circles to represent servers, respectively.

Property 9. The bisection bandwidth of an FRectangle(n) is
B=N, /4.

Illustration. Cutting a column of FRectangle into two
halves requires removing n?/4 links, while there are n? col-
umns. Thus, cutting through columns requires removing
n*/4 links. However, cutting rows is different. Actually, if
we consider a single row each time, no links need to be
removed, since servers in each row are not fully connected,
and they are already partitioned into two equal halves. Take
a look at any type A row, and it is not difficult to find out. If
we consider a type A row and a type B row together, we can
see these two rows are connected through columns. An intui-
tive way to cut rows is to cut through the middle. For a pair of
two rows consisting of one type A row and one type B row,
the links to be removed consist of only links removed in the
type B row, which is n? /2, since each server in the first half of
a type B row has an exclusive path to a server in the second
half of the row. Notice that, we have n?/4 type A rows and
n?/4 type B rows; thus, we have n?/4 such two-row pairs.
Thus, cutting FRectangle into two halves through the rows
requires removing n?/2xn?/4=n'/8 links. The bisection
bandwidth is B=min{n*/4,n*/8}=N, /4.

Property 10. The DCN power consumption per server of an
FRectangle(n) is py=4p.,/n + 2pnic + P juwd-

Proof. The switch-number to server-number ratio in an
FRectangle(n) is N,,/N, = 2n?/(n'/2) = 4/n. In an FRec-
tangle, each server uses two NIC ports, and servers may
be involved in relaying packets. O

Property 11. The number of server-disjoint parallel paths
between two servers that belong to different row types, with
path length n,d,, + (n, + 1)d,, where d,, < 2, is 1.

Illustration. When the source and destination belong to
different row types, i.e., as in Case 1 in Section 4.2, the
column number ¢* = |j/n|n+ (I%n) is uniquely deter-
mined. Also, we can easily tell that, the number of servers
(excluding the source and destination) in the path is 2, i.e,
@ c* and Q.+

JANUARY 2017

Property 12. The number of server-disjoint parallel paths
between two servers that belong to the same row type, with
path length n,d,+(n+1)d,, where d, < 3, is at most n” /2.

Illustration. When the source and destination belong to
the same row types, as in Case 3 of Section 4.2, we need two
other servers in a different row type to relay the packet.
Since we have a total of n%/2 rows, where half of the rows
are type A rows, and half of the rows are type B rows, we
have n?/4 choices from which to choose a row with a differ-
ent row type. Given the relay row, we still have two choices
to construct such a path, as shown in Fig. 5. Thus, we have
n?/2 such paths. For each of these paths, the number of serv-
ers in the path (excluding the source and destination) is at
most 3.

5 FSQUARE

5.1 FSquare Construction

We now introduce our FSquare architecture. Each column
and each row of FSquare forms a basic building block, the
cluster. We denote the server located at the ith row and the
jth column by a;; (0<i,j<n?/2—1). We number the ToR
switches sequentially, such that a; ;'s row ToR switch is the
|7/(n/2)]th ToR switch in the ith row, and that a; ;s column
ToR switch is the |i/(n/2) |th ToR switch in the jth column.
An FSquare(4) is shown in Fig. 6, where we only draw the
zeroth row and the zeroth column; other rows and columns
are represented by grey dashed lines.

5.2 Routing in FSquare

We consider shortest path routing in FSquare(n). Denote the
source and destination servers as a;; and ay; (0<4,j,k,
I<n?/2-1), respectively. If the source and destination servers
are in the same row, or in the same column, the shortest
path is within the local row cluster or column cluster, and
requires no further explanation. If i#k and j#l, we can
choose one from two relay servers: a;; and a; ;. The shortest
path from source to destination consists of the shortest path
from the source to the relay server, and the shortest path
from the relay server to the destination. The two choices
mean that we can traverse along the row first or along the
column first.

5.3 FSquare Basic Properties

Property 13. In an FSquare(n), the number of servers is
N, = n'/4, and the number of switches is N,, = 3n>/2.

Proof. The number of servers in each row and in each col-
umn is n?/2; and the number of switches in each row and
in each column is n+n/2=3n/2. The architecture has
n?/2 rows and n?/2 columns. Thus, N,=n?/2xn?/2=
n*/4;and N, =3n/2xn?/2x2=3n3%/2. o

Property 14. FSquare(n) has a diameter of d=06d,,+2d,.

Proof. Obviously, the longest shortest path in an FSquare is
between two servers that are neither in the same row nor
in the same column. We consider two servers, a; ; and az,
where i # k and j # [. A shortest path from a; ; to a;; can
be the shortest path from a; ; to a;; plus the shortest path
from a;; to aj;. Though a;; and a;; may connect to the

LI ET AL.: TOWARDS THE TRADEOFFS IN DESIGNING DATA CENTER NETWORK ARCHITECTURES

same switch, in the worst case, the shortest path from a; ;
to a;; consists of three switches. Similarly, in the worst
case, the shortest path from a;; to a;; also consists of three
switches. According to Egs. (1) and (2), the diameter of an
FSquare(n) is d=6d,,+2d,.]

Property 15. The bisection bandwidth of an FSquare(n) is
B=N,/2.

Ilustration. Since FSquare(n) is highly symmetric, we
can cut the architecture into two equal halves through either
all the rows or all the columns. Without loss of generality,
we choose to cut through all the rows. We first consider cut-
ting one row. Recall that there are n?/2 servers in each row.
The first half (n?/4) of servers can have an exclusive path to
another server in the second half. Thus, cutting one row of
servers into two equal halves requires removing n*/4 links.
Notice that there are n%/2 rows in total; to cut the whole
architecture into two equal halves, we need to remove
n?/4 x n?/2 = n*/8 links. Thus, the bisection bandwidth of
an FSquare(n) is B =n'/8 = N,/2.

Property 16. The DCN power consumption per server of an
FSquare(n) is py=06p./n + 2Pnic + P fuwd-

Proof. The switch-number to server-number ratio in an
FSquare(n) is N,/ N,=(3n/3)/(n*/4)=6/n; in an FSquare,
each server uses two NIC ports, and servers may be
involved in forwarding packets for other servers. 0

Property 17. The number of server-disjoint parallel paths
between two servers that are not in the same row and not in the
same column, with path length n,d, + (n,+ 1)d,, where
d, <1,is 2.

Illustration. The shortest path from the source to the desti-
nation can be row first or column first.

Property 18. The number of server-disjoint parallel paths
between two servers that are not in the same row and not in the
same column, with path length n,d, + (n,+ 1)d,, where
dy, <2,isn? —2.

Illustration. We can construct a path with at most two
relay servers as follows: randomly choose the first relay
server from the same row, then from the first relay server,
construct the remaining path by column-first shortest path
routing; or, randomly choose the first relay server from the
same row, then from the first relay server, construct the
remaining path by row-first shortest path routing. It is easy
to see that such paths are server-disjoint. Since we have
n?/2 —1 choices in choosing the first relay server in the
same row, and n? /2 — 1 choices in choosing the first relay
server in the same column, we have n?> — 2 such paths.

6 RELATED EXISTING WORKS

DCN architecture design is an active research area [28], [29],
[30]. In this section, we survey important existing DCN
architectures that are classified as switch-centric architec-
tures or server-centric architectures.

Typical switch-centric architectures include folded-Clos
[16], Fat-Tree [8], Flattened Butterfly [7], and HyperX [16].
We denote a folded-Clos DCN architecture with [levels of

269

n-port switches with by FDCL(n,). The switch-number to
server-number ratio in an FDCL(n,!l) is N,/N,=(2I-1)/n.
Fat-Tree is actually a folded-Clos with three levels, i.e.,
FDCL(n, 3). In a Flattened Butterfly (FBFLY), switches form
a generalized hypercube [31]. Then, each switch is connected
to a set of ¢ servers. An FBFLY with k£ dimensions and r
switches along each dimension is denoted by FBFLY(r, k, c).
The switch-number to server-number ratio is N,,/N,=1/c. If
the numbers of switches in each dimension are different in
an FBFLY, it becomes the HyperX architecture.

Typical server-centric architectures include BCube [9],
SWCube [11], DPillar [10], DCell [12], and FiConn [14]. In a
BCube(n, k) the switch-number to server-number ratio is
(k+1)/n and its diameter is (k+1)(d,+d,). It uses k+1 NIC
ports on all the servers; its DCN power consumption per
server is py=(k+l)pw/nt+(k+1)prictpswa. The diameter of
SWCube(r, k) is d=(k+1)(dytd,). The diameter of
DPillar(n, k) is d=(k+|k/2|)(d,+d,). The switch-number to
server-number ratios of SWCube and DPillar are both 2/n,
and they both use two NIC ports on all the servers; thus,
their DCN power consumption per server values are both
Pv=2pw/12Pnictp - For DCell and FiConn, their switch-
number to server-number ratios are both 1/n. DCell(n, k)
uses k+1 NIC ports on each server; in FiConn(n, k), the aver-
age number of NICs used on a server is 2—1/2*. The diame-
ters of DCell(n,2) and FiConn(n,2) are both d=4d,+7d,. In
DCell(n, 2), py=puw/1+3pnictp jwa- In FiConn(n, 2), py=p,,/n+
7pn7ic/ 4+3p fwd / 4.

7 COMPARISONS OF VARIOUS DCN
ARCHITECTURES

On Comparison of Diameter and DCN Power
Consumption Per Server
We compare various DCN architectures, constructed by the
same homogenous servers and switches, with comparable
numbers of servers. For architectures using 24 and 48-port
switches, basic quantitative comparisons are presented in
Table 1. Typical data centers have tens of thousands, or hun-
dreds of thousands of servers, and the world’s largest data
centers can achieve one or two million. The numbers of
servers in the table meet the needs of practical data centers.

Switch-centric architectures usually have a small diame-
ter and a large bisection bandwidth. However their switch-
number to server-number ratio is usually large, resulting in
a large DCN power consumption. BCube also has a large
bisection bandwidth; but it needs to use four levels of
switches to reach a comparable DCN, and consequently
four NIC ports on all the servers; this results in a large DCN
power consumption. Other server-centric architectures,
such as SWCube, DPillar, DCell and FiConn, use much
fewer switches, though a small number of extra NIC ports
are required on servers; their power consumption is lower
than switch-centric architectures and BCube. However,
they rely heavily on servers for packet forwarding; even the
maximum shortest paths contain a considerable number of
servers (usually >5 for them to scale to a comparable net-
work size), which results in large end-to-end delays;
besides, their bisection bandwidths are much lower.

We regard the delay on a switch, d,, as 1, and vary the
delay on a server, d, from 1 to 5. Fig. 7a shows the diameters

71

270 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1, JANUARY 2017
TABLE 1
Comparison of Various DCN Architectures
N,(n=24) N,(n=18) N,/N, d B oy

FDCL(n, 3) 3,456 27,648 5/n 5d,+d, N./2 5w/ + Pric
FDCL(n,4) 41,472 663,552 7/n Td+d, N,/2 TDw/M + Pric
FBELY (4,7, 3) 49,125 - 8/24 8d,+d, N,/3 8D/ 24 + Pric
FBELY(8, 6, 6) - 1,572,864 8/48 Td,+d, N,/3 8P /48 + Pric
FSquare(n) 82,944 1,327,104 6/n 6d,+2d, N,/2 6pw/n + 2Ppic + Dfud
FRectangle(n) 165,888 2,654,208 4/n 6d,,+4d, N, /4 4pu/1 + 2Pnic + Dfud
FCell(n) 83,232 1,328,256 3/n 6d,+3d, N,/4 3Pw/M + 2Ppic + Dfud
BCube(n, 3) 331,776 5,308,416 4/n 4d,+4d, N,/2 4P/ 1 + APnic + Pfud
SWCube(r, 4) 28,812 685,464 2/n 5d,+5d, (N,/8) xr/(r—1) 2D/ 1+ 2Ppic + Pjuwd
DPillar(n, 4) 82,944 1,327,104 2/n 6d,,+6d, N, /4 /1 + 2nic + Dfud
DCell(n,2) 360,600 5,534,256 1/n 4d,~+7d, > N,/(4log,N,) Puw/ T+ 3Pnic + Pfuwd
FiConn(n, 2) 24,648 361,200 1/n 4d,+7d, > N,/16 Puw/1 + TPpnic/4 + 3D fuwa/4

of various DCN architectures. FCell has a lower diameter
than all server-centric architectures when d, > 2, which
reflects most practical situations. For switches with n=48 1
Gbps ports and 1 Gbps NIC ports, we set p, =150 and
Dnic=2. We vary py,q from 1 to 10. Fig. 7b shows the DCN
power consumption per server of various architectures.
When py,q < 4, which also reflects most practical situations,
FCell consumes less power than switch-centric architectures
and BCube(n,3). Also, FCell has a satisfiable bisection
bandwidth of N, /4. We can see that FCell reflects a tradeoff
design between network performances and DCN power
consumption.

7.2 On Comparison of Diameter and Average
Shortest Path Length of FCell, FRectangle,
and FSquare

Notice that, from FCell to FRectangle and FSquare, the num-
ber of switches per server in the architecture are increasing
(from 3/n, to 4/n, and to 6/n). However, the diameters of
the three architectures are not strictly reducing. FSquare
architecture uses the greatest number of switches among
the three and has the lowest diameter, 6d,, + 2d,. FRectangle
and FCell use fewer switches; thus, their diameters are
larger. However, the diameter of FRectangle is greater than
FCell, while the number of switches per server is greater
than that of FCell. It seems that, they are not following the
expected trend. We discover that, though FCell has a lower
diameter than FRectangle, a majority of the server pairs
have a shortest path whose length is equal to the diameter.
Although, FRectangle has a larger diameter, only about half
of the server pairs have a shortest path whose length is
equal to the diameter, for the remaining pairs of servers, we
have much shorter shortest path length than the diameter.

354

35 —=—FDCL(n3)
—e—FDCL(n.4)
—4— FBFLY(8,6,6)
—v—FSquare(n)
FRectangle(n)
25 —<—FCeli(n)
BCube(n3)

—a—FDCL(N3)

8

N

—e—FDCL(n4)
—A— FBFLY(8.56,6)

on per Server

—e— SWCube(r4)
—#— DPillar(n.4)
—e—DCell(n2)
—%— FiConn(n.2)

Diameter

T T T T T
1 2 3 4 5 6 7 2 4 6 8 10 12 14
Delay on Server Power Consumption of Server's Packet Forwarding Engine

(a) Diameters vs. dy. (b) pv vs. prwa-

Fig. 7. Comparison of various architectures (n = 48). Notice that, some
of the lines are overlapped.

To verify this observation, we calculate the average path
length (APL) of the three architectures and compare them.
The results are shown in Table 2.

7.3 Additional Discussions on the Three Proposed
Architectures

Again, in this paper we are not to provide the best architec-
ture in any sense; instead, our purpose is to present example
tradeoff designs for DCN architectures. FCell uses the least
number of switches among the three. In FCell, for each pair
of two clusters, there is only one pair of servers from the
two clusters, respectively, that are directly connected to
each other; this indicates a severe bottleneck on the single
link, and limited bandwidth between two clusters, although
detour routing can help to mitigate the problem to some
degree. Due to the limited number of shortest paths
between two servers in FCell, we can expect FCell to have
poor adaptive routing performances. Thus, FCell is only
good for scenarios where the inter-cluster communication is
minimal. Typical application cases for FCell include inter-
mittent backup from one cluster to another cluster, and sep-
arated clusters for independent groups/organizations that
have minimal interactions, etc. FSquare uses the greatest
number of switches among the three; this provides abun-
dant connections between servers in the architecture. Thus,
FSquare has good performances even when inter-cluster
communications are intensive. Since FSquare have abun-
dant shortest paths between two servers, we can expect
FSquare to have even better performances when adaptive
routing is taken into consideration. Typical application
cases for FSquare can be distributed file systems, and big
data processing frameworks such as Hadoop and Spark,
etc. FRectangle can be used for cases where the inter-cluster

TABLE 2
Average Path Length and Diameter Comparison

d, 1 2 3 4 5
FCell d 9.000 12.000 15.000 18.000 21.000
ASPL 8547 11492 14438 17.384 20.329
FRectanele d 10.000 14.000 18.000 22.000 26.000
8¢ ASPL 8492 11.821 15150 18479 21.808
FSquare d 8.000 10.000 12.000 14.000 16.000
! ASPL 7613 9.585 11.558 13.530 15.503

LI ET AL.: TOWARDS THE TRADEOFFS IN DESIGNING DATA CENTER NETWORK ARCHITECTURES 271

1200

—a— APL of shortest path routing 1000
4004 _e— ADT of shortest path routing
—a— APL of detour routing

800

—v— ADT of detour routin,

300

600

200 400

—a— shortest path routing
—e— detour routing

Aggregate Throughput

100 200

0

0

3000
254
2500 —®*— APL of shortest path routing
—e— ADT of shortest path routing 204
20004 A APL of detour routing
—v— ADT of detour routing
] detour routing

——35—3 31 0

1500

1000 -

500 -

Aggregate Throughput

0

T T T T
200000 300000 400000 500000
Number of Flows

(b) AggTh.

Fig. 8. APL, ADT and AggTh versus no. of flows (random traffic).

+ T T T T T t T
0 100000 200000 300000 400000 500000 0 100000
Number of Flows

(a) APL and ADT.

communications are light to modest. Typical application
cases for FRectangle include three-tier web applications,
and applications that use light-weight Message Passing
Interface (MPI) communications etc.

8 EVALUATIONS

We develop a proprietary simulator to conduct routing sim-
ulations in FCell, FRectangle, and FSquare. Modern
switches, even low-end ones may have very complex designs
inside. We do not intend to model all the details, and just
build a basic model for store-and-forward switches. Both
switches and servers are assumed to have 1 Gbps full duplex
ports. We consider single-packet flows and a fixed packet
size. Thus, we have a fixed transmission delay, which is con-
sidered as one unit of time, i.e., d,,;/=d, ;=1. This time unit has
a typical value around 2 us. The switch’s and the server’s
processing delays, d,,, and d,,, are normalized by this time
unit. We set the switch’s processing delay d,,,=1, and set the
server’s processing delay d,,=4. Queuing delay happens
when multiple packets compete for the same output port
(either on a switch or on a server) simultaneously.

All of the flows are generated and pushed to the network
at the same time. We calculate the Aggregate Throughput
(AggTh), the Average Path Length and the Average Deliv-
ery Time (ADT) of simulations. Aggregate throughput is
defined as the average amount of data transmitted in one
unit of time when all the flows are delivered to their desti-
nations, i.e., the total data amount divided by the maximum
delivery time among all flows. For APL, the path lengths
are calculated based on our unified definition in (1).

8.1 Simulation for FCell

In simulations for FCell, we consider two traffic patterns:
random and bursty traffic patterns [14], for both Shortest
Path Routing and Detour Routing. In random traffic pat-
terns, the source server and the destination server of each
packet are randomly generated among all the servers. In
bursty traffic patterns, servers in one cluster of FCell have a
flow destined at other servers in another cluster. We choose
the zeroth cluster and the first cluster as the source and des-
tination clusters, respectively. In both traffic patterns, we
can choose different numbers of flows to be generated, to
reflect different traffic loads in the network.

We conduct simulations on a complete FCell(12). The
number of servers in one cluster is Ns!"=122/2=72. The
total number of servers is N,=5, 256. For random traffic, we
vary the number of flows from 657 to 525,600; for bursty
traffic, we vary the number of flows from 9 to 5,760. Step
sizes are different in different ranges.

T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of Flows Number of Flows

(a) APL and ADT. (b) AggTh.
Fig. 9. APL, ADT and AggTh versus no. of flows (bursty traffic).

Fig. 8 shows the performances of the two routing schemes
under random traffic. As we can see, APLs of SRouting and
DRouting remain constant, because APLs do not depend on
the number of flows. APL of DRouting is greater than that of
SRouting, because DRouting does not choose the shortest
path. When the number of flows is small, the aggregate
throughput increases almost linearly with the number of
flows, and ADTs are very close to APLs; this is because the
network has a very light traffic load and the main end-to-end
delays come from processing delays and transmission delays,
instead of queuing delays. When the number of flows is large,
the increase of aggregate throughput becomes slower and
slower and ADTs of both SRouting and DRouting increase
almost linearly; this is because the network tends to be satu-
rated and queuing delays become an important part of end-
to-end delays. Notice that the upper bound of the aggregate
throughput is the bisection bandwidth B=N, /4=1, 314. When
the number of flows is 525,600, SRouting achieves an aggre-
gate throughput of 1,142.6, which is 87.96 percent of the ideal
maximum throughput. Thus, SRouting has good performan-
ces under random traffic. DRouting has a lower aggregate
throughput because it has a larger maximum delivery time.

Fig. 9 shows the performances of the two routing schemes
under bursty traffic. Though APL of DRouting is greater than
that of SRouting, when the number of flows increases, ADT of
DRouting is much smaller than that of SRouting. This is
because DRouting experiences significantly less queuing
delay by avoiding the congested link. When the number of
flows increases, the aggregate throughput of SRouting is
limited by the capacity of the congested link, 1, while the
aggregate throughput of DRouting continues increasing sig-
nificantly, because DRouting largely avoids the congested
link and can use other links’ capacities. Notice that, under
bursty traffic, the aggregate throughput is also upper
bounded by the sending and receiving rates of servers in the
two clusters. If on average, only half of the servers are sending
packets at each time unit, it indicates an upper bound on the
maximum aggregate throughput of N7" /2=36. It takes
some effort to calculate the true upper bound; we just want to
show that this is the reason why the aggregate throughput of
DRouting tends to approximate an upper bound around 23.5.
We can see that DRouting helps both reducing ADTs and
increasing the aggregate throughput under bursty traffic.

8.2 Simulation for FRectangle and FSquare

In simulations for FRectangle and FSquare, we consider
their shortest path routing for three typical traffic patterns
in data centers, referring to [32]. In Random traffic pattern,
for each flow, the source and destination servers are

272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1,

—a— APL_Random
—e— APL_Incast
—A— APL_Shuffle
—v— ADT_Random
—— ADT_Incast
—<— ADT_Shuffle

—a— AggTh_Random
—e— AggTh_Incast
—4— AggTh_Shuffle

T T T T T T T T T T T
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000

Number of Flows

(a) APL and ADT.

Number of Flows

(b) AggTh..

Fig. 10. APL, ADT and AggTh versus no. of flows in FSquare.

randomly chosen among all of the servers. In Incast traffic
pattern, a server receives traffic flows from multiple random
servers in the network; this traffic pattern simulates the
shuffle stage of the widely-used MapReduce framework;
we assume that a server receives flows from 10 other ran-
dom servers. In rack Shuffle traffic pattern, servers in a rack
send traffic flows to servers in several different racks; this
simulates the traffic when the administrator is trying to bal-
ance the load between racks through VM migration; this
traffic pattern is common in elastic data centers, where serv-
ers are turned off at off-peak hours; in our simulations, we
assume that servers in a column rack send traffic flows to
servers in other column racks.

We choose switch port number, n=12. In an FSquare(12),
the number of servers is N,=(121)/4=5,184. We vary the
number of flows from 1,000 to 550,000. In an FRectangle(12),
the number of servers is N,=10, 368. We vary the number of
flows from 1,000 to 1,100,000.

Figs. 10 and 11 show the performances of FSquare and
FRectangle in various traffic conditions, respectively. When
the number of flows is small, the AggTh values under all traf-
fic patterns increase almost linearly. When the number of
flows is large, the increasing rates of the AggTh becomes
smaller and smaller. This means that the network is becoming
more and more congested. As the number of flows increases
significantly and becomes congested, the ADTs in FSquare
and FRectangle only increase linearly. We can see that both
architectures can achieve satisfyingly large AggThs. Random
traffic is expected to achieve the best performances in all cases,
because it automatically balances the traffic among the net-
work. Shuffle traffic achieves performances comparable to
Random traffic. We can see that, both FSquare and FRectangle
do not place extra bottlenecks on the Shuffle traffic. In the
Incast traffic, a server received 10 flows from 10 different other
servers. Thus, the server NIC ports themselves become the
congested points, and the performances of the Incast traffic
are always the worst among the three. We can see that the

—a— APL_Random 4000
90 —e— APL_lIncast
—a— APL_Shuffle
—v— ADT_Random 3000
70 —&— ADT_Incast
—<—ADT_Shuffle

2000

—®—AggTh_Random
—e—AggTh_incast
—A—AggTh_Shuffle

1000

T T T T T
200000 400000 600000 800000 1000000
Number of Flows

(b) AggTh.

T T T T T T t
0 200000 400000 600000 800000 1000000 0

Number of Flows

(a) APL and ADT.

Fig. 11. APL, ADT and AggTh versus no. of flows in FRectangle.

JANUARY 2017

performances of the Incast traffic are quite close to those of
Random and Shuffle in FRectangle. The reason is that, in
FRectangle, the reduced row switches place greater bottle-
necks for all traffic patterns. The influence of the Incast
traffic’s own congestion points is less significant.

We can see that, FSquare can achieve very good perform-
ances under various traffic conditions, while FRectangle’s
performances are worse than those of FSquare.

9 CONCLUSION

In this paper, we consider the tradeoffs in designing DCN
architectures. We present a unified path length definition
and a DCN power consumption model for general DCNss, to
enable fair and meaningful comparisons among various
DCNs. We introduce a novel category of DCN architectures:
the dual-centric architectures. We propose three novel dual-
centric DCN architectures: FCell, FRectangle, and FSquare.
By comparing them with existing architectures and by inves-
tigating themselves, we show that the three architectures
have various nice properties for practical data centers, and
provide flexible choices in designing DCN architectures.

Future works can be cast in, but are not limited to, the fol-
lowing directions: 1.) designing efficient and /or adaptive rout-
ing schemes for the proposed architectures; 2.) exploring other
possible dual-centric architectures that also have appealing
properties; 3.) designing dual-centric architectures where each
server uses more than two NIC ports; and 4.) exploring the limi-
tations of the dual-centric design philosophy, and how to con-
trol and apply them in practical DCN designs.

ACKNOWLEDGMENTS

This research was supported in part by US National Science
Foundation grants CNS 1449860, CNS 1461932, CNS
1460971, CNS 1439672, CNS 1301774, ECCS 1231461, and
NSEC grants 61520106005, 61521092.

REFERENCES

[11 S. Sung, C. Youn, E. Kong, and J. Ryou, “A distributed mobile
cloud computing model for secure big data,” in Proc. Int. Conf. Inf.
Netw., 2016, pp. 312-316.

[2] W.Changand]. Wu, “Reliability enhanced social crowdsourcing,”
in Proc. IEEE Global Commun. Conf., 2015, pp. 1-6.

[3] W. Chang and J. Wu, “Progressive or conservative: Rationally
allocate cooperative work in mobile social networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 7, pp. 2020-2035, Jul. 2015.

[4] S.Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. 19th ACM Symp. Operating Syst. Principles, 2003, pp. 29-43.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
Jan. 2008.

[6] M.Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,”
in Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007,
pp- 59-72.

[7]1 D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu,
“Energy proportional datacenter networks,” in Proc. 37th Annu.
Int. Symp. Comput. Archit., 2010, pp. 338-347.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM SIGCOMM
Conf. Data Commun., 2008, pp. 63-74.

[91 C. Guo, et al., “BCube: A high performance, server-centric net-

work architecture for modular data centers,” in Proc. ACM SIG-

COMM Conf. Data Commun., 2009, pp. 63-74.

Y. Liao, D. Yin, and L. Gao, “DPillar: Scalable dual-port server

interconnection for data center networks,” in Proc. 19th Int. Conf.

Comput. Commun. Netw., 2010, pp. 1-6.

[10]

LI ET AL.: TOWARDS THE TRADEOFFS IN DESIGNING DATA CENTER NETWORK ARCHITECTURES 273

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

D. Li and J. Wu, “On the design and analysis of data center net-
work architectures for interconnecting dual-port servers,” in Proc.
IEEE INFOCOM, 2014, pp. 1851-1859.

C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A scal-
able and fault-tolerant network structure for data centers,” in
Proc. ACM SIGCOMM Conf. Data Commun., 2008, pp. 75-86.

D. Guo, T. Chen, D. Li, M. Lj, Y. Liu, and G. Chen, “Expandable
and cost-effective network structures for data centers using dual-
port servers,” IEEE Trans. Comput., vol. 62, no. 7, pp. 1303-1317,
Jul. 2013.

D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “FiConn: Using
backup port for server interconnection in data centers,” in Proc.
IEEE INFOCOM, 2009, pp. 2276-2285.

Y. Zhang and N. Ansari, “On architecture design, congestion noti-
fication, TCP incast and power consumption in data centers,”
IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 39-64, Jan.-Mar.
2013.

J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-
scale networks,” in Proc. Conf. High Performance Comput. Netw.
Storage Anal., 2009, pp. 41:1-41:11.

A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers randomly,” in Proc. 9th USENIX Conf.
Networked Syst. Des. Implementation, 2012, pp. 17-17.

L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network
inspired data center architecture,” SIGCOMM Comput. Commun.
Rev., vol. 40, no. 5, pp. 4-12, Oct. 2010.

J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-world datacenters,” in
Proc. 2nd ACM Symp. Cloud Comput., 2011, Art. no. 2.

Y. Liu, J. K. Muppala, M. Veeraraghavan, D. Lin, and M. Hamdj,
Data Center Networks: Topologies, Architectures and Fault-Tolerance
Characteristics. Berlin, Germany: Springer, 2013.

L. Gyarmati and T. A. Trinh, “How can architecture help to
reduce energy consumption in data center networking?” in Proc.
1st Int. Conf. Energy-Efficient Comput. Netw., 2010, pp. 183-186.

J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach, 5th ed. Reading, MA, USA: Addison-Wesley, 2009.

A. Greenberg and D. A. Maltz, “What goes into a data center-sig-
metrics 2009 tutorial,” 2009. [Online]. Available: http:/ /research.
microsoft.com/apps/pubs/default.aspx?id=81782

G. Lu, et al., “ServerSwitch: A programmable and high perfor-
mance platform for data center networks,” in Proc. 8th USENIX
Conf. Networked Syst. Des. Implementation, 2011, pp. 15-28.

L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, and
I. Stoica, “A cost comparison of datacenter network architectures,”
in Proc. 6th Int. Conf. Emerg. Netw. Experiments Technol., 2010,
pp- 16:1-16:12.

Cisco nexus 2000 series fabric extenders data sheet, 2016.
[Online]. Available: http://www.cisco.com/c/en/us/prod-
ucts/collateral /switches/nexus-2000-series-fabric-extenders/
data_ sheet ¢78-507093.html

Intel gigabit ET, ET2, and EF multi-port server adapters, 2016.
[Online]. Available: http://www.intel.com/content/dam/doc/
product-brief/ gigabit-et-et2-ef-multi-port-server-adapters-brief. pdf
Z.Guo and Y. Yang, “On nonblocking multicast fat-tree data cen-
ter networks with server redundancy,” IEEE Trans. Comput.,
vol. 64, no. 4, pp. 1058-1073, Apr. 2015.

S. Xu, B. Fu, M. Chen, and L. Zhang, “Flyover: A cost-efficient and
scale-out data center network architecture,” in Proc. 24th Int. Conf.
Comput. Commun. Netw., Aug. 2015, pp. 1-8.

G. Qu, Z. Fang,]. Zhang, and S.-Q. Zheng, “Switch-centric data
center network structures based on hypergraphs and combinato-
rial block designs,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp- 1154-1164, Apr. 2015.

L. Bhuyan and D. Agrawal, “Generalized hypercube and hyper-
bus structures for a computer network,” IEEE Trans. Comput.,
vol. C-33, no. 4, pp. 323-333, Apr. 1984.

Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: A new
design element for low-latency DCNs,” in Proc. ACM Conf. SIG-
COMM, 2014, pp. 283-294.

Dawei Li received the bachelor's degree for
advanced class from the Department of Electron-
ics and Information Engineering, Huazhong Uni-
versity of Science and Technology, Wuhan, Hubei,
People’s Republic of China. He is working toward
the PhD degree in the Department of Computer
and Information Sciences, Temple University,
since September 2011. His research interests
include energy-aware task scheduling on multi-
cores/multiprocessors, network-on-chips, and
data center networks.

Jie Wu is the associate vice provost of interna-
tional affairs with Temple University. He also
serves as director of Center for Networked Com-
puting and Laura H. Carnell professor in the
Department of Computer and Information Scien-
ces. Prior to joining Temple University, he was a
program director of National Science Foundation
and was a distinguished professor with Florida
Atlantic University. His current research interests
include mobile computing and wireless networks,
routing protocols, cloud and green computing,
network trust and security, and social network applications. He regularly
publishes in scholarly journals, conference proceedings, and books. He
serves on several editorial boards, including the /EEE Transactions on
Service Computing and the Journal of Parallel and Distributed Comput-
ing. He was general cochair/chair for IEEE MASS 2006, IEEE IPDPS
2008, IEEE ICDCS 2013, and ACM MobiHoc 2014, as well as program
co-chair of IEEE INFOCOM 2011 and CCF CNCC 2013. He was an
IEEE Computer Society distinguished visitor, ACM distinguished
speaker, and chair of the IEEE Technical Committee on Distributed
Processing. He received the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award. He is a CCF Distinguished
Speaker and a fellow of the IEEE.

Zhiyong Liu received the PhD degree in com-
puter science from the Institute of Computing
Technology (ICT), Chinese Academy of Sciences
(CAS), China. He is the chair professor in ICT,
CAS. His current research interests include high
performance algorithm and architecture, parallel
processing, and bioinformatics.

Fa Zhang received the PhD degree in computer
science from the Institute of Computing Technol-
ogy (ICT), Chinese Academy of Sciences (CAS),
China. He is an associate professor in ICT, CAS.
His current research interests include bioinfor-
matics, biomedical image processing, and high
performance computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

