
Future Generation Computer Systems 74 (2017) 232–240
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Research and implementation of a distributed transaction
processing middleware
Jianjiang Li a, Qian Ge a, Jie Wu b, Yue Li a,∗, Xiaolei Yang a, Zhanning Ma a

a Department of Computer Science and Technology, University of Science and Technology Beijing, China
b Department of Computer and Information Sciences, Temple University, USA

h i g h l i g h t s

• A middleware-level distributed system is complemented for improving the performance of transaction processing.
• By making partition extension to Berkeley DB, this paper overcomes the disadvantage of non-support parallel writing across multiple nodes.
• Monitoring nodes of the distributed database system by the middleware ensures correct execution and migration of transaction.

a r t i c l e i n f o

Article history:
Received 1 September 2015
Received in revised form
8 January 2016
Accepted 30 January 2016
Available online 8 February 2016

Keywords:
Distributed system
Transaction processing
Middleware
Partition replication body

a b s t r a c t

Currently, increasingly transactional requests require high-performance transaction processing systems
as support. The performance of a distributed transaction processing system is superior to that of
traditional single-node transaction processing system, and the characteristic of multi-node determines
that distributed transaction processing systems should pay more attention to availability. For example,
in traditional single-node systems, the performance of Berkeley DB is high, but its shortcoming of not
supporting parallel writing across multiple nodes is weakening its availability and scalability in the
distributed environment. This paper has designed and implemented a middleware-level distributed
transaction processing system called POST, including a distributed database system called POSTBOX
which is based on Berkeley DB and data partition, and a distributed transaction processing middleware
called POSTMAN. POSTBOX inherits the availability of highly available Berkeley DB, and expands it with
data partition. By Partition Replication Body (PRB), POSTBOX overcomes the native weakness of highly
available Berkeley DB, which indicates that highly available Berkeley DB does not support parallel writing
across multiple nodes; POSTMAN is a middleware adapting PRB. POSTMAN monitors POSTBOX in real-
time via Partition Replication Body State Array (PRBSA), and ensures the correctness of transaction
processing and transactions migration in the case of node failure. The actual test results show that POST
possesses high availability, and has an obvious improvement of write performance compared with highly
available Berkeley DB.

© 2016 Published by Elsevier B.V.
1. Introduction

Historically, OnLine Transaction Processing (OLTP) [1] refers
to submitting traditional transactions such as ordering goods or
transferring payments to the OLTP system, based on Relational
DataBase Management System (RDBMS). With the rapid develop-
ment of Internet and Internet application, transaction occurs some
changes, one of the most significant features of which is the ex-

∗ Corresponding author.
E-mail addresses: lijianjiang@ustb.edu.cn (J. Li), greenday0925@gmail.com

(Q. Ge), jiewu@temple.edu (J. Wu), liyuepkoneal@outlook.com (Y. Li),
chinayangxiaolei@163.com (X. Yang), ningzhanma@163.com (Z. Ma).

http://dx.doi.org/10.1016/j.future.2016.01.021
0167-739X/© 2016 Published by Elsevier B.V.
plosive growth of transaction throughput [2]. For instance, excel-
lentmulti-user game based on theweb can produce a large amount
of interactions within one second, and the growth of smart phone
use and other mobile terminals has given rise to the development
of mobile transaction. These Internet applications produce more
transaction requests than the capability of the traditional OLTP sys-
tem, and it is difficult for RDBMS to deal with high concurrent
transaction requests. In addition, RDBMS cannot support expan-
sion without offline and distribution very well. For example, SQL
query [3] of a table with massive records in a relational database
management system will cost an amount of time. Although it can
be solved by data segmentation and table segmentation, it also
increases the difficulties of programming, data backup, database

http://dx.doi.org/10.1016/j.future.2016.01.021
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.01.021&domain=pdf
mailto:lijianjiang@ustb.edu.cn
mailto:greenday0925@gmail.com
mailto:jiewu@temple.edu
mailto:liyuepkoneal@outlook.com
mailto:chinayangxiaolei@163.com
mailto:ningzhanma@163.com
http://dx.doi.org/10.1016/j.future.2016.01.021

J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240 233
expansion and some other issues. In order to enhance the perfor-
mance of system, themost direct solution is to purchase amachine
which has stronger performance, but its higher cost is often pro-
hibitive for most enterprises.

Distributing data and loading it to multiple nodes by using
distributed database systems [4,5] is an effective method to
improve the performance of the transaction processing system.
Currently, application and deployment of a distributed system
are becoming known more and more widely, especially in the
background of expansion of cloud computing and big data [6,7].
Cloud computing [8,9] requires using low-cost servers instead
of expensive machines as a hardware infrastructure platform,
and obtains high availability and scalability through redundancy
between nodes. Berkeley DB [10] is a powerful key/value database
engine: its high availability version (referred to highly available
Berkeley DB) provides a distributed database solution based on
master–slave replication, with high availability and better reading
scalability. Berkeley DB provides full ACID [11] transactional
guarantees. This ensures that highly available Berkeley DB can
be applied not only to lower requirements for data consistency
(for example, state updates of social network users do not need
to immediately synchronize to the entire application), but also to
higher requirements for data consistency, such as financial systems
or order processing systems, because these systems are intolerable
to abandoning transaction and data consistency [12].

Highly available Berkeley DB supports high availability and
read scalability, it does not have write scalability, that is to say, it
does not support parallel write cross multiple nodes. In addition,
compared to building a centralized or client/server system, it is
quite difficult to build a truly distributed database system, because
distributed database systems may have multi-node failures and
problemswith security of data storing [13,14], inter-node commu-
nication is relatively complex. Middleware is an effective way to
solve the fault tolerance of distributed database systems, commu-
nication difficulties, and other problems. An effective distributed
transaction processing middleware [15–18] can effectively man-
age a distributed database system, and reduce the programming
difficulties.

In response to these problems, this paper designs and im-
plements a distributed transaction processing middleware sys-
tem called POST, which consists of a distributed database system
called POSTBOX based on Berkeley DB and data partition, and a
distributed transaction processing middleware called POSTMAN.
POSTBOX makes partition extension to highly available Berkeley
DB, and overcomes the problem that Berkeley DB does not support
parallel write cross multiple nodes via Partition Replication Body
(PRB). POSTMAN, which is deployed on top of POSTBOX, and fully
adapted to the PRB of POSTBOX, can provide an access interface
for the interaction application and POSTBOX. POSTMAN monitors
the status of each node of POSTBOX by Partition Replication Body
State Array (PRBSA), and ensures correct execution and migration
of transaction when a node fails through an efficient scheduling
mechanism.

The rest of this paper is organized as follows. Section 2 describes
the highly available of Berkeley DB. Section 3 describes the system
architecture of POST, and introduces the distributed database sys-
tem called POSTBOX based on Berkeley DB and data partition, and
distributed transaction processing middleware called POSTMAN.
Section 4 provides analysis of the availability and performance of
the POST system. Section 5 provides experimental results and anal-
yses. Section 6 introduces related work. Finally, this paper makes
a summary in Section 7.

2. High availability of Berkeley DB

Berkeley DB achieves high availability by the replication group.
Replication group is a collection of Berkeley DB environments
Fig. 1. Replication stream of highly available Berkeley DB.

distributed on different physical nodes. Nodes in replication group
have the following three states:

(1) Master: ‘‘Master node’’ is chosen by a simple majority of
electable nodes. It can process both read and write transac-
tions.

(2) Replica: ‘‘Replica node’’ is in communication with a Master
node via a replication stream which is used to keep track of
changes made at the Master node. It only supports read trans-
actions.

(3) Detached: ‘‘Detached node’’ has been shut down. It is still a
member of the replication group, but is not an active node. A
node that is not in the detached state is also referred to as being
active.

There is only one Master node in the replication group. The
Master node can read andwrite data, and the Replica node can only
read data. The Master node and Replica node both belong to active
nodes in the replication group. One node in a detached statemeans
that this node is not an active node, and it is still a member of a
replication group. The following introduces a replication group in
two aspects of the replication stream and generation mechanism
of the Master node.

2.1. Replication stream

Write transactions executed on a Master node are replicated
to Replica nodes by a logical replication stream established on
a TCP/IP connection. This connection is a dedicated connection
between a Master node and each Replica node. Replication stream
contains some descriptions of the logical changes. These logical
operations are computed from log entries of the current Master
node and are replayed at each Replica node by an efficient internal
replay mechanism.

As shown in Fig. 1, there are four nodes in a replication group,
including a Master node and three Replica nodes. The Master node
has completed eight write operations (the log entry is represented
by awhite and gray triangle), and because the progress of the three
Replica nodes is behind the Master node, the Master node sends
log entries to all Replica nodes by a replication stream (dashed line
with an arrow), so that all Replica nodes can replay according to
the log entry to keep up with the progress of the Master node.
In a replication group, Replica nodes are distributed to multiple
physical machines, so this can ensure that a single failure cannot
affect other nodes.

2.2. The generation process of master node

In a replication group, only the Master node has write access.
When it is shut down, it is essential for the replication group to
regenerate a new Master node. The generation of a Master node is
influenced by two factors: the log progress and the priority of the

234 J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240
Fig. 2. The generation process of Master node of highly available Berkeley DB.

Fig. 3. System architecture of POST.

Replica nodes. A replication group generates a new Master node
by comparing the priority of nodes (highly available Berkeley DB
stipulates that priority is a non-negative integer. The nodewith the
maximum priority will become the Master node, and 0 indicates
that the node does not participate in the election). Shown in Fig. 2,
the solid line with the arrow indicates a change of node status
(replication group uses priority layout


3 2 1


, which means

that node 1 has the highest priority 3).

(1) In the initial state, node 1 is the Master node. When node 1 is
shut down, it falls into a separated state.

(2) The replication group elects a new Master node from the
remaining two active nodes (node 2 and node 3). Because the
priority of node 2 is greater than that of node 3, node 2 becomes
the new Master node.

(3) After the recovery of node 1, the replication group already has a
Master node, so that node 1will not preempt themaster status
of node 2; even if the priority of node 1 is greater than that of
node 2, node 1 can only become a Replica node.

Berkeley DB stipulates thatwhen theMaster node is shut down,
the number of Replica nodes participating in the election must be
greater than or equal to two. That is to say, for a replication group
withN nodes,whenN−1nodes including theMaster node are shut
down simultaneously, the only remaining node cannot become the
Master node (the replication group loses write permission).

3. POST

As shown in Fig. 3, POST is composed of distributed database
system called POSTBOX based on highly available Berkeley DB and
data partition, and distributed transaction processing middleware
called POSTMAN. POSTMAN provides an application programming
interface for the application program, and POSTBOX provides the
underlying call interface for POSTMAN.

3.1. POSTBOX

POSTBOX makes use of data partitioning to expand the highly
available Berkeley DB, and firstly introduces the concept of
Partition Replication Body (PRB). PRB overcomes theweakness that
highly available Berkeley DB does not support parallel write across
Fig. 4. System structure of POSTBOX.

multiple nodes, thereby improving the write performance of this
system.

Data partition is not only the theoretical basis of the imple-
mentation of distributed data storage and distributed transaction
processing, but also an important means to improve transaction
processing performance. POSTBOX uses formula (1) to store key-
value pairs on different nodes based on the hash of keys. All nodes
are numbered from 1 to N , and key-value pairs with the same par-
tition number are divided into the same partition, and are stored
on the node with the corresponding number. POSTBOX forms the
structure with PRB as a basic unit as shown in Fig. 4 by construct-
ing a replication group for each data partition. The following will
focus on PRB.

PartitionNum = (Hash(key) mod N) + 1. (1)

In formula (1), key is key data. N is POSTBOX nodes (partitions),
and PartitionNum is key corresponding partition number.

PRB is the integration of data partition and replication group,
it is a two-dimensional concept, it has the horizontal physical
scalability of replication group, and achieves a logical extension
in the vertical direction by data partition, that is to say, multiple
replication groups run within a set of nodes, and each replication
group only assumes data belongs to a certain partition. PRB is the
basic unit of the POSTBOX. As shown in Fig. 4, POSTBOXuses the 3×
3PRB, that is to say, PRB is composed of three nodes, onwhich three
replication groups are responsible for the data storage of three
partitions that are run, and POSTBOX stipulates that replication
group N is responsible for storing the data of partition N .

Now firstly introduce two key concepts of PRB: Node State
Vector (NSV) and PRB State Matrix (PRBSM). NSV is the concept of
storage node of POSTBOX, that is, each storage node of POSTBOX
maintains a column vector NSV n (n is the node number) of length
3, which identifies the relationship between nodes and three
replication groups. PRBSM is the concept of POSTMAN, which is
one of the 3 × 3 matrices. If PRB m contains storage node i, j, k,
its PRBSM conforms to formula (2).

PRBSMm = [NSV i NSV j NSV k]. (2)

In formula (2), m is the number of PRB. NSV i, NSV j, NSV k
represent NSV of nodes contained by ‘‘PRBm’’ respectively.

As shown in Fig. 4, ‘‘PRB 1’’, which is responsible for storing
data of partitions 1, 2, and 3, is composed of nodes 1, 2, and 3
and includes replication groups 1, 2, and 3. In POSTBOX, PRB uses

Priority Matrix PM =


3 2 1
1 3 2
2 1 3


, so in the initial state, PRB 1

is satisfied with PRBSM1 =


M R R
R M R
R R M


, NSV 1 = [M R R]T ,

NSV 2 = [R M R]T , and NSV 3 = [R R M]
T . To facilitate the

presentation, this paper stipulates that ‘‘1’’ indicates the state of

J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240 235
master-‘‘M’’, and ‘‘0’’ indicates the state of replica-‘‘R’’, ‘‘\’’ indicates
node failure of NSV field, and ‘‘−1’’ indicates node failure of PRBSM
field. For ‘‘PRB 1’’, in the initial state, Node 1 is the Master node
of replication group 1 (with read and write permissions to data
of partition 1), and Replica node of replication groups 2, and 3
(with read access to data of partition 2 and 3), the corresponding
NSV 1 = [1 0 0]T ; Node 2 is the Master node of replication
group 2 (with read and write permissions to data of partition
2), and Replica node of replication groups 1, and 3 (with read
permission to data of partition 1 and 3), the correspondingNSV 2 =

[0 1 0]T ; Node 3 is theMaster node of replication group 3 (with
read and write permissions to data of partition 3), and Replica
node of replication groups 1, and 2 (with read permission to data
of partition 1 and 2), the corresponding NSV 3 = [0 0 1]T , so

PRBSM1 =


1 0 0
0 1 0
0 0 1


, which is generated by NSV 1, NSV 2 and

NSV 3. More complex information regarding NSV and PRBSM will
be described in detail in subsequent sections.

3.2. POSTMAN

POSTMAN mainly achieves routing based on monitor and
POSTMAN transaction processing. The function of the monitor is
the tracking state of each PRB in POSTBOX. According to the state
information, the routing process can routewrite requests to correct
nodes in POSTBOX. The monitor needs to monitor the following
two types of state:

(1) Changes of Master node of each replication group in POSTBOX.
(2) Changes of node status of each replication group in POSTBOX,

that is, whether the node is an active node.

The monitor mainly monitors the status of POSTBOX by
N-dimensional PRBSA[N],N is the node number (partition number)
of POSTBOX, the array index is associated with the partition,
the corresponding element value is associated with the node, its
meaning can be described by formula (3), which means that the
node NodeNum has write permission of partition PartitionNum, the
PRBSA uses ‘‘−1’’ to indicate that the PRB loses write permission of
a partition.

NodeNum = PRBSA[PartitionNum − 1]. (3)

In formula (3), PartitionNum is the partition number, and
NodeNum is the node number.

PRBSA is generated with unit of PRB (described in Algorithm 1),
for the node i:

• If i cannot be divided by 3, then this represents that node
scanning does not reach the boundary of PRB. At this point, it
only needs to determine the state of the ith node, and if the ith
node is normal, then it will get normal NSV from the ith node,
otherwise it will get a failure from the ith node.

• If i can be divided by 3, then this represents that node scanning
has reached the boundary of PRB. At this point, firstly determine
the state of the ith node, and if the ith node is normal, then itwill
get normal NSV from the ith node, otherwise it will get failure
NSV = [−1 −1 −1]T from the ith node; then assemble
PRBSM with the correspondingNSV in current PRB, and traverse
PRBSM by row vector mode. For each row vector, if there is
element ‘‘1’’ in it, then a corresponding PRBSA value is assigned
to the node number of element ‘‘1’’ in the row vector; otherwise
a corresponding PRBSA value is assigned to ‘‘−1’’.

PRBSM and PRBSA satisfy the following property:

• When the failure node number is not greater than 1 in the PRB,
there always is three ‘‘1’’ in the corresponding PRBSM , which
means that PRB obtains write permission three partitions.
Algorithm 1 The Generation Process of PRBSA
Input:

nodenum_from, nodenum_to, PRBSA
Output:

the assigned PRBSA

1: Initialize 3 × 3 empty matrix M = [C1, C2, C3] for storing
PRBSM

2: GetNSV (i) gets NSV from the ith storage node in POSTBOX
3: for all nodenum_from ≤ i ≤ nodenum_to do
4: if i%3 = 0 then
5: if the ith node is normal then
6: C3 ⇐ GetNSV (i)
7: else
8: C3 ⇐ [−1 − 1 − 1]T
9: traverse M = [R1 R2 R3]

T by the row vector mode
10: for all 1 ≤ j ≤ 3 do
11: if exist element whose value is 1 in Rj then
12: PRBSA[(i/3 − 1) × 3 + j − 1] ⇐ i/3 + r
13: /* r represents that element with value of 1is located

in the rth row of matrix M */
14: else
15: PRBSA[(i/3 − 1) × 3 + j − 1] ⇐ −1
16: else
17: if the ith node is normal then
18: Ci%3 ⇐ GetNSV (i)
19: else
20: Ci%3 ⇐ [−1 − 1 − 1]T

• There is one ‘‘1’’ at most in a row in PRBSM , which means that
the write permission can only be owned by a node in PRB.

• PRBSM can have more than one ‘‘1’’ in a column, which means
that a node can have write access to multiple partitions in PRB.

• If ‘‘−1’’ appears in the corresponding PRBSA of PRB, there must
be two or three ‘‘−1’’. Thismeans that the 3×3 PRB can tolerate
one node failure. Only when two or three node failures occur,
the PRB will be invalid, and the corresponding PRBSA appears
‘‘−1’’.

Monitor maintains PRBSA by the way of updating according
to demand. As shown in Algorithm 2, the process is divided into
following two steps (node number i starts from 1 to N):

(1) Determine whether current node number i is greater than N . If
not, continue to step 2, otherwise set node number to 1.

(2) Monitor detects all storage nodes of POSTBOX by probe (probe
does not do any actual data operation, and it is only responsible
for detecting the state of storage node in POSTBOX). If
current node fails, only call the PRBSA generation algorithm to
complete partial updates of PRBSA, and skip all the nodes of the
PRB which current node belongs to, then detect the first node
of next PRB. When the failed node number is multiple of 3, call
form is Generate_PRBSA(i-2, i, PRBSA); Otherwise call form is
Generate_PRBSA((i/3) × 3 + 1, (i/3 + 1) × 3, PRBSA). If the
node is normal, then detect next node.

3.3. POSTMAN transaction processing

This paper mainly involves three related transaction concepts:
atomic transaction, Single Partition Transaction (SPT), and POST-
MAN transaction. The atomic transaction refers to one add, delete
ormodify operation to a key/value pair in Berkeley DB. SPT consists
of one or more atomic transactions, and data operated by atomic
transaction belongs to a partition. The transactional property of SPT
is guaranteed by the Berkeley DB. POSTMAN transaction consists of
one or multiple atomic transactions whichmay belong to different

236 J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240
Algorithm 2Maintenance of PRBSA
Input:

i: node number

1: loop
2: if i>N then
3: i ⇐ 1
4: else if Node i is failure then
5: 1) call partial generation algorithm of PRBSA for PRB

including the ith node
2) i ⇐ the number of first node of next PRB

6: else
7: i ⇐ i + 1

Fig. 5. POSTMAN transaction processing.

partitions. The transactional property of POSTMAN transaction is
guaranteed by POSTMAN.

POSTMAN transaction highly depends on PRBSA. This mainly
reflects in two aspects:

(1) By accessing PRBSA, POSTMAN is able to ensure that all SPTs
constituting the POSTMAN transaction are sent to the correct
node under normal circumstances.

(2) By accessing PRBSA, POSTMAN is able to ensure that SPT, which
the failure node is responsible for, is correctly migrated to the
other node when a node fails.

POSTMAN transaction process is divided into four steps (as
shown in Fig. 5):

(1) Build POSTMAN transaction. The application builds POSTMAN
transaction which contains five atomic transactions. The five
atomic transactions insert key/value pair:
Shaquille O′neal|Retired


⟨Tim Duncan|San Antonio Spurs⟩

⟨Lebron James|Miami Heat⟩ ⟨Dwayne Wade|Miami Heat⟩
⟨Chris Bosh|Miami Heat⟩.

(2) POSTMAN makes partition analysis of POSTMAN transaction.
Parser hashes the key of each atomic transaction constituting
the POSTMAN transaction, then gets the partition correspond-
ing to atomic transaction, and according to the partition, it
builds the single partition transaction:
SPT 3 ⟨2|Lebron James|Dwayne Wade⟩
SPT 2 ⟨3|Tim Duncan|Chris Bosh⟩ SPT 1


1|Shaquille O′neal


.

(3) POSTMAN inquires PRBSA to determine the corresponding
Master node of partition. Depending on the nature of PRBSA,
the Master node of partition 1 is node 1, the Master node of
Algorithm 3 POSTMAN transaction submission
Input: Threshold

1: Loop_Count ⇐ 0
2: if Loop_Count > Threshold then
3: rollback
4: else if PRBSA of SPT contains -1 then
5: rollback
6: else
7: SPTs are transmitted to the corresponding node to execute
8: if execution of the corresponding node is failure then
9: 1) Loop_Count ⇐ Loop_Count + 1

2) Filter losing SPT
go to Line 2

10: else
11: submit

partition 2 is node 2, and the Master node of partition 3 is
node 3.

(4) POSTMAN sends SPT 1, SPT 2 and SPT 3 to POSTBOX to complete
the insertion of data.

POSTMAN transaction processing improves the classic two-
phase submission by loop detection and failure single-partition
transaction filtering. It mainly improves the preparation phase
of two-phase submission to avoid the rollback of the entire
distributed transaction when a child transaction of distributed
transaction fails. POSTBOX has a certain tolerance on node failure,
3×3 PRB can tolerate a node failure, which ensures that POSTMAN
can complete the migration of failure single-partition transaction
by loop detection when a node fails.

As shown in Algorithm 3, the loop detection refers to that
POSTMAN sets up a loop counter – Loop_Count and a loop number
threshold – Threshold for the preparation phase of the POSTMAN
transaction. If a node fails during the preparation phase of the
POSTMAN transaction, Loop_Count adds 1. Failure single partition
transaction filtering indicates only filtering the single partition
transaction executed on the failure node, and migrating it to the
new node to execute in next preparation phase.

The preparation phase of POSTMAN transaction has two ter-
mination conditions, and meeting any one will lead to POSTMAN
transaction rollback. The first is that Loop_Count is greater than
Threshold, the second is that the values in PRBSA exist −1. The sec-
ond condition is a forced termination condition, because the oc-
currence of the second condition indicates a failure of PRB, and
the system loses write permission to the corresponding partition;
the first condition is the optional termination condition, and it is
primarily for the situation such as that the POSTMAN transaction
consists of N single partition transactions, which belong to N PRBs
(does not exist that any two single-partition transactions belong
to a PRB). Assume that the value of N is 10, then the preparation
phase of this POSTMAN transaction can tolerate up to 10 times the
node failures and still continues to perform (without considering
node recovery). This paper considers that this situation should be
avoided, because the system does not have high availability.

4. Analysis of POST

CAP [19,20] was proposed by Brewer. As shown in Fig. 6, CAP
theory suggests that, any distributed system cannot satisfy Avail-
ability, Consistency and Partition Tolerance at the same time.
When improving any two of them, the third must be sacrificed.
POST follows the CAP theory, meets the high availability and par-
tition tolerance, and supports eventual consistency. This consis-
tency model does not guarantee that all Replica nodes are consis-
tent at the moment when the Master node submits. However, it is

J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240 237
Fig. 6. CAP theory.

possible to ensure that if without generating a new update in a suf-
ficiently long period of time, all the updates are propagated to all
member nodes, and eventually all Replica nodes share a consistent
view with the Master node. The following focuses on the analysis
of POSTBOX availability and performance comparison of POST and
highly available Berkeley DB.

4.1. Analysis of POSTBOX availability

During the execution of a distributed transaction, there are two
situationswhich can cancel the transaction: deterministic case and
non-deterministic case. Node failure is a typical non-deterministic
case, because when a distributed database system is running, the
node failure is random, and the user cannot determine which node
will have problems. The deterministic case is usually controlled
by the transaction logic, such as in an order management process;
when the stock is less than zero, the transaction will be forced to
cancel. POSTBOX availability is mainly for the non-deterministic
case. PRB is the basic unit of high availability of POSTBOX.
Availability of PRB reflects the availability of POSTBOX. PRB has the
following properties:
(1) The number of failure node which PRB can tolerate has a linear

growth as the expansion of scale of PRB.N×N PRB can tolerate
N − 2 node failures.

(2) The availability of PRB has a monotonous growth as the
expansion of scale of PRB.

(3) The growth of the availability of PRB decreases as the expan-
sion of scale of PRB, which means that with the expansion of
scale of PRB, the availability benefits brought by the unit ex-
pansion of scale of PRB gradually decrease.

(4) Copy number of N ×N PRB is N −1, that is, with the expansion
of scale of PRB, copy number has a linear growth.
It can be obtained from the above properties that the improve-

ment of availability will reduce system performance, because copy
operation will take up a lot of CPU and I/O resources. In this pa-
per POSTBOX uses 3 × 3 PRB, due to consideration of the system
availability benefits and performance loss.

The following is the proof of properties 2 and 3:
Assume that the probability of node failure in POSTBOX is P (P

is a decimal and is much smaller than 1. Currently it can generally
be guaranteed to be 0.001), then according to the property 1, the
availability of N × N PRB is f (N), which satisfies
f (N) = 1 − CN−1

N × PN−1
× (1 − P) − PN

; N ≥ 3.
That is, the case in which there are N nodes failures and any

N − 1 nodes failures are excluded.
The availability of (N + 1) × (N + 1) PRB is f (N + 1), which

satisfies
f (N + 1) = 1 − CN

N+1 × PN
× (1 − P) − PN+1

; N ≥ 3

f (N + 1) − f (N) = CN−1
N × PN−1

× (1 − P)

+ PN
− CN

N+1 × PN
× (1 − P) − PN+1

= PN
× (1 − P) + N × PN−1

× (1 − P)

− (N + 1) × PN
× (1 − P)

= PN
× (1 − P) + PN−1

× (1 − P) × (N − (N + 1) × P).

Set α = PN
× (1 − P), β = PN−1

× (1 − P), and
γ = N − (N + 1) × P.
Then α > 0, β > 0.
P is much smaller than N/(N +1) and greater than 0, so γ > 0.
Therefore, f (N + 1) − f (N) = α + β × γ > 0.
That is the availability of PRB has a monotonous growth as the

expansion of scale of PRB.

Set FN = f (N + 1) − f (N), δ = N + 1 − (N + 2) × P,

then FN+1 = f (N + 2) − f (N + 1)
= PN+1

× (1 − P) + PN
× (1 − P)

× ((N + 1) − (N + 2) × P)
= P × (α + β × δ),

FN+1/FN = P × (α + β × δ)/(α + β × γ)
= P × (α/β + δ)/(α/β + γ)
= P × (P + δ)/(P + γ)

= [P2
+ P × (γ + 1 − P)]/(P + γ)

= (P + P × γ)/(P + γ) < 1.

That is, the growth scale of the availability of PRB decreases as
the scale of PRB expands.

Assuming node failure probability P = 0.001 (the mean time
between failures is 3 years, and the mean time to restoration is
one day) in POSTBOX, then when N = 3, the availability of PRB
f (3) = 99.9997% (this is a very high level availability), and the
copy number is 2; when N = 4, the availability of PRB f (4) =

99.9999996%, and the copy number is 3. Compared 3 × 3 PRB,
the availability of 4 × 4 PRB only improves 0.0003%, but the copy
number has increased by 50%. When N continues to increase,
the copy number increases linearly, while the growth of the
availability of PRB is almost negligible. The negative performance
cost caused by the expansion of scale of PRB is much larger than
the positive revenue generated by availability improvement. This
article is sufficient to ensure the system gets higher performance
at a better level of availability by using 3 × 3 PRB.

4.2. Analysis of POST performance

There are three main factors limiting the performance of POST:
I/O of storage system, memory and processor, and communication
between nodes. For the system related to database, the most
obvious feature is that I/O is the key factor to determine the
performance, so this section focuses on I/O. Here consider shared
storage, shared storage indicates that all nodes of a system are
mounted on a storage system, sharing I/O bandwidth of the storage
system.

It takes TRG for the time of highly available Berkeley DB
completing N POSTMAN transaction, and TPRB for the time of POST
completing N POSTMAN transaction. Here we only consider the
preparation phase (time consumption of the commit phase is rela-
tively smaller than that of the preparation phase). For highly avail-
able Berkeley DB, each POSTMAN transaction will launch twice the
local calls and thewrite operation once. For POST, the transaction is
equally allocated to three nodes. Each node bears 1/3 the transac-
tions, and data storage is well-distributed, so there will be 1/3 the
transactions which initiates twice the local calls and one write op-
eration, and 2/3 the transactions which initiates twice the remote
calls and one write operation.

When I/O of the storage system is not restricted:

TRG = N × (2 × Troute_local + Twrite)

TPRB = N/3 × 1/3 × (2 × Troute_local + Twrite)
+N/3 × 2/3 × (2 × Troute_remote + Twrite)

TRG/TPRB = 3 × (6 × Troute_local + 3 × Twrite)/
× (2 × Troute_local + 4 × Troute_remote + 3 × Twrite).

Troute_local: Time cost of routing the POSTMAN transaction from
the local POSTMAN router to the local POSTBOX node

238 J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240
Table 1
Hardware configuration of experiment platform.

Hardware Configuration

Processor Two Intel Xeon X5670 (Six core),
Frequency 2.93 GHz, 12 MB cache

Memory 32 GB
Disk Share 6 TB
Network InfiniBand

Table 2
Software version of experiment platform.

Software Version

OS RedHat Enterprise Linux 5.5 x86_64
Berkeley DB Berkeley DB 11gR2 5.3.15

Troute_remote: Time cost of routing the POSTMAN transaction from
the local POSTMAN router to the remote POSTBOX node

Twrite: Time cost of the write operation of the POSTMAN
transaction. Because Troute_local is smaller than Troute_remote; Troute_local
and Troute_remote are smaller than Twrite, when I/O of storage system is
not restricted, 1 < T1/T2 < 3, that is, compared to highly available
Berkeley DB, POST gets an obvious performance improvement, but
cannot reach linear expansion.

When I/O of the storage system is restricted, POSTMAN
transactions initiated by all nodes of POSTwill line up in the storage
system, and POST degenerates into highly available Berkeley DB.
Because the scheduling capability of three nodes is better than that
of a single node, the performance of POST will be better than that
of a highly available Berkeley DB.

5. Evaluation

Write performance of POST (POSTBOX contains a PRB) and
highly available Berkeley DB are compared in the experiment.

5.1. Experiment platform

Experiment platform is a high performance cluster. The experi-
ment uses three nodes with the same configuration. Specific hard-
ware configuration and software versions are shown in Tables 1
and 2.

5.2. Experimental method

The experiment uses POSTMAN transaction with the length
of 10, that is to say, every POSTMAN transaction contains 10
atomic transactions. Every Atomic transaction completes fixed
length transactional insertion operation, and each record consists
of keys and fixed length values which are generated randomly and
are not duplicated. Distinct key can ensure that each transactional
insertion completed by atomic transaction is new, rather than
transactional update operation (The actual test results show that
time of update operation is much less than that of the insert
operation). The data is divided into two types of 128 bytes and
512 bytes, which is used to test different performances of POST and
highly available Berkeley DB under different I/O loads. At the same
time, the experiment adopts four kinds of thread size (6, 9, 12, 15),
which are used to test different performances of POST and highly
available Berkeley DB under different CPU loads.

The experiment conducted 8 groups corresponding to four
kinds of thread size and two kinds of data size, and each group per-
forms 10 times, then gets the average. For certain thread scales M
and data scales N , highly available Berkeley DB creates M threads
for the Master node and executes 9999 POSTMAN transactions;
Post creates M threads for every node, and each executes 3333
Fig. 7. Performance comparison of POST and highly available Berkeley DB (the size
of data is 128 bytes).

DOLTM transactions. For multithreading, the experiment creates a
new Berkeley DB database handle and RMI handle for each thread
in order to reduce the competition between the threads.

5.3. Analysis

As shown in Figs. 7 and 8, when the data size is 512 bytes,
the performance of POST declines slightly with the increase of
thread number; when the data size is 128 bytes, the performance
increases slightly with the increase of thread number. For highly
available DB, when the data size is 512 bytes, the performance
gradually stabilizes with the increase of thread number; when the
data size is 128 bytes, the performance increases slightly after
promoting sharply with the increase of thread number. This is
because when the number of the threads is large, system I/O
is limited and systems performance will be declined by some
unnecessary context interaction and the hardware cache recovery.

For the data size of 512 bytes, when the number of threads is 6,
the POST achieves the biggest performance improvement of 45.6%
compared with highly available Berkeley DB; when the number of
threads is 9%, 12% and 15%, 20.6%, 11.7% and 11.4% performance
improvements can be achieved respectively. For the data size of
128 bytes, when the number of threads is 6, the POST achieved the
biggest performance improvement of 102% compared with highly
available Berkeley DB; when the number of threads is 9%, 12%
and 15%, 65.1%, 49.8% and 28.3% performance improvement can be
achieved respectively.

The experimental results show that POST achieves better
acceleration effects when the data size is small, because at this
time I/O limitation is light. It also shows an important feature of
the database, that is, I/O is an important factor which decides the
performance of database. Frequent transactional inserts lead to
a large number of I/O operations, so the performance is affected
seriously.

6. Related work

With the rapid development of high cost-effective computer
and the higher requirement of information processing capability,
distributed database and transaction systems attract more atten-
tion and are being widely used. In particular, they are more and
more important with the growth of big data and cloud computing,
also the appearance of other applications with massive data.

NoSQL (Not Only SQL) has become the first alternative to rela-
tional databases with higher flexibility, availability and fault toler-
ance in big data and cloud computing environments. Bigtable [21]

J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240 239
Fig. 8. Performance comparison of POST and highly available Berkeley DB (the size
of data is 512 bytes).

is a typical NoSQL built on Google file system (GFS) which is a
scalable distributed file system for large distributed data-intensive
applications. Berkeley DB also belongs to NoSQL. Compared with
Bigtable, BerkeleyDB is easier for non-programmers to use because
has a more flexible data model and is applied to a wider range in
commerce. NewSQL (relative to NoSQL) aims to achieve the bene-
fits of scalability and fault tolerance provided by NoSQL, meantime
it is still using the relational model. Voltdb [22] is an in-memory
NewSQL database with incredible high read and write speeds. The
database tables and the stored procedures are partitioned and
saved in multiple sites. As each site runs single thread, it elimi-
nates the cost on locking and latching. The performance of Voltdb
is improved compared with Berkeley DB, however the flexibility
of Voltdb is much lower than Berkeley DB as the system should
restart if there is a change in size of cluster. Even though Berkeley
DB is a good data management system in general, the shortcom-
ing that not supporting parallel writing does worsen its perfor-
mance in big data and cloud computing environments. Under the
background of those, this paper has designed and implemented a
middleware-level distributed transaction processing system called
POST which could solve this issue in most conditions. By the way,
with the rapid development of cloud computing, data security
[23–25] in storage should draw enough attention in the productive
environment.

[26] proposes one transaction layer named Argos. Argos pro-
vides two transaction services, which can help distributed trans-
actions conform to traditional ACID attributes, meanwhile, can
support the transaction whose life cycle is longer by compen-
sation. This is done in order to achieve high performance and
high availability of data management. [27] proposes a parallel file
system to improve I/O performance on the cluster. [28] makes
one middleware named Sprint to extend from an independent
memory database to a non-shared server cluster. Aiming at is-
sues on high message delay and resource lock of publish/subscribe
middleware, [29] proposes the middleware TOPS which is
transaction-oriented, based on HTS (a middleware to introduce
the transaction concept), combine transaction concept and pub-
lish/subscribe servicemore closely. [30] implements amiddleware
support copy based on PostgreSQLs duplication, provide snapshot
isolation the same with PostgreSQL granularity.

[31] develops a new type of OLTP system called H-Store which
runs in non-shared memory distributed clusters. It is based on
Multi-single threaded engine collaboration, providing more ef-
ficient processing services for OLTP transaction. [32] proposes
TTLMosaic, which could make parallel efficiency higher and scal-
ability more excellent. [33] implements two parallel I/O strategies
to speed up the system of numerical weather forecast. [34] im-
plements a new tool which is more suitable for the parallelism in
stream data.

7. Conclusion

Aiming at the shortcomings of the highly available Berkeley
DB, this paper designs and implements distributed transaction
processing middleware system called POST, which includes
distributed database system called POSTBOXbased on the Berkeley
DB and data partition, and distributed transaction processing
middleware called POSTMAN. The POSTBOX inherits the high
availability of Berkeley DB from them, and extends the partition
of the highly available Berkeley DB, so it overcomes the problem
that highly available Berkeley DB natively does not support parallel
writing acrossmultiple nodes. POSTMAN is amiddleware designed
to adapt PRB, it monitors the state of each node in POSTBOX
via PRBSA, and is in charge of the initiation, execution, and
migration of transactions. Experimental results show that thewrite
performance of POST is superior to that of highly available Berkeley
DB. Especially when the size of transaction data is small, the
acceleration of POST is obvious.

Acknowledgments

This work was supported in part by the National High
Technology Research and Development Program of China (No.
2015AA01A303), Beijing Key Subject Development Project
(XK10080537), NSF grants CNS 149860, CNS 1461932, CNS
1460971, CNS 1439672, CNS 1301774, ECCS 1231461, ECCS
1128209, and CNS 1138963.

References

[1] A. Pavlo, E.P.C. Jones, S. Zdonik, On predictive modeling for optimizing
transaction execution in parallel OLTP systems, Proc. VLDB Endow. 5 (2) (2011)
173–182.

[2] M. Stonebraker, Newopportunities for new SQL, Commun. ACM55 (11) (2012)
10–11.

[3] M. Negri, G. Pelagatti, L. Sbattella, Formal semantics of SQL queries, ACMTrans.
Database Syst. 16 (3) (1991) 513–534.

[4] L. Wang, D. Chen, W. Liu, Y. Ma, Y. Wu, Z. Deng, Dddas-based parallel
simulation of threat management for urban water distribution systems,
Comput. Sci. Eng. 16 (1) (2014) 8–17.

[5] M. Burrows, The chubby lock service for loosely-coupled distributed systems,
in: Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, OSDI’06, USENIX Association, Berkeley, CA, USA, 2006,
pp. 335–350.

[6] Y. Ma, L. Wang, P. Liu, R. Ranjan, Towards building a data-intensive index for
big data computing—A case study of remote sensing data processing, Inform.
Sci. 319 (2014) 171–188.

[7] L. Wang, H. Geng, P. Liu, K. Lu, J. Kolodziej, R. Ranjan, A.Y. Zomaya, Particle
swarm optimization based dictionary learning for remote sensing big data,
Knowl.-Based Syst. 79 (2015) 43–50.

[8] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, T. Ristenpart, Next stop, the
cloud: Understanding modern web service deployment in EC2 and AZURE,
in: Proceedings of the 2013 Conference on Internet Measurement Conference,
IMC’13, ACM, New York, NY, USA, 2013, pp. 177–190.

[9] B. Nemade, S. Moorthy, O. Kadam, Cloud computing: Windows AZURE
platform, in: Proceedings of the International Conference &Workshop on
Emerging Trends in Technology, ICWET’11, ACM, New York, NY, USA, 2011,
pp. 1361–1362.

[10] Overview of oracle berkeley db, 2010. http://www.oracle.com/us/products/
database/berkeley-db/overview/index.html.

[11] A.A. Farrag, M.T. Özsu, Using semantic knowledge of transactions to increase
concurrency, ACM Trans. Database Syst. (TODS) 14 (4) (1989) 503–525.

[12] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plattner,
P. Dubey, A. Zeier, Fast updates on read-optimized databases using multi-core
CPUS, Proc. VLDB Endow. 5 (1) (2011) 61–72.

[13] W. Xue, J. Shu, Y. Liu, M. Xue, Corslet: A shared storage system keeping your
data private, Sci. China Inf. Sci. 54 (6) (2011) 1119–1128.

[14] J. Shu, Z. Shen,W.Xue, Shield: A stackable secure storage system for file sharing
in public storage, J. Parallel Distrib. Comput. 74 (9) (2014) 2872–2883.

[15] L. Millet, M. Lorrillere, L. Arantes, S. Gançarski, H. Naacke, J. Sopena, Facing
peak loads in a P2P transaction system, in: Proceedings of the First Workshop
on P2P and Dependability, ACM, 2012, pp. 1–7.

http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref1
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref2
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref3
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref4
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref5
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref6
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref7
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref8
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref9
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref11
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref12
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref13
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref14
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref15

240 J. Li et al. / Future Generation Computer Systems 74 (2017) 232–240
[16] A. Pavlo, E.P. Jones, S. Zdonik, On predictive modeling for optimizing
transaction execution in parallel OLTP systems, Proc. VLDB Endow. 5 (2) (2011)
85–96.

[17] I. Sarr, H. Naacke, S. Gançarski, Transpeer: Adaptive distributed transaction
monitoring for web2. 0 applications, in: Proceedings of the 2010 ACM
Symposium on Applied Computing, ACM, 2010, pp. 423–430.

[18] W. Emmerich, M. Aoyama, J. Sventek, The impact of research on middleware
technology, ACM SIGOPS Oper. Syst. Rev. 41 (1) (2007) 89–112.

[19] S. Gilbert, N. Lynch, Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services, ACM SIGACT News 33 (2) (2002)
51–59.

[20] E. Brewer, Cap twelve years later: How the ‘‘rules’’ have changed, Computer
45 (2) (2012) 23–29.

[21] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,
T. Chandra, A. Fikes, R.E. Gruber, Bigtable: A distributed storage system for
structured data, ACM Trans. Comput. Syst. 26 (2) (2008) 4:1–4:26.

[22] M. Stonebraker, A. Weisberg, The voltDB main memory DBMS, IEEE Data Eng.
Bull. 36 (2) (2013) 21–27.

[23] J. Shu, Z. Shen, W. Xue, Y. Fu, Secure storage system and key technologies,
in: Design Automation Conference (ASP-DAC), 2013 18th Asia and South
Pacific, IEEE, 2013, pp. 376–383.

[24] Z. Shen, J. Shu, W. Xue, Keyword search with access control over encrypted
data in cloud computing, in: 2014 IEEE 22nd International Symposium of
Quality of Service (IWQoS), IEEE, 2014, pp. 87–92.

[25] Z. Shen, J. Shu, W. Xue, Preferred keyword search over encrypted data in cloud
computing, in: 2013 IEEE/ACM 21st International Symposium on Quality of
Service (IWQoS), IEEE, 2013, pp. 1–6.

[26] A.-B. Arntsen, M. Mortensen, R. Karlsen, A. Andersen, A. Munch-Ellingsen,
Flexible transaction processing in the argos middleware, in: Proceedings of
the 2008 EDBT Workshop on Software Engineering for Tailor-Made Data
Management, ACM, 2008, pp. 12–17.

[27] L. Wang, Y. Ma, A. Zomaya, R. Ranjan, D. Chen, A parallel file system with
application-aware data layout policies in digital earth, IEEE Trans. Parallel
Distrib. Syst. 26 (6) (2014) 1497–1508.

[28] L. Camargos, F. Pedone, M. Wieloch, Sprint: a middleware for high-
performance transaction processing, ACM SIGOPS Oper. Syst. Rev. 41 (3)
(2007) 385–398.

[29] Y. Shatsky, E. Gudes, E. Gudes, Tops: a new design for transactions in
publish/subscribe middleware, in: Proceedings of the Second International
Conference on Distributed Event-Based Systems, ACM, 2008, pp. 201–210.

[30] Y. Lin, B. Kemme, M. Patiño-Martínez, R. Jiménez-Peris, Middleware based
data replication providing snapshot isolation, in: Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, ACM, 2005,
pp. 419–430.

[31] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.P. Jones,
S. Madden, M. Stonebraker, Y. Zhang, et al., H-store: a high-performance,
distributed main memory transaction processing system, Proc. VLDB Endow.
1 (2) (2008) 1496–1499.

[32] Y. Ma, L. Wang, A.Y. Zomaya, D. Chen, R. Ranjan, Task-tree based large-
scale mosaicking for massive remote sensed imageries with dynamic dag
scheduling, IEEE Trans. Parallel Distrib. Syst. 25 (8) (2014) 2126–2137.

[33] Y. Zou, W. Xue, S. Liu, A case study of large-scale parallel i/o analysis and
optimization for numerical weather prediction system, Future Gener. Comput.
Syst. 37 (2014) 378–389.

[34] Z. Deng, X. Wu, L. Wang, X. Chen, R. Ranjan, A. Zomaya, D. Chen, Parallel
processing of dynamic continuous queries over streaming data flows, IEEE
Trans. Parallel Distrib. Syst. 26 (3) (2015) 834–846.

Jianjiang Li is currently an associate professor at Univer-
sity of Science and Technology Beijing, China. He received
his Ph.D. degree in computer science from Tsinghua Uni-
versity in 2005. He was a visiting scholar at Temple Uni-
versity from Jan. 2014 to Jan. 2015. His current research
interests include parallel computing, cloud computing and
parallel compilation.
Qian Ge is currently a student in University of Science and
Technology Beijing for her master degree. Her research
interests include distributed system technology and fault
tolerance for database. She received her bachelor’s degree
in 2012 from China Women’s University.

Jie Wu is the chair and a Laura H. Carnell Professor in
the Department of Computer and Information Sciences
at Temple University. Prior to joining Temple University,
USA, he was a program director at the National Science
Foundation and a distinguished professor at Florida At-
lantic University. He received his Ph.D. degree from Florida
Atlantic University in 1989. His current research interests
include mobile computing and wireless networks, routing
protocols, cloud and green computing, network trust and
security, and social network applications. Dr.Wu regularly
published in scholarly journals, conference proceedings,

and books. He serves on several editorial boards, including IEEE Transactions on
Computers, IEEE Transactions on Service Computing, and Journal of Parallel andDis-
tributed Computing. Dr.Wuwas general co-chair/chair for IEEEMASS2006 and IEEE
IPDPS 2008 and program co-chair for IEEE INFOCOM 2011. Currently, he is serving
as general chair for IEEE ICDCS 2013 and ACM MobiHoc 2014, and program chair
for CCF CNCC 2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee on Distributed
Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker and a Fellow of the IEEE.
He is the recipient of the 2011China Computer Federation (CCF) OverseasOutstand-
ing Achievement Award.

Yue Li has graduated from University of Science and
Technology Beijing with his master degree in 2014. He
received his bachelor’s degree in 2011 from Tian jin
College, University of Science and Technology Beijing.
His research interests include cloud computing and
distributed system technology.

Xiaolei Yang is currently a student in University of Science
and Technology Beijing for his master degree. He received
his bachelor’s degree in 2013 from University of Science
and Technology Beijing. His research interests include
cloud computing and recommend systems.

Zhanning Ma is currently a student in University of
Science and Technology Beijing for his master degree. His
research interests include distributed storage technology
and data duplicate removal. He received his bachelor’s
degree in 2010 from Taishan Medical University.

http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref16
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref17
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref18
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref19
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref20
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref21
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref22
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref23
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref24
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref25
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref26
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref27
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref28
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref29
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref30
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref31
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref32
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref33
http://refhub.elsevier.com/S0167-739X(16)30005-X/sbref34

	Research and implementation of a distributed transaction processing middleware
	Introduction
	High availability of Berkeley DB
	Replication stream
	The generation process of master node

	POST
	POSTBOX
	POSTMAN
	POSTMAN transaction processing

	Analysis of POST
	Analysis of POSTBOX availability
	Analysis of POST performance

	Evaluation
	Experiment platform
	Experimental method
	Analysis

	Related work
	Conclusion
	Acknowledgments
	References

