
Integrated	Recovery	and	Task	Allocation	
for	Stream	Processing	

Hongliang	Li,	Jie Wu,	Zhen	Jiang,	Xiang	Li,	Xiaohui Wei,	and	Yuan	Zhuang
lihongliang@jlu.edu.cn

College	of	Computer	Science	and	Technology,	Jilin	University,	Changchun,	China
Department	of	Computer	and	Information	Sciences,	Temple	University,	Philadelphia,	PA,	USA	

Stream	Processing: Application	and	Model

• Applications and Systems
• Continuous, online, realtime or near realtime
• High demand: data analyzing/monitoring for social network, production line, scientific
experiment, etc.

• Storm, Spark streaming, S4, Millwheel, Flink
• Stream Processing Model

• On-the-fly, unable to obtain complete data beforehand, in-memory computing
• Stream topology

• Workflow: tasks and links, Directed Acyclic Graph (DAG) of tasks
• Strict throughput constraint: match the input rate to avoid data loss

• Task allocation problem (failure-free)
• Assign task/links to resource (computing/network capacity)
• Balance performance on each path, avoid bottlenecks
• Optimization (bin packing, knapsack)

Fault-tolerant	for	Stream	Processing
• Vulnerable to failures

• One-pass processing, in-memory processing, hard to recover from failures

• Task failure: loss of internal state and data

• Fault-tolerant Mechanisms
• Active replication: high failure-free cost (Borealis)
• Upstream backup + Checkpointing: recovery latency (Storm, Spark streaming, S4, Millwheel)

• Failure Effect
• Cost: reprocess backup data from upstream
• Suspend from producing new data, affects throughput or even cause an application-level halt

Different	recovery	schemes

• Isolated recovery model
• Exclusive resources
• Failure-free tasks can be starved/blocked

• Failure can cause an application-level halt

Different	recovery	schemes

• Isolated recovery model
• Exclusive resources
• Failure-free tasks can be starved/blocked

• Failure can cause an application-level halt

• Integrated Recovery Model (IRM)
• Share resource from failure-free tasks
• Accelerate the recovery
• Reduce performance degradation

• Can even avoid starvation/blocking and
performance degradation (buffer setting)

Contributions

• Novel Integrated Recovery Model (IRM)
• Enable resource sharing between failed and failure-free tasks
• Support fast and seamless recoveries

• Cost-aware Task Allocation Problem (CTAP)
• Consider recovery cost as part of resource requirement, besides failure-free processing cost,
during task allocation

• Guaranteed processing performance during recovery (slowdown ratio)

• Algorithms and results

Integrated	Recovery	Model

• Upstream Backup Model
• FT Configuration: set up backup tasks
• Upstream replay and recovery

• Recovery Dependent Set (RDS)
• A subset of task in a stream topology, divided by backup tasks

• Upstream Recovery Dependent Set (URDS)
• Task v’s upstream tasks that are in the same RDS

• Recovery cost
• Task isolated recovery cost : related to checkpointing interval
• Task v on processor c

• On processor c

Cost-aware	Task	Allocation	Problem	(1)
• Failure-free Task Allocation Problem

• Failure-free cost (processing)

• Recovery Cost

• Slowdown Ratio

The failure-free task allocation problem
seeks a TAP, denoted by Φ:𝑉 → 𝐶, that
assigns a set of n tasks (V) to a set of p
identical processors (𝐶 = {𝑐𝑖|𝑖 ∈ 1, … , 𝑝}).

Cost-aware	Task	Allocation	Problem	(2)

• Modeling (Packing problem)
• Target: minimize the used processors

• Constraints:

• Capacity

• Performance

Cost-aware	Task	Allocation	Problem	(3)

• Discussion
• When upper bound of slowdown ratio is given, is inversely linear proportional to

• (a) All tasks are backup tasks, one task in each RDS, Bin Packing Problem (BPP)

• (b) No backup tasks, all tasks are in one RDS, 2D vector packing

Algorithms
• BPP-based greedy algorithm as benchmark (BestFit),

• Sort items in descending order according to their failure-free cost
• Pack item in the head of the queue to a bin according to BF strategy
• Check capacity and slowdown ration constraints

• Observation
• When tasks in the same RDS packed into one processor, large recovery cost can be introduced;
recovery cost accumulated only among tasks in the same RDS

• Proposed Heuristic algorithm
• Partition tasks according to RDSs;
• Sort RDSs according to their sizes in ascending order;
• Choose an item from an RDS and assign the task to a processor that causes the smallest
potential recovery cost.

• Computational complexity

Test	Settings
• Stream Topologies

• Backup Settings

• Comparing Approaches

Results

• Extra Processors: 48% (greedy) and 14% (heuristic) extra processors are used on average comparing with failure-free
task allocations.

• Resource Utilization (= 30%): The average recovery costs in the greedy and heuristic approaches are 26% and 17%,
respectively. The resource utilization ratio are 74% and 83% respectively.

Results

• ms-level execution times

• Applicable scenario
• generate efficient task allocation decisions with guaranteed recovery performance, i.e. an

upper bound of throughput slowdown
• ensure continuous results without a suspension during any task-level failure recovery (with

proper buffer settings)
• provide quick feedbacks for FT configuration solutions
• serve as a tool to analyze the performance of a system

Conclusions

• Integrated	Recovery	Model	(IRM)	that	allows	resource	sharing	between	a	recovering	task	and	
the	failure-free	tasks	on	a	processor.	It	enables	fast	and	seamless	recoveries.

• We introduce a novel task allocation problem under IRM.

• Algorithms and experimentations

Thank	you	very	much!

• Hongliang Li
• lihongliang@jlu.edu.cn

• College	of	Computer	Science	and	Technology,	Jilin	University,	Changchun,	China
• Department	of	Computer	and	Information	Sciences,	Temple	University,	Philadelphia,	PA,	USA	

