Integrated Recovery and Task Allocation
for Stream Processing

Hongliang Li, Jie Wu, Zhen Jiang, Xiang Li, Xiaohui Wei, and Yuan Zhuang
lihongliang@jlu.edu.cn

College of Computer Science and Technology, Jilin University, Changchun, China

Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

¥
re3

&

¢y

Stream Processing: Application and Model

* Applications and Systems
* Continuous, online, realtime or near realtime

* High demand: data analyzing/monitoring for social network, production line, scientific
experiment, etc.

e Storm, Spark streaming, S4, Millwheel, Flink

e Stream Processing Model
* On-the-fly, unable to obtain complete data beforehand, in-memory computing

* Stream topology input —»(1)>(2)> output

* Workflow: tasks and links, Directed Acyclic Graph (DAG) of tasks
e BRI
\\I/M\\‘l?‘
XOR,_ 7o o> AVA

 Strict throughput constraint: match the input rate to avoid data loss
» Task allocation problem (failure-free)
VI, 7o e e /I

* Assign task/links to resource (computing/network capacity)
‘N
NAY g v ava—’ Y \H
e odtdon™

* Balance performance on each path, avoid bottlenecks
* Optimization (bin packing, knapsack)

B
<8
B

Fault-tolerant for Stream Processing

* Vulnerable to failures

* One-pass processing, in-memory processing, hard to recover from failures
* Task failure: loss of internal state and data

* Fault-tolerant Mechanisms

* Active replication: high failure-free cost (Borealis)
* Upstream backup + Checkpointing: recovery latency (Storm, Spark streaming, S4, Millwheel)

* Failure Effect
* Cost: reprocess backup data from upstream
* Suspend from producing new data, affects throughput or even cause an application-level halt

¥ 4 3

¢y

Different recovery schemes

Case I: Isolated Recovery

* Isolated recovery model

Resoufce consumpition

* Exclusive resources @ le :

* Failure-free tasks can be starved/blocked 2| X :

* Failure can cause an application-level halt = tiime >
Outputgthroughputg

(D

(a) Topology (b) Throughputs under task failure

@Task X Failure Recovered : Process ‘ Recovery : Starve/Block

Note: o and t;-t3 represent the slowdown and delay of a recovery, respectively. v1

and vs process buffered data in ¢1-t5. The processing is halted in t2-t3.

z’%k g

(
e

Different recovery schemes

Case I: Isolated Recovery Case II: Integrated Recovery

|

* Isolated recovery model : Resoutce consumption Kesource consumption

* Exclusive resources @ : le -y

* Failure-free tasks can be starved/blocked : :; X 5 ‘g __5(__

* Failure can cause an application-level halt : téme > time >
* Integrated Recovery Model (IRM) © [A A

* Share resource from failure-free tasks ! (| —

* Accelerate the recovery : | ¢ t2-t3 time

° Reduce performance degradation (a) TOpOlogy (b) Throughputs under task failure

e Can even avoid starvation/bk)cking and @Task X Failure Recovered : Process '"'Recovery ___ Starve/Block
performance degradation (buffer setting)

Note: o and t1-t3 represent the slowdown and delay of a recovery, respectively. v

and vz process buffered data in t1-t5. The processing is halted in t2-t3.

Contributions

* Novel Integrated Recovery Model (IRM)

* Enable resource sharing between failed and failure-free tasks

* Support fast and seamless recoveries

* Cost-aware Task Allocation Problem (CTAP)

* Consider recovery cost as part of resource requirement, besides failure-free processing cost,
during task allocation

* Guaranteed processing performance during recovery (slowdown ratio)

* Algorithms and results

X ¥ <

¢

Integrated Recovery Model

* Upstream Backup Model

* FT Configuration: set up backup tasks
* Upstream replay and recovery

* Recovery Dependent Set (RDS) RDS2={3,4,7,8,10}
* A subset of task in a stream topology, divided by backup tasks

* Upstream Recovery Dependent Set (URDS)

e Task v's upstream tasks that are in the same RDS

* Recovery cost
* Task isolated recovery cost §,, : related to checkpointing interval

* Task v on processor ¢ Ay = Z O
u€URDS,,®(u)=c
* On processor ¢ A, = maX{Av/c}
veV

o)

&

¢y

Cost-aware Task Allocation Problem (1)

Failure-free Task Allocation Problem

The failure-free task allocation problem
seeks a TAP, denoted by ®: IV — C, that
assigns a set of n tasks (V) to a set of p
identical processors (C = {¢;|i € 1, ..., p}).

Failure-free cost (processing)
W, = Z Wy, c € C
®(v)=c

Recovery Cost A, = Iglea&({Av /e}

0
1-A,
We

Slowdown Ratio ;:{)

i
-
B

(a) Stream topology and FTC

c @ task W, failure-free cost
OO NOSORo CEtw il

51 + 80 + 6)
1 + 02 3 52 1 0% <——-/\-->» maz{d1,d4} maz{Ss + 53, 55}
W, W
Wi <--))---> Wy
pl‘OCCSSOl‘ a pl‘OCCSSOl‘ b processor a pl’OCESSOl’ b
Casel Case 11
1— Ac Z Wc
. ,ceC
otherwise

NS4k

Gy

Cost-aware Task Allocation Problem (2)

* Modeling (Packing problem) p
« Target: minimize the used processors AU Zmﬂ'
4 =
e Constraints: subject to Zzz-j =1, i€{l,.,n}
n = n
* Capacity W, = Zwizii <1, jedl,.,p} W; = Zwizi_j <1, jed{l,.,p}
i=1 =1
Icneaé({QC} <a
* Performance max{a.} <& _
ceC z; =0/1,V5 €{1,..,p}

zij =0/L,Vie{l,..,n},Vj€{1,.,p}

Cost-aware Task Allocation Problem (3)

* Discussion
 When upper bound of slowdown ratio & is given, A. is inversely linear proportional to W,
Ac=1—(1—a) - W,
* (a) All tasks are backup tasks, one task in each RDS, Bin Packing Problem (BPP)
* (b) No backup tasks, all tasks are in one RDS, 2D vector packing

ﬁ AA AA o [Task
: : w
Z(S RDS
5 Sw
RDS1 :
N | rosi
RDS2 : : ; RDS

-"t RDS :

: ' z >
'. » .

Case I: All backup W Case II: No backup

e .
N&D
:’- s

. Case III: Selective backup

o)

&

Gy

Algorithms

* BPP-based greedy algorithm as benchmark (BestFit), 0O(nlogn)
e Sort items in descending order according to their failure-free cost w,,
* Pack item in the head of the queue to a bin according to BF strategy
* Check capacity and slowdown ration constraints

* Observation
 When tasks in the same RDS packed into one processor, large recovery cost can be introduced,;
recovery cost accumulated only among tasks in the same RDS
* Proposed Heuristic algorithm
* Partition tasks according to RDSs;
* Sort RDSs according to their sizes in ascending order;
* Choose an item from an RDS and assign the task to a processor that causes the smallest
potential recovery cost.

* Computational complexity ;. 1g(n))?)

78
<8
B

&3 T a4k Z

Test Settings

* Stream Topologies

Type Description
In-Tree One adjacent downstream task.
|V | = 400, |A| = 400.
Sequential-dominated | DAG with long paths [34]. |V| = 55, |A| = 95.
Parallel-dominated Auto-scale tasks [11]. |V| =93, |A| = 1050.

* Backup Settings

Type Description
All task are backup tasks [14], [15].
Only the input streams have backups [5], [16].
Selected tasks are back-up [19].

— e e of

Hot Topics
30 tasks

@ task d backup task

O sink —>» connection
—_

@ source | | auto-scale tasks
—

o | >

 Comparing Approaches

(a) Sequential-dominated topology (b) Parallel-dominated topology
Algorithm Description
Failure-free | BF packing algorithm that does not consider task failures.
Greedy Algorithm based on BPP strategy (BF)
Heuristic Heuristic based on RDSs and current recovery cost A,

¢y

Results

0.5
100 9% 0.45 Greedy O Heuristic
B Failure-free O Greedy C Heuristic 04
0.35
03
025
02
0.15
0.1
0.05
0

8
X

585960

8 & 8 8

121312

A-Tree Tree C-Tree A-Guru B-Guru C-Guru A-Senti B-Senti C-Senti

(=]

A-Tree B-Tree C-Tree A-Guru B-Guru C-Guru A-Senti B-Senti C-Senti

Figure 6: Number of processors. Figure 7: Average recovery costs (%).

* Extra Processors: 48% (greedy) and 14% (heuristic) extra processors are used on average comparing with failure-free
task allocations.

* Resource Utilization (@ = 30%): The average recovery costs in the greedy and heuristic approaches are 26% and 17%,
respectively. The resource utilization ratio are 74% and 83% respectively.

ol

#& Z

Results

Table V: Execution Time (ms) of Different Approaches.

Algorithm | A-Tree | B-Tree | C-Tree | A-Guru | B-Guru | C-Guru | A-Senti | B-Senti | C-Senti
Failure-free 89 88 88 12 13 12 37 42 38
Greedy 93 128 o1 25 36 30 49 59 55
Heuristic 170 138 148 50 46 55 118 108 99

* ms-level execution times

* Applicable scenario

generate efficient task allocation decisions with guaranteed recovery performance, i.e. an
upper bound of throughput slowdown

ensure continuous results without a suspension during any task-level failure recovery (with
proper buffer settings)

« provide quick feedbacks for FT configuration solutions
* serve as a tool to analyze the performance of a system

e

¥ 4 3

¢y

Conclusions

* Integrated Recovery Model (IRM) that allows resource sharing between a recovering task and
the failure-free tasks on a processor. It enables fast and seamless recoveries.

* We introduce a novel task allocation problem under IRM.

* Algorithms and experimentations

7% 4 r

¢y

Thank you very much!

* Hongliang Li
* lihongliang@jlu.edu.cn

* College of Computer Science and Technology, Jilin University, Changchun, China
* Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

#% &

4y

