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Abstract—Network services usually chain multiple types of
Virtual Network Functions (VNFs) together in a specific order,
known as service chain. One important issue of providing
network services is reliability, which means that each type of
VNF in a service chain acts properly on its function. The effective
way to guarantee the reliability is to utilize sufficient redundancy
through providing VNF backup instances beyond active primary
ones. Software Defined Networking (SDN) enables the dedicate
location pickup of primary and backup instances on switch-
connected servers. The deployment of primary and backup VNF
instances plays an important role of flow routing because of its
influence on the transmission latency of the flow. In order to
minimize the total latency of flows, we first formulate the reliable
service chain deployment as a mathematical optimization
problem. A detailed analysis of both software and hardware
failure models is studied. Then we propose optimal solutions for
the case of a single flow. Next, we prove the NP-hardness of our
problem for the case with multiple flows and propose a heuristic
strategy. Additionally, a performance-guaranteed solution is
included if the server capacity is infinite. Extensive simulations
are conducted to evaluate our proposed solutions compared to
multiple algorithms.

Index Terms—Backup, latency, reliability, service chain, VNF.

I. INTRODUCTION

SOFTWARE Defined Networking (SDN) emerged in

recent years to fundamentally change how we design,

build and manage networks [1], which promotes the develop-

ment of Network Function Virtualization (NFV) [2], [3]. NFV

has been proposed to transform the implementation of network

functions from expensive hardwares to software middleboxes,

called Virtual Network Functions (VNFs) [4]. Network serv-

ices usually chain multiple types of VNFs together in a spe-

cific order, known as service chain [5]. VNFs are most

commonly provisioned in modern networks, demonstrating

their increasing importance [6]. Additionally, the technical

combination of SDN and NFV enables network service pro-

viders to pick VNFs’ locations from multiple available servers

and maneuvers traffic through appropriate VNFs [7].

However, VNFs are executed on virtualization platforms,

which makes them more prone and more vulnerable to error

compared with the expensive and dedicated hardware [8].

Reliability is an important requirement for network operators

when offering specific services (e.g., voice call and video on

demand), no matter through physical or virtual network appli-

ances [9]. Carriers need to guarantee that service reliability

(also known service chain resilience) and service level agree-

ment are not affected when evolving to NFV [10]. Note that

some purpose-built networks with regular and rich topolo-

gies [11] can provide the traditional five-nines reliability, but

cannot be extended to general-purpose networks where NFV

is commonly applied.

The effective way to guarantee the reliability is to utilize

sufficient redundancy through providing VNF backup instan-

ces beyond active primary ones. Backups will be activated

when their primary VNF instances fail [12]. The reliability of

service provisioning may require the consolidation and migra-

tion of VNFs based on traffic load and user demand. All these

operations create new points of failure that should be handled

automatically [13]. SDN enables the dedicate location pickup

of primary and backup instances on switch-connected servers.

The deployment of primary and backup VNF instances plays

an important role of flow routing because of its influence on

the transmission latency of the flow. If primary and backup

instances are not deployed efficiently on servers, the network

performance may be greatly affected, including highly pro-

longed transmission latency and dramatically increased

changes in forwarding rules that are stored in routers because

more rules are needed to reroute flows.With the probabilistic

prior failure information of hardware severs and software

VNFs [4], we consider the joint problem of reliable VNF

deployment and flow routing with an objective of minimizing

the total transmission latency of all flows by considering fail-

ures and subsequent reroutes of flows [5]. The problem with

only VNF deployment is already extremely challenging,

which has been proven to be NP-hard under various types of

objectives [7], [14], [15]. Taking consideration of the reliabil-

ity issue, there is always a need to meet a certain level of ser-

vice chain availability, which further complicates our

problem. This is because we need to select and deploy backup

VNF instances to increase the availability of the provided ser-

vice chain. Additionally, various types of VNF active and

backup instances compete for server resources. What’s more,

when an active VNF instance fails, a flow needs to reroute to

the backup instance of the function to get processed, which
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adds extra transmission latency. Therefore, the routing path of

a flow also needs to be paid extra attention.

In this paper, we aim at minimizing the total latency of all

flows given the failure probability information of servers and

VNFs. We first formulate the reliable service chain deploy-

ment as a mathematical optimization problem. A detailed

analysis of both software and hardware failure models is stud-

ied. Then we propose solutions for our problem. We start with

the case of a single flow by introducing two optimal solutions

for the homogeneous and heterogeneous VNFs with the same

or different configurations. Next, we prove the NP-hardness of

our problem for the case with multiple flows and propose an

intuitive strategy. Additionally, a performance-guaranteed

solution is included with an approximation ratio if the server

capacity is infinite.

Here we use a motivating example in Fig. 1 to illustrate the

challenges of our problem. We use a shaded square to denote

a VNF instance. There are five switch-connected servers

(denoted as cycle nodes), v1 � v5, where VNFs including the

primary and backup instances can be deployed. Each server

has a capacity, which is the total amount of resources that can

be used to deploy VNFs. We omit the link between every pair

of servers. Each link has a bandwidth capacity as well. There

are three flows f1; f2, and f3, whose sources and destinations

are shown in Fig. 1. We use different lines to illustrate differ-

ent flows and the link thickness to denote the flow rate. For

example, f3 has the largest rate, denoted with the thickest

dashed line. We use squares to denote VNF instances. Each

type of VNF instance has a distinct availability and each ser-

vice chain has a requirement of reliability. We deploy backup

instances in order to increase the service chain availability,

where the selection of the number and the location of VNF

instances plays an important role. We assume the primary and

backup instances of the same type of VNF consumes the same

amount of server resource, and have the same availability

irrelevant to their deployed servers.

We take flow f1 as an example in Fig 1. Suppose it requires

a service chain m1 ! m2 ! m3. We use ! to illustrate the

sequence order among VNFs in a service chain. Its original

path is v1 ! v3 ! v4 ! v5. To meet the requirement of f1’s
reliability, here we deploy a backup instance of VNF m2 as

m0
2. In order to eliminate the hardware failure of a server, we

prefer to deploy the primary and backup instances on different

servers. However, this incurs the rerouting issue when the pri-

mary VNF fails. If m2 fails, we need to reroute f1 to get proc-

essed by m0
2. If m

0
2 is deployed casually, it is highly possible

to have a longer path with a larger transmission delay, for

example, deploying m0
2 on v2. Then its routing path will be

v1 ! v3 ! v4 ! v2 ! v5. But if m0
2 is deployed on v4, its

routing path can keep the same. Additionally, multiple flows

compete for the limited link resource as well as server

resource. For example, f1 and f3 with the same source and

destination compete for the link between v1 and v4, while f1
and f2 compete for servers v3 and v4. All of the above factors,
including flow routing, backup selection and deployment, and

service chain requirement, complicate our problem, making it

extremely challenging.

Our contributions of this paper are listed as follows:

1) We innovatively formulate the backup allocation and

assignment as a latency optimization problem. A

detailed analysis of both software and hardware failure

models is studied as well. We simplify some constraints

of the network model in order to generate inspiring the-

oretical results.

2) We introduce two efficient greedy solutions for the homo-

geneous and heterogeneous VNFswith the same or differ-

ent configurations when there is only a single flow. We

prove the optimality of our proposed solutions.

3) For multiple flows, we prove the NP-hardness of our

problem and propose an intuitive strategy under the set-

ting of the limited server capacity. Additionally, a per-

formance-guaranteed solution is included with an

approximation ratio if the server capacity is infinite.

The remainder of this paper is organized as follows.

Section II surveys related works. We describe our network

model and formulate the problem in Section III. A detailed

analysis of both software and hardware failure models is stud-

ied in Section IV. Section V proposes the optimal solutions

for the single service chain with homogeneous and heteroge-

neous VNFs. Section VI solves the multiple service chain

resilience problem with performance-guaranteed solutions.

Section VII includes our simulation part and Section VIII con-

cludes the paper.

II. RELATED WORK

In this section, we give a brief review of state-of-the-art

works [14], [16]. Several studies consider the placement of a

minimum number of VNF instances to cover all the flows.

While the case of a single type of network function is consid-

ered in [17], the case of multiple types of network functions

is addressed in [15]. The work of [18] considers the place-

ment of middleboxes to keep the shortest path between com-

municating pairs below threshold, but does not consider

multiple network functions. In other related domains, such as

SDN and link cloud computing, similar problems have also

been studied. For example, the work in [19] considers the

placement of SDN-enabled routers to maximize the total

processed traffic. They consider a total resource constraint

but neglect the limited resource constraint. Similarly, in the

work on link cloud computing [20], although the resource

constraints are considered, their proposed solution is only for

a special case, and the overall problem does not consider the

Fig. 1. Motivating example.

652 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: Temple University. Downloaded on August 09,2022 at 19:18:32 UTC from IEEE Xplore.  Restrictions apply. 



multi-dimensional setting. To the best of our knowledge, the

setting has rarely been considered except in a limited number

of studies. In [21], the authors consider multi-resource VNFs

with a focus on the analysis of the vertical scaling (i.e., scal-

ing up/down of various resources) and horizontal scaling

(i.e., varying number of VNFs instances). The work of [22]

focuses only on request admission and routing. In [23],

although the multi-resource setting is considered, the focus is

on how to balance the traffic load across servers, taking into

account different resource requirements by different network

functions.

Most of the existing work on resilience design for NFV is

focused on the standby deployment model [12], [24], [25].

This model requires at least one standby VNF instance for

each primary VNF instance so as to ensure certain availabil-

ity when failure occurs. Instead, [24] considers the hot-

standby resilience design, where each standby instance is

also active and is consistently synchronized with the primary

instance. In contrast to backing up instances of the same type

of network functions, [25] takes into account the inherent

resource-sharing property of the virtualized resources and

considers models where each backup server can be provi-

sioned for multiple types of VNFs, and the backup server

can be up and running as a certain type of VNF when failure

occurs at some instances of the corresponding network func-

tion. Taking a different path, [12] studies the problem of

VNF recovery by dynamically reallocating the processing

resource of VNF instances. Instead of having one primary

instance and one backup instance, both instances are actively

functioning and have their states synchronized with each

other. When one instance fails, the other instance will

dynamically adjust its processing resource to accommodate

the traffic that is supposed to be processed by the faulty

instance. Taking advantage of the cloud networks, [26] mini-

mizes the backup cost with edge resource constraints when

considering the availability requirements. It also studies both

the static and the dynamic backup situation. All the above

work only focuses on the VNF deployment with backups for

each VNF in the service chain, which sometimes wastes too

much resource for the backup instances. They do not con-

sider the routing path. In this paper, we selectively deploy

primary and backup instances in order to save server capacity

as well as finding the routing paths for flows.

III. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we introduce our network model and formu-

late the joint NFV deployment and flow routing problem as a

mathematical optimization problem.

A. Network Model

The network consists of some commodity servers and

switches, which are wired up and serve as a data center. We

are given the set of switch-connected server nodes by V , satis-

fying jV j ¼ n, where V ¼ fv1; v2; . . .; vng. j � j is the cardinal-
ity of a set. Each server vi 2 V has a limited resource capacity

in terms of the total amount of resource to support VNF

instances, denoted as ci. qi is the availability of server vi. We

define Xi as an indicator parameter. If server vi is available,
Xi ¼ 1; otherwise,Xi ¼ 0.

A flow f has a total upper-bound transmission delay of df ,
a traffic rate of rf , and a path of pf . The path set of all flows

is denoted as P ¼ fpf jf 2 Fg. The given set of service

chains is denoted as S. A flow f requested to be processed

by a service chain sf 2 S consists of a sequence of ordered

VNFs, denoted as sf ¼ fmjjj 2 f1; 2; . . .; jsf jgg. When all

VNF instances of a service chain sf are active, sf is called

available. If no failure happens, all the active VNF instances

of a service chain are called primary. When failure happens,

the VNF instances that will be activated are called backups.

The requested service chain availability is rs and the actual

reliability is aðsÞ. pij is the availability of VNF mj on server

vi. fij is the number of VNF mj on server vi. Another indi-
cator parameter Yij is defined to demonstrate whether VNF

mj on vi is available. We define an indicator parameter Xij

to show whether the backup instance of VNF fi is deployed
at the node vj. If yes, Xij ¼ 1; otherwise, Xij ¼ 0. We define

the set of VNFs that have their backups at a node vj as Dj.

We refer to the sequence D ¼ ðD1; D2; . . .;DnÞ as a backup

deployment of VNFs to nodes. For ease of reference, we list

the notations in Tab. I. We formulate the availability of a ser-

vice chain when both the hardware and software failures are

possible as:

a ¼
X
fXlg

Yi
q
Xi
i ð1� qiÞ1�Xi �

Yj
½1�

Yi
ð1� pij �XiÞfij �

( )

If the availability of each server is identical and the avail-

ability of a type of VNFmj is irrelevant to its deployed server,

then the availability of a service chain is

a ¼
X
fXlg

Yi
qXið1� qÞ1�Xi �

Yj
½1�

Yi
ð1� pj �XiÞfij �

( )

If there is no hardware failure, the availability of a service

chain can be simplified as

a ¼
Yj

½1�
Yi

ð1� pijÞfij �

TABLE I
SYMBOLS AND DEFINITIONS
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B. Problem Formulation

In this paper, we aim at minimizing the total upper-bound

transmission delay of all flows when both the hardware and

software failures are possible. The deployment plan is denoted

as F ¼ ffij; 8vi 2 V; mj 2 Mg.

min
F;P

X
f df ð1Þ

s.t. df ¼ maxð
X

eij 2 pf dijÞ 8f 2 F ð2ÞX
i phiij � cj 8vi 2 V; 8mj 2 M ð3ÞX
eij 2 pf rf � bij 8eij 2 E; 8f 2 F ð4Þ

aðsÞ � rs 8s 2 S ð5Þ
Xi ¼ f0; 1g; Yij ¼ f0; 1g 8vi 2 V; 8mi 2 M ð6Þ

We aim at minimizing the total upper-bound latency of a

function-backup allocation and assignment. We can formu-

late our optimization problem in a mathematical way as fol-

lows. 1 shows the objective of the optimization problem. The

constraint in 2 illustrates df is the largest total transmission

delay among all its possible routing path. In 3, we require

that the total number of deployed backup instances on each

node is within its capacity. 4 guarantees the link bandwidth

capacity. We provide the availability guarantee in 5. 6

requires the indicator parameters Xi and Yij can only be

assigned with a value of 0 or 1.

IV. PROBABILISTIC ANALYSIS

When we have the probabilistic prior failure information,

we consider the problems of VNF deployment, resource allo-

cation, and flow routing with resilience guarantees against

both hardware and software failures. In certain scenarios, such

information can be learned from failure analytic, using histori-

cal data. In this section, we first discuss the hardware failure

and then the deployment of primary and backup instances.

A. Hardware Selection

First, we prove that if the hardware server can fail, then we

should always deploy the active and the backup instances for

one VNF at different servers.

Theorem 1: The active and backup instances for one VNF

should be deployed in different servers in order to have a

higher availability of the VNF.

Proof: We prove the theorem by probability analysis. We

need there to be at least one instance between the active one

and the backup one for each VNF f that is available. If all n
active instances and backup instances are deployed in the

same server, the availability of the VNF f is equal to a1 ¼
q � ½1� ð1� pÞn�. If they are distributed to different servers,

the availability of the VNF f is equal to a2 ¼ 1� ð1� q � pÞn.
Then we calculate the difference between these two values:

a2 � a1 ¼ 1� ð1� q � pÞN � q � ½1� ð1� pÞn�. When n ¼ 2,
we have a2 � a1 ¼ ð2q � p� ðq � pÞ2Þ � ð2q � p� q � pnÞ ¼
q � p2ð1� qÞ. We know that the availability of a server q is

always less than 1, even though it is close to 1. Then we gave

a2 � a1 � 0, illustrating that the distributed deployment has a

higher availability. As a result, the active and backup instan-

ces need to be deployed in different servers. &

Then we give two specific failure probabilities of hardware

to check the simultaneous server failure situation. When p ¼
0:9, the probabilistic is ð1� 0:9Þ2 ¼ 10�2. When p ¼ 0:99,
the probabilistic is ð1� 0:99Þ2 ¼ 10�4. Both values are

extremely small, so we assume the simultaneous failures of

two servers will not happen in this paper. Additionally, even if

this happens, we can still use the resource in the cloud

net [26]. As a result, we deploy the primary VNF instance and

all its backup instances on only two servers in order to

decrease the upper-bound transmission delay df .

B. Distribution of Primary and Backup VNF Instances

From above, we distribute primary and backup instances on

only two servers. Here we use a specific example to illustrate

the number distribution on two servers in order to maximize

the availability of the VNF. For the same function with four

instances including one primary and three backup instances, if

we distribute them evenly on two servers, the availability is

calculated as a1 ¼ 1� ð1� qÞ2 � 2q � ð1� qÞ � ð1� pÞ2 �
q2 � ð1� pÞ4. If we distribute them one and three on two serv-

ers, the availability is calculated as a2 ¼ 1� ð1� qÞ2 � q �
ð1� qÞ � ð1� pÞ � q � ð1� qÞ � ð1� pÞ3 � q2 � ð1� pÞ4. We

find that when p � 0:391, a1 � a2. In real systems, p is defi-

nitely larger than 0.5. Therefore, we should distribute instan-

ces of the same function evenly on two servers.

Then, to satisfy the service chain processing requirement,

we always deploy all types of VNF instances along flows’

routing path according to the required order in the chain. We

also need to make sure that each flow f 2 F meets its service

chain availability requirement, which can be expressed as

aðsÞ � rs; 8f 2 F . Note that when the availability of the pro-

vided service chain can be satisfied, we should deploy as few

backup instances as possible in order to save resources for

future use. This problem has been proven to be NP-hard

in [8]. It is out of scope of our paper, so we directly apply the

proposed solutions in [8] to decide which functions should

have backup instances.

For the upper-bound flow transmission delay df , we calcu-

late the largest time among all its possible transmission path

through all VNFs in its required service chain when we take

all possible failure situations. We use Fig. 2 to illustrate the

Fig. 2. Illustration of service chain processing. (a) Without a failure. (b)
Upon failures.
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service chain processing. If there is no failure, shown in Fig. 2

(a), the flows get processed by all primary instances in one

server along its path. However, if there are two failures of m2

and m4, shown in Fig. 2(b), the routing path look like a zig-

zag, which includes extra link transmission delays among

these two servers. We aim at minimizing the total upper-

bound transmission delay of flows in this paper.

V. SINGLE SERVICE CHAIN RESILIENCE

We start with a simple case in which there is only one ser-

vice chain under two different configuration settings of VNFs:

homogeneous or heterogeneous VNFs. In homogeneous

VNFs, different types of VNFs consume the same amount of

server resource while heterogeneous ones consume various

amounts of server resources. Our problem becomes to deploy

the requested service chain of f and find a path for f , in order

to minimize its total transmission delay.

A. Single Service Chain With Homogeneous VNFs

We propose an optimal algorithm for the single service

chain with homogeneous VNFs in Alg. 1. The insight of

Alg. 1 is to select a path that consists of the servers with the

largest capacity in order to shorten the flow routing path.

Line 1 sorts the server capacity. Line 2 routes the flow f to

the path with the total minimum transmission delay. Line 3

deploys the primary and backup instances of the service

chain. The deployment plan and the routing path are returned

in line 4. After we obtain the number of backup instances for

each primary VNF in each service chain, we start to assign

the instances to servers with the residual capacity and apply

our Alg. 1. In Alg. 1, line 1 sorts the server capacity cv; 8v 2
V . Line 2 applies Dijkstra shortest path algorithm to find the

shortest path from srcf to dstf . We select the servers with

the largest capacity to deploy the residual VNFs in sequence

until fully deployed in line 3 and return the deployment plan

and its routing path in line 4.

Theorem 2: Our proposed Alg. 1 is optimal.

Proof: With homogeneous VNF instances, all VNFs con-

sume the same amount of server resource and we can calculate

the number of VNF instances that each server can support. As

there is only one service chain, we can only keep all links with

a sufficient bandwidth, meaning be � rf ; 8e 2 E. We have

known the number of primary and backup VNF instances for

each type in the service chain. Moreover, the sequence order

restricts to deploy each type one by one along the flow path.

In order to minimize the total transmission delay, Dijkstra’s

algorithm is optimal when finding a path with the minimized

total cost. The cost is the latency of our resilient service chain

model. We have already checked the deployment of all VNFs,

which can guarantee the feasibility. We show the upper bound

of the transmission delay does not affect the path with enough

server capacity. Thus, our proposed SHV is optimal. &

Time complexity: In Alg. 1, lines 1 and 3 take

OðjV jlog jV jÞ because of sorting. Line 2 runs the Dijkstra’s

algorithm, whose time complexity can be Oðn2Þ [27], where
n is the cardinality of one set. In our problem, since the

deployment is feasible (the servers can support all the backup

instances), we have jV j. Then the cardinality of one set in

our transformed bipartite graph is jV j and line 3 takes

OðjV j2Þ time. As a result, the time complexity of Alg. 1 is

OðmaxfjV jlog jV j; jV j2gÞOðjV j2Þ.

B. Single Service Chain With Heterogeneous VNFs

For the case with heterogeneous VNFs, we also propose an

optimal solution in Alg. 2. In Alg. 2, line 1 divides the

resource at all nodes proportional to the traffic rate ratio of

these two flows. We apply the corresponding solution for a

single flow with its allocated server resource in line 2. Then

we combine the residual node resource of f with the allocated

resource for f in line 3, and similarly apply the solution for f
in line 4. Line 5 returns the deployment plan. The time com-

plexity is the same as Alg. 1. The extra challenge here is to

generate an optimal solution or a performance-guaranteed

solution with a better approximation ratio for two such flows

without backups.

With heterogeneous VNFs, the deployment of the primary

and backup instances becomes much more complicated. If

there is no service chain, then our problem is similar to the tra-

ditional NP-hard problem of Knapsack. However, a service

chain consists of multiple VNF instances in a sequence order,

which limits the position selection of VNF instances. What’s

more, with an objective of minimizing the upper-bound of the

transmission delay, the zig-zag routing path further restricts

the possible positions of primary and backup VNF instances

of the same type. Next we prove the optimality of our pro-

posed solution, Alg. 2. We have known the number of primary

and backup VNF instances for each type in the service chain.

Algorithm 1: Single Service Chain Solution with Homoge-

neous VNFs (SOV)

In: Flow f , its required service chain sf and sets of vertices V , linksE;

Out:The deployment plan and f’s routing path;
1: Sort the server capacity cv; 8v 2 V ;

2: Apply Dijkstra’s algorithm to find the k-shortest paths from srcf
to dstf until the total capacity of all servers in the path is no less

than jff j;
3: Select the servers with the largest capacity to deploy the residual

VNFs in sequence until fully deployed;

4: Return the deployment plan and f’s routing path.

Algorithm 2: Single Service Chain Solution with Heteroge-

neous VNFs (SEV)

In: Flow f , its required service chain ff and sets of vertices V , linksE;

Out:The deployment plan and f’s routing path;
1: Sort the hop transmission delay of links.

2: Calculate the number of servers with a total capacity no less than

jff j, which is djff jcv
e.

3: Use Alg. 1 to calculate the minimum total transmission delay from

vs to vd with a path length as djff jcv
e.

4: Deploy the primary and backup VNF instances.

5: Return the deployment plan and f’s routing path.
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Moreover, the sequence order is restricted to deploy each type

one by one along the flow path.

Theorem 3: Our proposed Alg. 2 is optimal.

Proof: As we aim at minimizing the upper-bound of flow’s

transmission delay, the sequence order of a service chain

restricts the position selection of the primary and backup

instances. For Alg. 2, in order to minimize the total transmis-

sion delay, we need to find the minimum number of servers to

hold all VNF instances. We have known the number of pri-

mary and backup VNF instances for each type in the service

chain. Moreover, the sequence order restrict to deploy each

type one by one along the flow path. If the server capacity is

not enough to deploy the current VNF instance, we can

directly deploy it on the next hop along its routing path. Then

the delay will not change and the path is optimal with the min-

imum upper-bound transmission delay. &

Time complexity: In Alg. 2, lines 1-4 and 6 spend at most

OðjV jlog jV jÞ because of sorting. Line 5 runs the Dijkstra’s

algorithm, whose time complexity can be Oðn2Þ, where n is

the cardinality of one set. It applies the algorithm 1, whose

time complexity is OðjV j2Þ. In our problem, since the

deployment is feasible (the servers can support all the backup

instances), we have jV j. Then the cardinality of one set in

our transformed bipartite graph is jV j and line 5 spends

OðjV j2Þ time. As a result, the time complexity of Alg. 2 is

also OðjV j2Þ.

VI. MULTIPLE SERVICE CHAIN RESILIENCE

Multiple flows may compete for the same link bandwidth

resource [28], which makes our problem much more challeng-

ing. In addition, various VNF primary and backup instances of

different types can share a server’s capacity. These constraints

further complicate our problem, making it NP-hard.

A. Unlimited Server Capacity

First, we prove the NP-hardness of our problem.

Theorem 4: Our joint VNF deployment and flow routing

problem is NP-hard with multiple flows even with unlimited

server capacity.

Proof: When there is no constraint on the server capacity,

the VNF instances can be deployed at any server along the rout-

ing path of the flow. Additionally, the VNF deployment has no

effect on the upper-bound of flow transmission delay. Then

there is no dependency relationship between the flow routing

and VNF deployment. We can conduct these two parts, sepa-

rately. The classic NP-hard multi-commodity problem [29] has

the same objective as ours, which is minimizing the total trans-

mission delay of all flows. It is reducible to our problem when

there is even no need to deploy VNF instances. Therefore, the

multi-commodity problem is a special case of our problem. The

theorem holds that our problem is NP-hard. &

As our problem is NP-hard with multiple flows even if there

is no server capacity constraint, we propose a solution in Alg.

3, which utilizes the performance-guaranteed solution of the

multi-commodity problem with an objective of minimizing

the total edge cost [29]. In Alg. 3, line 1 divides the resource

at all nodes proportional to the traffic rate ratio of these two

flows. We apply the corresponding solution for a single flow

with its allocated server resource in line 2. Then we combine

the residual node resource of f with the allocated resource for

f in line 3, and similarly apply the solution for f in line 4.

Line 5 returns the deployment plan. The time complexity is

the same as Alg. 1. Various VNF active and backup instances

can share a server’s capacity. These constraints further com-

plicate our problem, making it challenging. When we have the

probabilistic prior failure information of all hardware servers

and software functions, we study the resource management

problem for VNFs with the objective of minimizing the total

transmission delay among all flows, whose service chain

requests have been served by the system. First, we prove that

if the hardware server can fail, then we should always deploy

the active and the backup instances for one VNF at different

servers. The extra challenge here is to generate an optimal

solution or a performance-guaranteed solution with a better

approximation ratio for the case. We leave the topic for our

future work.

We illustrate the insight of this heuristic solution with the

motivating example in Fig. 1. If we get the routing paths for

all these three flows as shown in the figure, we need to deploy

their requested primary and backup VNF instances along their

paths. Because there is no server capacity, there is no competi-

tion on the server resources and the deployment for each flow

is independent. Then we can simply deploy all VNF instances

along their routing path by distributing all primary ones in a

server and all backup ones in its next-hop sever.

Theorem 5: Our proposed Alg. 3 is performance-guaran-

teed with an approximation ratio as ��2� jV j2 log bmax,

where � is an arbitrary number and bmax ¼ maxe2Ebe.
Proof: For Alg. 3, we apply the solution for the multi-com-

modity solution in [29], whose approximation ratio is ��2 �
jV j2 log bmax, where � is an arbitrary number and bmax ¼
maxe2Ebe. Our solution does not change the approximation

ratio proof. Additionally, the deployment of primary and

backup VNF instances for each flow is independent. The

deployment has no influence on the objective. Therefore, Alg.

3 is performance-guaranteed with an approximation ratio as

��2 � jV j2 log bmax. &

Time complexity: In Alg. 3, lines 1 and 4 spend a constant

time. The multi-commodity solution has a time complexity as

Oð��1 � jF j � jV j2 � log bmaxÞ in line 2, where � is an

Algorithm 3: Multiple Service Chains with Unlimited Server

Capacity (MUC)

In:Sets of flow F , vertices V , links E;

Out:The deployment plan and routing paths;

1: Calculate the numbers of primary and backup of each VNF in each

service chain;

2: Apply Multiple-commodity solution and get the routing paths;

3: for each flow f 2 F do

4: Deploy each VNFm along its routing path pf ;
5: Update the deployment plan for f;
6: end for

7: Return the deployment plan and routing paths.
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arbitrary number and bmax ¼ maxe2Ebe. Lines 3-6 have jF j
loops and each loop takes at most jV j. Therefore, the time

complexity of Alg. 3 is OðmaxfjF j � jV j; ��1 � jF j �
jV j2 log bmaxgÞ ¼ Oð��1 � jF j � jV j2 log bmaxÞ, where � is an
arbitrary number.

B. Limited Server Capacity

When the server capacity cv is limited, our problem is compli-

cated. We introduce a heuristic solution for the limited server

capacity case in Alg. 4. Every time, we randomly select to

deploy the VNFs for each flow. Line 1 calculates all link trans-

mission delays in an increasing order. Line 2 calculates the num-

ber of servers to deploy all the active instances. We apply the

dynamic programming method to find the path with the mini-

mum transmission delay in line 3. Line 4 sorts the availability of

all backup instances in the service chain. Line 5 decides the func-

tions with backup instances and deploys the backup instances

primarily. For the other instances, we select the server to deploy

them in line 6. Line 7 returns the final deployment plan. The

solution is heuristic with the insight from our proposed solution

in Alg. 1. Line 1 divides the resource at all nodes proportional to

the traffic rate ratio of these two flows.We apply the correspond-

ing solution for a single flowwith its allocated server resource in

line 2. Then we combine the residual node resource of f with the

allocated resource for f in line 3, and similarly apply the solution

for f in line 4. Line 5 returns the deployment plan. The time

complexity is the same as Alg. 1. We illustrate the insight of this

heuristic solution in Fig. 1. We note that the solution is heuristic.

A performance-guaranteed solution will be sought if one exists

will be part of future work.

We illustrate the insight of this heuristic solution with the

motivating example in Fig. 1. If we get the routing paths for

all these three flows as shown in the figure, we need to deploy

their requested primary and backup VNF instances along their

paths. Because of the limited server capacity, there is competi-

tion on the server resources and the deployment for each flow

is dependent. Then we solves the problem by arranging flows

one by one. We first select the flows with the maximum flow

rate and apply our solution for a single service chain until all

flows have been handled.

Time complexity: In Alg. 4, we have jF j iterations in lines

2-6. For each iteration, we apply Alg. 1 in line 3, whose time

complexity is OðjV j2Þ. Therefore, the time complexity of Alg.

4 is OðjF j � jV j2Þ.

VII. SIMULATIONS

Simulations are conducted and numerical evaluations are

presented to demonstrate the efficiency of our solutions. After

we present the network and flow settings, the results are shown

from different perspectives to provide insightful conclusions.

A. Experimental Settings

Topology: We conduct simulations by MATLAB on the

Archipela-go (Ark) Infrastructure topology [30], which is

CAIDA’s active measurement infrastructure over United

States serving the network research community since 2007.

Additionally, traditional data center networks and WAN

design over-provision the network with 30�40% average net-

work utilization in order to handle traffic demand changes and

failures [31]. Thus, we assume each link has enough band-

width to hold all flows. This assumption eliminates link con-

gestion and ensures that the transmission of all flows is

successful, since routing failure is none of our concern. We

calculate the edge cost for the matching as the increment of

the physical distance.

VNFs: There are 20 types of VNFs. The availability of

active and backup instances for each type is a random number

ranging from 0.7 to 0.9, respectively.

Service chain: Each service chain has a length ranging from

3 to 7, all of whose VNFs are selected from the 20 types. The

availability requirement of each service chain is a random

number ranging from 0.6 to 0.8. The variable is the number of

incoming service chain ranging from 1000 to 9000 with a

stride of 1000.

B. Comparison Algorithms and Performance Metrics

We conduct simulations for all above four cases, respec-

tively. We include three comparison algorithms to evaluate

each of our proposed solutions from different perspectives in

each setting. The first algorithm for the case of single service

chain with homogeneous VNFs is called Random, which ran-

domly deploys the backup instances to any available server.

The second algorithm for the two cases of single service

chains is called Greedy, which greedily allocates each func-

tion of each service chain to its corresponding location with

the minimum transmission delay increment. The third algo-

rithm for all four cases is called OPT, which is the optimal

solution obtained from running the Integer Programming

Algorithm 4: Multiple Service Chains with Limited Server

Capacity (MLC)

In:Sets of flow F , vertices V , links E;

Out:The deployment plan and routing paths;

1: Calculate the numbers of primary and backup of each VNF in each

service chain;

2: for each flow f 2 F do

3: Apply Alg. 1 to achieve pf and ff ;

4: Update the remaining bandwidth in each edge e 2 pf as

be ¼ be � rf ;
5: Update the remaining server capacity in each server cv along pf ;
6: end for

7: Return the deployment plan and routing paths.

Fig. 3. Simulation topologies. (a) Topology for single flow. (b) General
topologies.
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Solver, Cplex [32]. For the single service chain with homoge-

neous VNFs, our solution is called SOV. For the heteroge-

neous VNF case, our solution is called SEV and we also

include SOV as an comparison algorithm. For multiple service

chains, our solution is called MUC for unlimited server capac-

ity and MLC for limited server capacity. We use SOV and

SEV as comparison algorithms for both cases. For each

parameter setting, we run each algorithm multiple times and

use the average as our final result into the simulations.

We use four performance metrics for our benchmark

comparisons: the total upper-bound transmission delay, the

maximum single service chain transmission delay, the max-

imum length of flows’ routing path, and the execution time

of running the algorithms. The total transmission delay is

our objective in 1, which is the most important evaluation

indicator. The maximum single service chain transmission

delay is the largest total transmission delay among all flows.

the maximum length of flows’ routing path is the longest

routing path length among all flows. The execution time is

the time to obtain results by running the algorithms. The

units of the total delay, the largest single service chain

delay and the execution time are millisecond, millisecond

and second, respectively.

C. Results for Single Service Chain With Homogeneous VNFs

Fig. 4 shows the results of changing the number of flows

from 1000 to 9000 when we have only one flow. Our pro-

posed algorithm for this case is called Alg. SOV. Fig. 4(a)

shows the result of the total delay. OPT has the best perfor-

mance with the minimum total transmission delay, while

our proposed SOV has the second smallest total delay. The

delay of Alg. SOV is at most 23.1% more than that of the

optimal solution. Alg. Random has the largest total delay

because randomly deploying all VNF instances reduces the

chance of finding a path with a smaller length. In Fig. 4(b),

it shows the largest delay of a single flow when we change

the number of flows. The largest delay among all flows

becomes larger. When the number of flows increases, the

largest single delays and the length of the longest path for

running all algorithms become larger. This is because it is

more difficult to find a shorter path for a flow to place all

instances for its required service chain for a shorter path.

The result for the longest flows’ path is shown in Fig. 4(c).

The path length becomes larger, especially for the Algs.

Random and Greedy. The increment is more than 80.3%

when the number of flows changes from 1000 to 9000. Our

proposed SOV algorithm has a close performance with the

optimal solution, which indicates its efficiency. Alg. Ran-

dom has the worst performance with the largest path length.

Fig. 4(d) shows the execution time of running all the algo-

rithms. OPT needs to find the minimum delay value in each

time, which makes it much more time-consuming than the

others. The changing tendency of the execution time is in a

form of exponential increment. The execution times of the

other three algorithms are quite close, while the perfor-

mance of our proposed Alg. SOV is much better than Algs.

Random and Greedy.

D. Results for Single Service Chain With Heterogeneous

VNFs

Fig. 5 shows the results of running all algorithms when we

have one flow with heterogeneous VNFs. Our proposed algo-

rithm for this case is called Alg. SEV. More VNF instances

are deployed in order to meet the availability requirement of

service chains. So the delay and the path length of each flow

become a little bit larger. Fig. 5(a) shows the result of the total

Fig. 4. Single service chain with homogeneous VNFs. (a) Total delay. (b)
Largest single service chain delay. (c) Longest path length. (d) Execution
time.

Fig. 5. Single service chain with heterogeneous VNFs. (a) Total delay.
(b) Largest single service chain delay. (c) Longest path length. (d) Execu-
tion time.
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delay. OPT has the best performance with the minimum total

delay while our proposed SEV has the second smallest delay.

Alg. Greedy has the worst performance with the largest total

transmission delay, which can be more than 5 times than that

of Alg. OPT. This indicates that it is not enough to only deploy

all backup instances on a single server, which directly results

in a larger path length. In Fig. 5(b), the largest delay among

all flows becomes larger because more flows are inserted, and

less server capacity is left. When the number of flows

increases, the increment of the total delay of all algorithms

becomes larger. This is because it is more difficult to find a

shorter path for a flow to place all instances for its required

service chain. The path length of the newly-coming flow

becomes longer, which has a direct impact on the total trans-

mission delay. Fig. 5(c) shows the result of the largest path

length of a single flow. Our proposed SEV algorithm has a

close performance compared with the optimal solution, which

indicates its efficiency. Fig. 5(d) shows the execution time of

running all the algorithms. OPT needs to find the minimum

delay value in each time, which makes it much more time-con-

suming than the other algorithms. The result demonstrates the

trade-off between the performance and the efficiency of the

algorithms. Our proposed Alg. SEV has a much lower execu-

tion time than Alg. OPT while their performances on the last

three metrics are close.

E. Results for Multiple Chains With Unlimited Server

Capacity

Fig. 6 shows the results of changing the number of flows

from 1000 to 9000 when we have two flows without backup

instances each time. Our proposed algorithm for this case is

called Alg. MUC. Fig. 6(a) shows the result of the total delay.

When the number of flows increases, the increment of the total

delay of all algorithms becomes larger. This is because it is

more difficult to find a shorter path for a flow to place all

instances for its required service chain. The path length of the

newly-coming flow becomes longer, which has a direct impact

on the total transmission delay. OPT has the best performance

with the minimum total delay while our proposed Alg. SEV

has the second smallest total delay. In Fig. 6(b), the largest

delay among all flows becomes larger because more flows are

inserted, and less server capacity is left. Our proposed MUC

algorithm has a close performance with the optimal solution,

which indicates its efficiency. On average, the largest delay of

Alg. MUC is just 27.9% more than that of the optimal solu-

tion. As for the result for the longest flows’ path, shown in

Fig. 6(c), Alg. SOV has the worst performance with the largest

path length. This indicates that it is not enough to only deploy

all backup instances on a single server, which directly results

in a larger path length. Fig. 6(d) shows the execution time of

running all the algorithms. OPT needs to find the minimum

delay value in each time, which makes it much more time-con-

suming than the other algorithms. The execution time for this

case is a little more than that of the last case because the place-

ment of backup instances needs more time to decide beyond

the active instances.

F. Results for Multiple Chains With Limited Server Capacity

Fig. 7 shows the results of changing the number of flows

from 1000 to 9000 when we have two flows without backup

instances each time. Our proposed algorithm for this case is

called Alg. MLC. Fig. 7(a) shows the result of the total

delay. When the number of flows increases, the increment

of the total delay of all algorithms becomes larger. This is

Fig. 6. Multiple service chains with unlimited server capacity. (a) Total
delay. (b) Largest single service chain delay. (c) Longest path length. (d) Exe-
cution time.

Fig. 7. Multiple service chains with limited server capacity. (a) Total
delay. (b) Largest single service chain delay. (c) Longest path length. (d)
Execution time.
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because it is more difficult to find a shorter path for a flow

to place all instances for its required service chain. The

path length of the newly-coming flow becomes longer,

which has a direct impact on the total transmission delay.

OPT has the best performance with the minimum total

delay while our proposed MLC has the second smallest total

delay. In Fig. 7(b), the largest delay among all flows

becomes larger because more flows are inserted, and less

server capacity is left. Our proposed MLC algorithm has a

close performance with the optimal solution, which indi-

cates its efficiency. On average, the largest delay of Alg.

MLC is just 33.7% more than that of the optimal solution.

As for the result for the longest flows’ path, shown in Fig. 7

(c), Alg. SOV has the worst performance with the largest

path length. This indicates that it is not enough to only

deploy all backup instances on a single server, which

directly results in a larger path length. Fig. 7(d) shows the

execution time of running all the algorithms. The execution

time for this case is a little more than that of the last case

because the placement of backup instances needs more time

to decide where to deploy all primary and backup VNFs.

In summary, compared with several baselines, our proposed

three algorithms always have excellent performances on all

metrics, especially their designed objectives. The simulated

results illustrate the importance of not only the link transmis-

sion delay, but also the server capacity. More VNF instances

are deployed in order to meet the availability requirement of

service chains, so the delay and the path length of each flow

becomes a little bit larger. Additionally, we demonstrate the

trade-off between the performance and the time-efficiency of

our proposed algorithms.

VIII. CONCLUSION

One important issue of network services is reliability, which

means that each type of VNF in a service chain acts properly

on its function. The effective way to guarantee the reliability

is to utilize sufficient redundancy through providing VNF

backup instances beyond active primary ones. Software

Defined Networking (SDN) enables the dedicate location

pickup of primary and backup instances on switch-connected

servers. The deployment of primary and backup VNF instan-

ces plays an important role of flow routing because of its influ-

ence on the transmission latency of the flow. In order to

minimize the total latency of flows, we first formulate the reli-

able service chain deployment as a mathematical optimization

problem. A detailed analysis of both software and hardware

failure models is studied. Then we propose solutions for our

problem. We start with the case of a single flow by introducing

two optimal solutions for the homogeneous and heterogeneous

VNFs with the same or different configurations. Next, we

prove the NP-hardness of our problem for the case with multi-

ple flows and propose an intuitive strategy. Additionally, a

performance-guaranteed solution is included with an approxi-

mation ratio if the server capacity is infinite. Extensive simula-

tions are conducted to evaluate our proposed solutions

compared to multiple algorithms.
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