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ABSTRACT With the development of the Internet of Things (IoT), the cloud data centers have already
been an important foundation to support IoT data analysis and data-driven IoT services. For the data-
driven services provision, cloud resources are necessary for the service components in the form of virtual
machines (VMs). At the same time, there is a frequent data transmission among the service components
(or VMs). Hence, to reduce the IoT services’ response time, it is critical to improve the network issue and
avoid network bottleneck during resource allocation. In this paper, we investigate the VMplacement problem
for balanced network utilization by avoiding network congestion. We first use the resource topology model
to represent user requests and formulate the problem formally. We prove that the problem is NP-hard and
present a heuristic algorithm based on the resource topologies. The core idea is to analyze the global and
required resource topologies and place the required VMs into multiple servers with lower communication
cost. We conduct extensive simulations, and the simulation results show that our algorithms have significant
performance improvement on reducing network occupation and IoT service delay compared to the best-fit
strategy and divide-and-conquer strategy.

INDEX TERMS Cloud data center, graph theory, IoT service, network optimization, virtual machine
placement.

I. INTRODUCTION
Internet of Things (IoT) has created many exciting appli-
cations/systems, e.g. smart cities [1] and vehicular social
network [2], [3]. These IoT systems generate big volume
of data, and there is a strong need to conduct analysis on
the big data [4]–[6] to support various data-driven services.
Cloud data centers are the necessary platform to conduct data
analysis and host various IoT services. For the IoT service
provision, the service response time is critical to guarantee
QoS (Quality of Service). In fact, the cloud resource allo-
cation affects the service response time directly, not only
the computing resource, but also the network resource. This
is because there are always data transmissions between the
service components.

Resource allocation is the primary issue in cloud data
centers. For the IoT applications or services, there are
always multiple service components or microservices [7],
who actually occupy the resources in the form of virtual

machines (VMs). Hence, VM placement is the concrete prob-
lem of resource allocation to satisfy the service resource
requirements. According to the analysis of service provision,
the VM placement should take both computing resource
and network into account. However, it is still a challenging
problem for various reasons [8], including the scalability
issue, heterogeneous resources, workload variation, multiple
optimization goals, even the network security problem [9].
These all make the VM placement (VMP) problem difficult.

Energy or cost reduction is the most important objective
for the VMP problem in previous works. It is also known
as power-based VMP, which presents a VM-PM (physi-
cal machine) mapping algorithm, allows a system to be
energy-efficient and procures the utmost resource utiliza-
tion [10], [11]. The power-based VMP algorithms mainly
take the cost caused by physical resources into account.
However, the Service-Level Agreement (SLA) violations are
ignored. For example, it always take either the cost caused
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FIGURE 1. VMP with different goals. (a) minimize PM cost. (b) minimize
network cost.

by PMs [12], [13] or the cost caused by network [14], [15]
into account. But, the cost efficient approaches may lead to
network congestion, which may deteriorate the data center
performance and obviously enlarges the hosted IoT service
delay. Such as in the literature [16], the authors summarizes
the greenness of social sensor cloud but propose the outlook
about social sensor cloud from the perspective of service.

To explain the above problem more clearly, there is an
example in Fig. 1, a typical three-layer tree-like network
topology. The rectangles represent PMs and the circles rep-
resent switches or routers. We assume that the resource
requirements of the VM are the same and are represented by
slots, including CPU, memory, disk, etc [17] and the PM has
8 slots. The cloud receives several requests R1 at the same
time and each request requires some VMs to complete the
task. The numbers of VMs required are 4, 5, 5, 5, 6, 7. The
VMs belonging to the same request need to work together
to complete a task, so there is data communication between
the VMs within the same request, but no traffic between any
two different requests. We can easily get the VM placement
solution while considering the cost caused by PMs, as shown
in Fig. 1(a) and we know that there are only half of PMs
are used, i.e. PM1, PM2, PM3, and PM4. In this solution,
some requests are split into multiple parts and there are com-
munication cost between different PMs, which may cause
network congestion and performance reduction, as shown the
bold line in Fig. 1(b). Though many previous works also
consider the network cost and optimize the network issue
by minimizing the overall network cost. For example, if the
cloud receives two sets of requests at the same time R1 and
R2, where R2 contains 5 requests with numbers of required
VMs are 3, 6, 7, 7, 8. For the same configuration, we can
achieve theVMplacement solution tominimize network cost,
as shown in Fig. 1(b). The data communication may still
occur within part of the network and this also may lead to
network congestion, though it ensures the total network cost
is minimal. In summary, most of the previous VM placement
algorithms may cause network congestion, as the bold line
shown in Fig. 1, if they take energy or the network cost as
the major concern. Hence, for the IoT interactive services,
these resource allocation algorithms are improper to utilize
cloud resource.We need further take into account the network
congestion during resource allocation.

In this paper, we eliminate the network congestion issue
by minimizing the maximal link utilization and investigate

the VMP problem for network congestion and bottleneck
avoidance in cloud data center. We represent the user require-
ment by resource topology and formulate the problem, which
is proved to be NP-hard. Then, we present our algorithm
to make a simple optimization, based on topology analysis
and graph theory. The core idea is to analyze the required
VM resource topology and global useable resource topology,
and split the VMs into multiple parts with fewer data commu-
nication. This is effective to utilize the network resource in a
balanced manner. Compared to the best-fit and divide-and-
conquer policies, the simulation results show that our algo-
rithm has significant performance improvement in network
utilization. Generally, our contributions can be summarized
as follows.

(1) We formalize the VMP problem with the goal to
achieve minimized maximal link utilization in data centers,
and we prove that the problem is NP-hard. We mainly take
the network issue into account to avoid network bottleneck
and congestion. It is critical for the IoT services since data
communication is necessary and frequent.

(2) We introduce the topology network to model the
resource requirements and present a graph theory based
heuristic algorithm, which is an improved version from
our previous work [18]. We first analyze the global usable
resources and resource requirements from users, and split the
required resources (VMs) into multiple groups. But when the
physical resources are insufficient and there is no bridge in
the request resource topology, we will split the topology into
two groups based on the minimal edge cut sets of resource
topology.

(3) We conduct extensive simulations to evaluate the
improved algorithm. The results show that the improved algo-
rithm has better performance than our previous algorithm,
which has significant performance improvement compared to
the best-fit and divide-and-conquer algorithms.

The rest of the paper is organized as follows. We present
the related work in Section II. The problem statement is
given in Section III. We propose the improved algorithm
in Section IV, and evaluate its performance in Section V.
Finally, we make a conclusion in Section VI.

II. RELATED WORK
VMplacement is the primary issue to achieve resource alloca-
tion is virtualization-based cloud data centers. The literatures
have discussed the placement problem in various aspects,
including resource utilization [19], [20], energy and cost [12],
[13], [21], [22], network and scalability [14], [15], network
overhead [23]–[25], network performance [26]–[29], and net-
work congestion [30]–[34]. There are some other works, such
as VM interference [35], [36], performance [37], VM migra-
tion [38], and cloudlet [39].

Li et al. [19] modeled the VMP problem as the multi-
dimensional space partition considering the usage of multi-
dimensional resources, such as CPU, memory, disk and
etc. They tried to save energy by improving the utiliza-
tion of resources. In the paper [20], they put forward to a
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correlation-aware VMP that effectively deploys VMs on
PMs while meeting the user-defined service level agreements
(SLAs).

The authors model the VMP problem as the bin-packing
problem and propose a VM placement and migration algo-
rithm based on best-fit-decreasing for saving energy in [12].
But they cannot ensure that the user-defined SLAs, such as
network congestion. The literature [13] aims to minimize the
energy cost with considering constraints of PM resources and
network bandwidth. the authors raise a solution based on the
ant colony optimization for energy saving. Ahvar et al. [21]
think out the energy saving problem as well as the emis-
sion of carbon in the content of geographic distribution
of data centers. They propose an algorithm by combining
prediction-based A* algorithm with Fuzzy Sets technique.
Deng et al. [22] not only consider balancing the tradeoff
between SLAs required by tenants and energy costs con-
sumed by PMs, but also the lifetime and reliability of servers
that are impacted by repeated on-off thermal cycles, wear-
and-tear and temperature rise. They put forward a reliability-
aware server consolidation to balance the multi-objective.
Furthermore, the authors raise an algorithm based on the
binary search and take the PM and network costs into account
in [17].

Apart from energy saving, there are some works specif-
ically minimizing network communication consumption
in [14] and [15]. They try to deploy the VMs that need com-
municate with each other on the same PM or frame, which
means the communication traffic flow among VMs through
as few routers as possible. Meng et al. [14] try to deploy
the VMs that need to communicate with each other on the
only one PM. This scheme may achieve better results in some
cases, but they just consider the overall network overhead,
ignoring the utilization rate of network bandwidth and the
solution easily generates hot spots even network congestion
in the lower links.

Besides, there are some works notice the QoS while
deploying the VMs. The works of literature [23], [24] both
study the VMP problem considering the bandwidth required
by VMs and aim to guarantee the QoS. Wang et al. [23] pro-
pose a solution to allocate computing and network resources
for guaranteeing the QoS and balancing the resource utiliza-
tion of PMs and bandwidth. Similarly, the authors give a solu-
tion which takes advantage of the one-step-ahead information
to allocate bandwidth to VMs that hosting communication-
intensive applications in [24]. Moreover, they also give a
VM migration algorithm to adjust the bandwidth allocated
when the network demands have variation, which aims to
improve applications performance and reduce the overall
traffic.

The authors raise a service-oriented architecture for VMP
problem in [25]. They propose an algorithm based on integer
linear programming for minimizing the communication time,
that is to say, they need to allocate bandwidth as large as pos-
sible for each VM. Al-Fares et al. [26] improve the routing
algorithm and apply it to the dynamic flow scheduling system

of multiple tree topologies, which can adjust the uniform dis-
tribution of the flow on the network link, achieve traffic load
balancing and improve the switch utilization so as to avoid the
congestion of the data center link. Shrivastav et al. [27] use
VMP to optimize network performance or end-to-end latency.
It is recommended that VM migration is performed on over-
loaded PMs to balance the workload with the primary goal of
eliminating overloaded PMs while reducing network conges-
tion caused by migration traffic. Biran et al. [28] recommend
optimizing network performance not only to meet predictable
traffic communications needs but also to accommodate time-
varying VM placement. However, neither of these studies
considered the limitations of network link capacity and the
optimization of maximal link utilization. In order to lower
the communication latency, some works convert the VMP
problem to the application placement in the mobile cloud
network, such as the literature [29].

Silva and Fonseca [30] propose an algorithm for avoiding
network congestion with considering the energy consumption
of servers and switches and the basic idea of the algorithm is
to occupy small resource of data center network. In addition,
the authors not only give a solution for optimizing VMP
but also a scheme for route selecting in [31] for the more
connectivity and path diversity network architecture. The
paper [32] takes advantage of the communication locality
for balancing the communication traffic in data centers. But
they just think out the upper links, ignore the lower links
such as the links between physical servers and Top of Rack
(ToR). Yan et al. [33] make use of the extended Hose model
to deploy VMs. They put forward to a two-step solution for
the problem of maximal link utilization, first propose a router
assignment algorithm to balance the network bandwidth uti-
lization, then adopt a heuristic algorithm to deploy VMs for
eliminating network congestion. Son and Buyya [34] propose
a priority-aware VM placement algorithm considering both
host and network resources for reducing the chance of net-
work congestion.

In our previous work, we propose a solution based on
the bridge of graph theory in [18]. Experiments show that
the scheme of VM placement can achieve an obvious effect
in reducing link utilization. In this paper, we improve this
method and conduct more simulations.

III. PROBLEM STATEMENT
In this section, we formalize the VM placement problem for
minimizing maximal link utilization (MLU) and analyze its
hardness.

A. PROBLEM DESCRIPTION
For a given cloud data center with three-layer tree-like net-
work architecture, it contains N uniform PMs. For each PM,
it has c resource slots to host VMs. Tenants or users submit
their resource requirements, i.e. networked VMs, to the cloud
data center. The resource requirement could be modeled by
a weight undirected graph, where the VMs are represented
by vertices while using edges to represent the traffic between
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VMs and the weight of edge indicates the traffic volume.
Hence, we can use a matrix to represent the user requirement.
Formally, we use ri to indicate the ith user request, i.e. the
resource topology or the weight undirected graph.

For the cloud data center, it receives a set of user require-
ments R, where R = {ri, 0 ≤ i ≤ n}. It needs to allocate the
required resources for users based on their required resource
topologies. For each user requirement, if the required VMs
are placed on the same PM, it is known as perfect placement,
which indicates that there is no extra communication cost.
On the other hand, the VMs of the same request may be split
into multiple parts, and each part is hosted on one PM. This
will lead to traffic between PMs who host the VMs from
the same request. In fact, the VMs are always be split into
multiple parts due to the limited resource capacity for PM.
The objective of the VM placement is to achieve minimized
maximal link utilization (MLU), which could reduce network
congestion and bottleneck.

To formally define the problem, we use link(s, t) to rep-
resent the edge and its weight between node s and t , which
could be PM or switch. The bandwidth of link(s, t) is given
by b(s, t). For the communication traffic between VMi and
VMj, the part hosted by link (s,t) is represented by P(i,j)(s,t). For
each link(s,t), we define its link utilization U(s,t) as

U (s, t) =
∑
(i,j)

P(i,j)(s,t)/b(s, t) (1)

Hence, we can formalize the VMP problem for minimizing
MLU as follows.

VM placement for minimizing MLU: For a given data
center with uniform PMs, it accepts a set of resource requests
R={ri|0≤i≤n}. Given a VM placement scheme such that the
MLU is minimized. It can be formalized as

min max{U (s, t)}

s.t. P(i,j)(s,t) = P(i,j)(t,s)∑
(i,j)

P(i,j)(s,t) ≤ b(s, t)

P(i,j)(s,t) ≥ 0 (2)

where the P(i,j)(s,t) = P(i,j)(t,s) means the flow of any two VMs

through the same link is equal,
∑

(i,j) P
(i,j)
(s,t) ≤ b(s,t) indicates

the link capacity, and the traffic amount should be greater than
0, i.e. P(i,j)(s,t) ≥ 0.

B. HARDNESS
Theorem 1: The VM placement for minimizing MLU

problem is NP-hard.
Proof: We will prove the theorem by showing a special

case is NP-hard. We construct the special case: There are
two PMs in the data center, and the traffic flow is constant.
We assume that the sum of required VMs equals to the
capacity of the two PMs. Hence, the optimal solution is to
divide the requests into two equal parts without splitting any
request and place each part on one PM. In this case, there is no

Algorithm 1 Bridge-based Placement BBP(N , c, n, r)
Require: N : number of PMs; c: capacity of PMs; n: number

of requests; r : weighted undirected graph.
1: all requests in descending order according to the number

of VMs;
2: for i = 0→ n− 1 do
3: if ∃ c ≥ ri then
4: perfect placement;
5: else
6: if find bridges(ri) then
7: remove the bridges and sort the subgraphs in

ascending order by number of nodes;
8: if ∃ c ≥ rij then
9: allocate the rij to the best-fit PM;
10: else
11: strategy_placement(N,c,rij);
12: else
13: strategy_placement(N,c,ri);

network cost, it achieves the minimized MLU. Next, we will
show that minimizing MLU is NP-hard in this case.

First, it is easy to verify the feasibility of a given solution
in polynomial time. Then, we show that the minimizingMLU
problem can be reduced from the subset-sum problem. The
subset-sum problem can be formalized as follows: given a
set of integers A={A1,A2,...,An}, determine whether there is
a subset A∗ of A, such that

∑
Ai∈S∗ Ai =

∑
Ai∈S Ai/2.

Therefore, we can construct the problem of minimizing
MLU. Let there are n requests {r1,r2,...,rn} and two PMs
{P1,P2}. For the requests, let ri = Ai for each request, and
the capacity of each PM equal to

∑n
i=1 ri/2 =

∑n
i=1 Ai/2.

Here, if there exist a subset A∗ ⊂ A, such that
∑

Ai∈A∗ Ai =∑
Ai∈A Ai/2, wewill place theVMs inA∗ on PMP1, and place

others on P2. There is no network cost with this placement
since none of the requests is placed with partition. On the
other hand, if there is a VM placement with the network cost
equals to 0, the requests in one PMcould be a feasible solution
of A∗ for the sub-set problem.

Since the typical sub-set problem is known as NP-hard,
we conclude that the VM placement for minimizing MLU
problem is NP-hard.

IV. TOPOLOGY-AWARE VM PLACEMENT
In the Section III, we give the description of VMP in detail,
including the form of tenant request and the optimization
goals. We let a PM can hold at least one VM, that is ∀i, ri<c.
Besides, we also take the utilization rate of network links and
communication overhead into account. In this section, we put
forward an algorithm that utilizes the bridge partitioning the
request topology when the resource is insufficient. However,
the performance of our algorithm will drop when there is
no bridge in the resource topology. In order to improve this
situation, we use the minimal edge cut set to replace the
bridge to cut up the request.
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Algorithm 2 Best-Fit Strategy BFS(N , c, ri)
Require: N : number of PMs; c: capacity of PMs; ri:

weighted undirected graph.
1: find a node k with max traffic flow;
2: find a PM p with best-fit(ri) remaining capacity ccap;
3: for i = 0→ Ccap do
4: allocate k and adjoining to it to p;
5: if ∃ nodes belonging to ri are not allocated then
6: BFS(N , c, ri);

We propose a solution based on the bridge of request
topology for minimizingMLU in Algorithm 1. The basic idea
is to conduct perfect placements as many as possible. When
data center resources are scarce, we need to divide a request
into several parts according to the bridges in the request
resource topology and the request is divided into several sub-
requests. These sub-requests are sorted in ascending order by
the number of VMs required and we use best-fit strategy to
deploy sub-requests. But the following will still occur: a sub-
requests cannot be allocated to the PM perfectly due to the
VMs required are not satisfied. We first choose the VM with
the maximal bandwidth requirement and use best-fit strategy
(BFS) or divide-and-conquer strategy (DCS) to deploy it and
VMs which are communicating with it. Unlike previous work
with the goal of minimizing network cost, our algorithm tries
to make the network load balance so as to avoid network
congestion.

In the Algorithm 1, we first sort the all requests in ascord-
ing order according to the VMs required. If there is a PM
that can hold the current request ri, the request can be placed
perfectly (line 3-4). This will ensure that all the requests can
be placed perfectly when resources are sufficient, so there is
no traffic in the data center. However, when the remaining
resources are insufficient and the request cannot be placed
perfectly, we will analyze the topology of the request, find all
bridges of the request ri and remove them (line 6-7). For the
split request, if there is a PM that can hold the sub-request rij
and it will be placed perfectly (line 8-9), the rij represents the
j-th sub-request of ri. However, if the remaining capacity of
any PM is insufficient for rij or there is no bridge in request
ri, we use strategies placement (line 10-13). We propose two
different strategies: best-fit strategy (BFS) in Algorithm 2 and
divide-and-conquer strategy (DCS) in Algorithm 3.

We make use of the best-fit strategy in the Algorithm 2
to solve the situation that the resource is insufficient as
described at line 10-13 in the Algorithm 1. We first find a
VMwith the maximal traffic (line 1) and search a best-fit PM
(line 2). We will deploy the VM and others adjoining to it on
the PM until all the VMs are placed (line 3-6). The best-fit
strategy can improve resource utilization to a certain extent
by taking advantage of the remaining capacity.

The divide-and-conquer strategy is elaborated in the Algo-
rithm 3, we divide the network topology into several sub-trees
from the core layer and the convergence layer. We will first

Algorithm 3 Divide-and-Conquer Strategy DCS(N , p, c, ri)
Require: N : number of PMs; p: the current PM; c: capacity

of PMs; ri: weighted undirected graph.
1: find a node k with max traffic flow;
2: find a PM adjacent to p with capacity ccap as new p;
3: for i = 0→ Ccap do
4: allocate k and adjoining to it to p;
5: if ∃ nodes belonging to ri are not allocated then
6: DCS(N , p, c, ri);

search a PM in a sub-tree but if the sub-tree does not have
enough resources to satisfy the request, the request will be
deployed to another subtree that adjacent to the current. So the
algorithm based on the divide-and-conquer strategy generates
communication cost as low as possible. Like the Algorithm 2,
we also find a VMwith themaximal traffic (line 1) and search
a PM adjacent to p (line 2), if the remaining capacity of the
current PM is greater than zero, then the target is the current
PM. We will deploy the VM and others adjoining to it in the
current sub-tree until all the VMs are placed (line 3-6).
However, after extensive simulations are conducted,

we find that when the physical resources are insuffi-
cient or the request resource topology does not have a
bridge, the BBP has an obvious shortcoming that degenerates
into best-fit or divide-and-conquer. And we find the divide-
and-conquer strategy has the best performance. Therefore,
we improve the flip algorithm BBP and use the minimal edge
cut set instead of the bridges. We describe the edge-cut set
based placement in Algorithm 4. First, we still descend all
requests by the number of VMs required and implement as
many perfect placement as possible (line 1-4). But when
no PM can contain the request, we find an edge-cut set of
the request topology, which has the smallest weight, and
remove it (line 6-7), rather than finding the bridges. Then,
the weighted undirected graph can be divided into only two
parts and use best-fit strategy to allocate them (line 8-9).
Otherwise, we still adopt divide-and-conquer described in
Algorithm 3 place them on PMs, respectively (line 10-11).
For a better understanding, we give an example of the

implementation process step by step about the Algorithm 1
with best-fit and divide-and-conquer strategies based on the
three-layer tree-like network architecture as shown in Fig. 1.
In order to better prove the effectiveness of the algorithm,
we only use PM1, PM2, PM3 and PM4. There is a set of
requests that need to be deployed and the numbers of VMs
required are R= {7,6,5,5,5,4}. Besides, the requests topology
is known as follows: the requests are sorted in descending
order according to VMs required, so we ignore the resource
topology of r1, r2, r3 and r4 because they can be placed
perfectly without segmentation. r5 has only one bridge and
it can be divided into r51 with 1 VM and r52 with 4 VMs,
r6 does not have a bridge. The deployment scheme is shown
in Fig. 2, and the algorithm is executed as follows:

(1) r1, r2, r3, and r4 are placed perfectly;
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Algorithm 4 Edge-Cut Based Placement ECBP(N , c, n, r)
Require: N : number of PMs; c: capacity of PMs; n: number

of requests; r : weighted undirected graph.
1: all requests in descending order according to the number

of VMs;
2: for i = 0→ n− 1 do
3: if ∃ c ≥ ri then
4: perfect placement;
5: else
6: if find the edge cut set which has the smallest

weight(ri) then
7: remove the edge cut set and the ri is divided into

ri1 and ri2;
8: if ∃ cj ≥ rij then
9: allocate the rij to the best-fit PM cj;
10: else
11: DCS;

(2) r5 is partitioned into two parts and r51 is deployed on
PM1 seemly.

(3) r52 is partitioned into r52−1 with 3 VMs and r52−2 with
1 VM, while r52−1 is deployed on PM3. The Fig. 2(a) is
outcome of the Algorithm 2: r52−2 is deployed on PM2 and
r6 is partitioned into 1 VM and 3 VMs that are deployed on
PM2 and PM4, respectively. The Fig. 2(b) is outcome of the
Algorithm 3: r52−2 is deployed on PM4 and r6 is divided into
two same parts that are deployed on PM2 and PM4.
For the improved edge-cut set based placement, for exam-

ple, there is a request set with the numbers of VMs required
are R={7,7,6,6,6} and the requests topology are described as
follows: the requests are sorted in descending order according
to the number of VMs required, so we ignore the resource
topology of r1, r2, r3, and r4, because they can be deployed
perfectly without segmentation. r5 has no bridge, but it can be
separated into two parts, r51, r52 with 2VMs and 4VMs by the
minimal edge cut set. However, the bridge-based placement
Algorithm 1 cannot find the minimal edge-cut set, so r5
cannot be split. The deployment scheme is shown in Fig. 3
and the Algorithm 4 is executed as follows:

(1) r1, r2, r3, and r4 are deployed perfectly;
(2) r5 is partitioned into two parts: r51 and r52 with 2 VM

and 4 VMs, respectively. In addition, r51 is placed on PM3
suitably.

(3) Finding two edge cut sets of r52 so that it is divided into
r52−1, r52−2 and r52−3 with 2VMs, 1VMand 1VMaccording
to the remaining capacity of PMs, respectively. r52−1 is placed
on PM4, r52−2 is placed on PM1 and r52−3 is placed on PM2.
To research the performance of Algorithm 1 with differ-

ent deployment strategies in theory, we classify the kinds
of request resource topology into several different cate-
gories: without a bridge, only one bridge and more than
one bridge. For the case of without bridge, we adopt the
deployment of Algorithm 2 or Algorithm 3 to allocate
the VMs required, so the effect is the same as best-fit or

FIGURE 2. the result of different strategies. (a) best-fit strategy.
(b) divide-and-conquer strategy.

divide-and-conquer algorithm. If a request has one or more
bridges and it is partitioned into two or more sub-requests.
However, when there are not enough resources to satisfy sub-
requests, we will adopt the best-fit or divide-and-conquer
deployment described in the Algorithm 2 or Algorithm 3 to
place them. Therefore, the effect of our scheme is similar to
best-fit or divide-and-conquer placement. If these subgraphs
can be placed perfectly, so there are at most only one bridge’s
cost, but best-fit or divide-and-conquer deployment will pro-
duce more communication traffic for the case of only one
bridge. If the request has more than one bridge, we assume
an extreme situation that all edges in the request are bridges.
The effect of our algorithm will be not worse than the best-
fit or divide-and-conquer strategy for the worst case. Hence,
we infer that the Algorithm 1 based on the bridge is not worse
than best-fit or divide-and-conquer placement. The edge-
cut set based placement is an improvement of bridge-based
placement; when there is no bridge in the request, we will
find a minimal edge-cut set to replace it so as to reduce the
overall traffic flow.

About the time complexity of our algorithm, it can find
all bridges within O(n+m) in the worst case, where the n
represents the VMs required by a request and m is the number
of communication relationships. So, we can deploy a request
within O(n(n+m)). The edge-cut set based placement can
find the minimal edge-cut set within O(n3) and deploy a
request within O(n4). In short, the execution time of our
algorithm is within acceptable limits.

V. EVALUATION
We describe our algorithm and the performance in theory
detailed in the last section, we adopt best-fit and divide-and-
conquer algorithm as deployment strategies. Therefore, best-
fit and divide-and-conquer algorithms are baselines to evalu-
ate our algorithms. We simulate five algorithms and compare
with each other under different workloads. Our algorithms are
proved to be effective and we demonstrate the improvement
of our algorithm’s performance along with the addition of
load.

A. ALGORITHM DESCRIPTION
The basic idea of the best-fit based placement (BFBP) is all
PMs are sorted in ascending order according to the remaining
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FIGURE 3. the result of minimal edge-cut set placement.

resources, to ensure that we can find the best fit PM for
the request. However the best-fit placement may cause the
fragmentation problem, because the remaining resource will
be so small that can not contain any requests or sub-requests.
Therefore, when the data center resource load is high and
the resource is insufficient, requests may be partitioned into
so many pieces to suit the remaining resource of PM that
the utilization of physical links is high. However, the best-
fit placement may improve resource utilization to a certain
extent.

For the divide-and-conquer placement (DCBP) algorithm,
we will divide the tree-like network topology of data centers
into sub-trees from the core layer and convergence layer
and deploy requests in every sub-tree. The request will be
deployed to the neighboring when the remaining resources
of a sub-tree communication but ignore the load of network
bandwidth. This deployment scenario may lead to the net-
work hotspot even the network congestion.
The above two deployment scenarios are opted as

baselines to assess our algorithms. Based on the above
algorithms, we combine two approaches: the bridge-and-
best-fit based placement (BBFBP) is the combination of
bridge-based placement 1 and best-fit strategy 2, while the
bridge-and-divide-and-conquer based placement (BDCBP)
consists of bridge-based placement 1 and divide-and-conquer
strategy 3. In addition, The edge-cut based placement
(ECBP) 4 has been introduced in Section IV.

B. SIMULATION SETTINGS
We adopt uniform distribution and normal distribution of
VMs required by a request and the number of VMs required
is less than the resources owned by a PM. This guarantees
that there are some requests are deployed perfectly. Besides,
the communication traffic flow size among VMs is also
uniformly or normally distributed within the predetermined
range.

For the three-layer tree-like network architecture, the root
is a core router and there are two converged routers in the sec-
ond layer, the bandwidth between root and its child nodes is
30000M. Each converged router has three child node that is
cabinet top switch and the bandwidth between the two layers
is 3000M. The cabinet top switch connects to all 20 PMs
belong to the cabinet and each PM has enough resources to

FIGURE 4. The MLU of five algorithms under different distributions of
VMs and traffic with the data center workload from 96% ∼ 100%. (a) VMs
required are uniform distribution with lower limit 2 and traffic is uniform
distribution. (b) VMs required are uniform distribution with lower limit
2 and traffic is normal distribution. (c) VMs required are normal
distribution with lower limit 2 and traffic is uniform distribution. (d) VMs
required are normal distribution with lower limit 2 and traffic is normal
distribution.

hold 20 VMs. So we let each request requires up to 20 VMs
and at least 2 VMs. In addition, the bandwidth between each
PM and the cabinet top switch is 300M. The workload of the
data center is scattered in 96% ∼ 100% with granularity is
1%. Due to the lower limit of the number of VMs required by
the request, if the number of requests is not enough to occupy
the resources, a large number of requests will be deployed
perfectly. This situation results in the MUL is very small
even zero. Therefore, we make the workload of data center
is relatively high. We increase the lower limit to 10 of VMs
required by the request in another simulation experiment and
reduce the workload properly of data center, the workload of
data center is scattered in 80% ∼ 100%with the granularity is
5%. The communication traffic size is uniformly or normally
distributed with the lower limit is 0 and upper limit is 5M .
Besides, we let the second layer has 5 converged routers to
expand the scale of experiments.

C. SIMULATION RESULTS
According to the above experimental environment, we con-
duct extensive simulations. There is a set of experimental
results shown in Table 1 where VMs are uniformly distributed
in 10∼20 and traffic is uniformly distributed in 0∼5. The
content in the first column is resource load of data center.
The second to the sixth column are the MLU of five algo-
rithms. And the seventh column is effect of algorithm ECBP
compared to BDCBPwhich is most outstanding in [18]. From
the table, we can see the algorithm ECBP is the best solution
and the MLU declines about 4% compared to BDCBP. All
experimental results are given in form of figure as follows.

Fig. 4 shows a set of experimental results with the follow-
ing settings: the number of VMs required by a request has
the lower limits 2 and the workload of data center is from
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TABLE 1. VMs are uniformly distributed in 10∼20, traffic is uniformly distributed.

96% to 100%. The MLU in the Figs. 4(a) and 4(b) where
the VMs required are uniform distribution is obviously larger
than its in the Figs. 4(c) and 4(d) with normal distribution of
VMs. Due to added requests with the number of VMs close to
2 or 20 in the Figs. 4(a) and 4(c). The communication traffic
flow is uniformly distributed in Figs. 4(b) and 4(d) and nor-
mally distributed in Figs. 4(a) and 4(b). The BFBP algorithm
almost has the largest link bandwidth utilization, especially
when theVMs required are normal distribution and theDCBP
algorithm is seemly like to the BFBP in the Figs. 4(a) and
4(b). We can infer that the BBFBP algorithm is more out-
standing than the above two algorithms and theMLUdeclines
around 30% in Figs. 4(a) and 4(b) where the VMs required
are the uniform distribution. Besides, the MLU of BDCBP
declines around 15% compared to BBFBP algorithm when
the VMs required are the uniform distribution in Figs. 4(a)
and 4(b). In addition, the performance of improved ECBP is
best in the five deployment schemes and the MLU of ECBP
algorithm drops around 3% ∼ 5%. The MLU is showing
an uptrend along with the increase of data center workload,
the performance of BBFBP and BDCBP are roughly the
same and more excellent than BFBP and DCBP, moreover,
the ECBP always has the smallest MLU. Above all, the sim-
ulation results can fully reflect the superiority of the bridge-
based algorithm and the edge-cut-based algorithm in various
cases.

The Fig. 5 is the results of five algorithms with the number
of VMs required has a lower limit 10 and the workload of the
data center is from 80% to 100%. In the Fig. 5(a), the VMs
required and communication traffic are uniform distribution,
the MLU of five deployment is increasing along with the
growth of data center workloads. The ECBP has the most
outstanding performance and the MLU of ECBP declines
at least 45% and 40% compare to the BFBP and DCBP.
Compared to the Fig. 5(a), the settings difference of Fig. 5(b)
is that the communication traffic is normal distribution. With
the communication traffic size increasing, the MLU of our
algorithms is also becoming bigger, but our algorithms are
still more effective than others and the MLU drops about
30%. The VMs required are normal distribution in Fig. 5(c)
and Fig. 5(d), but the distribution of communication traffic
is different. The results in the Fig. 5(c) are similar to the
Fig. 5(a), but the performance improved at least 30%. The
communication traffic is normal distribution in the Fig. 5(d)
and the ECBP has the best performance with the MLU drops

FIGURE 5. The MLU of five algorithms under different distributions of
VMs and traffic with the data center workload from 80% ∼ 100%. (a) VMs
required are uniform distribution with lower limit 10 and traffic is
uniform distribution. (b) VMs required are uniform distribution with lower
limit 10 and traffic is normal distribution. (c) VMs required are normal
distribution with lower limit 10 and traffic is uniform distribution. (d) VMs
required are normal distribution with lower limit 10 and traffic is normal
distribution.

around 4% compared to the bridge based algorithms, and
declines around 40% compared to the BFBP. Through the
above sets of experiments we can infer that the influence of
VM’s distribution comparing the Figs. 5(a) and 5(c), or 5(b)
and 5(d). Through the Figs. 5(a) and 5(b), or 5(c) and 5(d)
we can conclude the influence of different communication
traffic distribution on theMLU. In summary, the bridge based
algorithms and edge-cut set based algorithm are all better
than BFBP and DCBP, of which ECBP has the smallest MLU
whatever the data center workloads.

In the Fig. 6, we let the second layer of the network
architecture has 5 aggregate routers to increase the resources
of data center and the other settings are same as Fig. 5, we also
conducted a large number of simulation experiments. Experi-
mental results show that the bridge-based algorithms aremore
outstanding the BFBP and DCBP in various situations and
the ECBP is the optimal deployment scheme. For example,
the bridge-based algorithms are strictly superior the BFBP
and DCBP from the Figs. 6(a) and 6(b) and the performance
of ECBP is further improved. Besides, from the Figs. 6(c) and
6(d), we can infer that the DCBP and BDCBP has a slight
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FIGURE 6. The MLU of five algorithms under different distributions of
VMs and traffic with the data center workload from 80% ∼ 100%,
the scale of data center is enlarged. (a) VMs required are uniform
distribution with lower limit 10 and traffic is uniform distribution. (b) VMs
required are uniform distribution with lower limit 10 and traffic is normal
distribution. (c) VMs required are normal distribution with lower limit
10 and traffic is uniform distribution. (d) VMs required are normal
distribution with lower limit 10 and traffic is normal distribution.

fluctuation, but bridge-based algorithms and ECBP still have
a satisfactory result on the whole.

In short, the bridge-based algorithms and improved edge-
cut set based have an outstanding and stable performance
regardless of what the data center workload and scale
are or what the distribution of VMs or traffic is.

VI. CONCLUSION
We study the VM placement problem for minimizing MLU
in this paper. We formalize the problem and prove its hard-
ness. To deal with the placement issue, we propose a graph
theory based heuristic algorithm. The basic idea is to take
into account the resource topologies of requests and employ
various placement strategies under insufficient resources.
Furthermore, we improve the algorithm against the situation
that physical resources are insufficient or the request topology
has no bridge. We conduct extensive simulations to evaluate
our algorithms, and the results show that the proposed idea
has significant improvement than the classical best-fit and
divide-and-conquer manner.
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