Dynamic Adaptation of In-Band Network
Monitoring via Meta Learning

Mingyuan Zang*, Eder Ollora Zaballa!, Lars Dittmann? and Jie Wu*!
*Cloud Computing Research Institute, China Telecom, China
TDepartment of Computer and Information Sciences, Temple University, USA
iDepartment of Electrical and Photonics Engineering, Technical University of Denmark, Denmark
Email: *zangmyl@chinatelecom.cn,i{eoza, ladit} @dtu.dk, Tjiewu@temple.edu

Abstract—Wide Area Network (WAN) management faces sig-
nificant complexity in characterizing heterogeneous traffic from
diverse services, which complicates unified feature extraction for
operational tasks like anomaly detection. Key challenges persist
in difficulty of creating generic feature sets across diverse traffic
patterns and insufficient historical data for machine learning
(ML) generalization. Meta-learning algorithms can be applied
to learn dynamic feature sets to improve model generalizability
on a limited number of data records. However, prior research fo-
cuses on algorithm design, with a lack of study on its application
to in-band network monitoring. This work proposes a workflow
to adaptively collect new feature sets and promptly learn from
them. An adaptive in-band feature selection and extraction
method is proposed for programmable switch. Meta learning
algorithm is introduced for prompt decision in controller based
on few-shot records. Evaluation results have shown that it
outperforms prior methods in accuracy and inference time on
public datasets.

Index Terms—Programming Protocol-Independent Packet
Processors (P4), Software-Defined Networks (SDN), Machine
Learning (ML)

I. INTRODUCTION

Wide Area Network (WAN) management faces unprece-
dented complexity in network traffic characterization due
to the coexistence of diverse services with different re-
quirements. The extraction of distinguishable traffic features
is critical to characterize traffic for advanced operational
services such as network optimization, anomaly detection,
and traffic engineering. Yet, existing feature characterization
and extraction methods remain three main challenges in effi-
cient deployment. First, the high-dimensional heterogeneity
of network traffic complicates unified feature representation.
For instance, IoT devices generate periodic patterns tied to
sensing intervals, enterprise virtual private networks (VPNs)
demand stable low-latency transmission, and video streaming
exhibits inherent burstiness due to variable bitrate encoding.
This multidimensional variability makes it difficult to design
a generic feature set that simultaneously captures temporal,
statistical, and protocol-specific attributes. Second, dynamic
configuration interference caused by operator-driven policy
adjustments, such as quality of service (QoS) reconfigura-
tion or traffic rerouting, introduces distributional shifts in
observed features. These changes often invalidate pre-trained
models that assume static network environments. Third, in-

sufficient data prevent the deployment of ML-based methods
(e.g., Decision Tree, Autoencoder) from generalizing to novel
traffic patterns represented by new feature sets.

Traditional methods of network traffic collection are lim-
ited in parsing useful information from dynamic IoT traffic
and evolving traffic patterns. These methods typically collect
fixed fields of interest and rely on predefined protocols,
which may not be effective in detecting novel or sophisticated
attacks. On the other hand, Software-Defined Networking
(SDN)-based solutions offer centralized control and pro-
grammability, enabling more flexible and scalable traffic
monitoring over the network devices. SDN-based approaches
allow for dynamic configuration and management of network
resources, but they still face challenges in efficiently collect-
ing the required network traffic features for machine learning-
based analysis.

Another emerging approach is the use of programmable
data planes, such as P4 (Programming Protocol-Independent
Packet Processors) language [1], which enables fine-grained
control over packet processing in network devices. Pro-
grammable data planes provide the ability to perform in-
network computing and real-time analysis, making them
well-suited for machine learning-based traffic analysis [2].
By collecting these features directly in the data plane, in-
band feature collection offers several advantages. It reduces
the need for external monitoring infrastructure, since the data
plane itself can perform the necessary analysis and processing
tasks. This approach can also enable faster and more efficient
monitoring since the analysis is performed in real-time,
without the need for data to be sent to external systems [3].
Additionally, in-band feature collection provides [4], [S] more
granular and fine-grained information compared to traditional
out-of-band methods (as depicted in Figure 1).

However, despite their advantages in programmability, it is
still challenging to utilize runtime reconfiguration to improve
the flexible in-band feature collection process, as all features
need to be predefined in P4 code. Any changes in features
need compile-time update, i.e. recompilation that will disrupt
the network service. Additionally, all features that could be
potentially used for collection may be parsed and sent at
once, and let the ML model decide which features to use, but
that could bring extra communication overhead and burden



the network bandwidth.

Moreover, once a monitoring task is deployed on pro-
grammable switch to collect traffic statistics based on a new
group of feature sets, it poses another challenge to the ML-
based classifier to give a prompt classification decision based
on these new collected statistics. Prior methods are based on
pretrained ML models and can only classify traffic based on a
fixed set of features [6], [7]. A new group of feature sets will
bring compatibility issues that hinder the ML models from
performing, resulting in another round of ML model training
and tuning. Meta-learning [8] could be a potential solution
to address this challenge following the “learning to learn”
paradigm, acquiring transferable knowledge across tasks dur-
ing meta-training for quick adaptation to new scenarios with
a few data samples. At the same time, there are gaps in the
way to accommodate the workflow design to diverse tasks
and services. The prior work focuses on algorithm design
for anomaly detection tasks [9], without further study on
workflow deployment in network systems.

Thereby, our question is: How can in-band traffic feature
analysis be efficiently and automatically reconfigured to
efficient ML learning based on few-shot samples? To answer
this question, we propose a workflow to adaptively collect the
new feature sets and promptly learn from them. It is featuring
of 1) adaptive in-band feature selection and extraction in P4
program for programmable switch deployment; 2) support of
common packet/flow-level features; 3) prompt classification
decision in controller based on few-shot records collected
from the data plane in programmable switches. The design
is prototyped in software switches and evaluation results
have shown its high efficiency in classification accuracy on
few-shot samples and advantages in low-latency response
compared with the state-of-the-art solutions.

Our main contribution to this paper can be summarized as
follows.

o An adaptive in-band feature selection and extraction
scheme in the programmable data plane is proposed by
identifying its necessity.

o A meta-learning-based algorithm is introduced into the
control plane to learn from the few-shot traffic statistics
collected with new feature sets.

o A workflow is designed to optimize the end-to-end la-
tency for prompt traffic analysis. Evaluation results have
verified its efficiency over the state-of-the-art solutions.

The remainder of the paper is organized as follows. Sec-
tion II explains the background of the work and presents an
overview of related work. Sections III and IV demonstrate
the key methods introduced in the work. Section V elaborates
on the proposed end-to-end workflow design for dynamic
adaptation of in-band network monitoring. Section VI de-
scribes the experimental setup for evaluation and lists the re-
sults. Section VII gives a discussion. Section VIII concludes
the work and discusses future work.
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Fig. 1: A sample deployment of in-band feature extraction
with the programmable device on network edge.

II. BACKGROUND AND RELATED WORK
A. Background

1) Telemetry and Feature Extraction: Telemetry has been
widely used for network monitoring and management. In the
context of in-band feature collection, the programmable data
plane can be programmed to identify and extract various
types of information, such as packet headers, flow statistics,
service indicators, or any other relevant network traffic at-
tributes. This extracted information can then be used for real-
time analysis, monitoring, debugging, or decision-making
purposes within the network.

Generally, extractable traffic features can be classified into
two types: stateless features and stateful features. These
features are useful for traffic analysis to gain insight into
the characteristics of the network. Table I lists the features
that can be extracted in programmable data plane.

Stateless features are extracted directly from individual
network packets. These features do not rely on previous
packets to provide context information. They give fine-
grained inspection of the properties of each packet and
packet headers. Examples of stateless features include: a)
packet header fields like address information, b) protocol
information like versions or flags, ¢) QoS indicators, and d)
detailed payload by conducting deep packet inspection into
the metadata of packet payload.

Stateful features, on the other hand, involve analyzing the
behavior and properties of a group of related packets over
time. The grouping is usually based on 5-tuple information
(i.e., source/destination IP, source/destination port, transport
protocol). It identifies the sessions of the transport layer, tak-
ing into account the context of the packets exchanged in the
sessions. These features describe the overall flow or session
behavior. Examples of stateful features include: a) flow-level
metrics such as packet counts and inter-packet arrival times
(IAT); b) TCP connection like sequence/acknowledgment
numbers; c) tracking of application layer services like ses-
sion establishment/termination; and d) traffic statistics like
minimum/maximum number of statistic counts.

2) P4-Enabled In-Band Telemetry: In-band feature collec-
tion with the programmable data plane refers to the capability
of collecting information related to network traffic directly
within the data plane of a network device. Such a technique



TABLE I: Examples of Stateful/Stateless Features

Source and destination addresses,

Packet Header Port numbers, Protocols,

Stateless Fields Packet size, Time-to-Live (TTL)
Features Network Protocol IP version, ICMP messages,
Information ARP requests, TCP flags
Qos DSCP values,
o Class of Service (CoS) bits
Payload HTTP URLs, DNS query names
Start and end times,
Flow-level Byte and packet counts,
Information Duration,
Stateful . .
Inter-packet arrival times
Features

Sequence/acknowledgement
numbers, window sizes
Transactions tracking ,

session establishment/termination
Minimum, maximum, total

TCP Connection

Application Layer

Traffic Statistics

is enabled by programmable Application-Specific Integrated
Circuits (ASICs) and the Programming Protocol-Independent
Packet Processors (P4) language. To support network pro-
grammability on the data plane, an abstract architecture
PISA is proposed to perform custom operations on incoming
packets in real time. This programmability allows for the
extraction of specific information or features from the packet
headers or payloads as they traverse the network device.

PISA architecture has three main components: parser,
Match-Action tables, and deparser. P4 language is used
to program this architecture to instruct packet processing.
In detail, protocol stacks are defined in P4 language in a
customized manner. To identify the protocol headers from
the incoming traffic, parser runs a state machine to parse and
extract packet header information layer by layer. The ex-
tracted information is temporarily saved in metadata. Match-
Action (M/A) tables consist of Reconfigurable Match Tables
(RMT) which decide how to handle the packet information
by comparing the match conditions. If a table entry is
matched, the corresponding action is taken to process the
packet or instruct the forwarding to the next hop. Deparser
will reconstruct the parsed packet header at the egress to
make sure the packet contains the correct information after
processing.

Specifically, RMT in M/A tables plays a crucial role
in defining reconfigurable packet processing. RMT table
consists of match fields, actions, and priorities. The packet
processing pipeline performs a lookup operation in the Re-
configurable Match Table to determine the appropriate action
for the packet. With PARuntime interface, P4 allows dynamic
updates to the table entries from the control plane, enabling
runtime reconfiguration of packet processing behavior.

3) Meta-Learning Algorithm: Meta-learning algorithms
offer a promising pathway to address these challenges. By
leveraging few-shot feature adaptation, meta-learning algo-
rithm like MAML (Model-Agnostic Meta-Learning) [8] can
quickly fine-tune feature extractors for new services with
minimal labeled data. For example, a meta-model trained in
diverse services such as [oT could be adapted to extract jitter-
sensitive features for a new AR application using only tens

of labeled samples.

B. Related Work

Telemetry collection methods vary in different services and
network infrastructures. Conventional collection methods for
telemetry data mainly collect flow information to reduce the
monitoring overhead to the network and volume of logs.
When P4-based monitoring techniques are studied, packet-
based solutions emerged because: 1) flow collection requires
extra processing power; 2) packet-based telemetry gives
more traffic details which reflects more problems. Collection
Method The collection methods used in the related work
are diverse, with a notable trend towards leveraging P4-
enabled data planes. both utilize P4-enabled data planes for
data collection, which allows for programmable and flexible
data extraction directly from the network hardware. This
method is highly efficient and can be tailored to specific
needs, making it suitable for real-time applications such as
anomaly detection and device recognition. Similarly, [13]
and [14] employ P4-enabled data planes, highlighting its
popularity in the field. However, [12] and [9] opt for a more
traditional capture-based method, which may be less efficient
but simpler to implement. The method proposed in [15]
also uses a P4-enabled data plane, but their work does not
specify a particular machine learning model. Our approach
also leverages the P4-enabled data plane, benefiting from its
flexibility and performance. This choice of collection method
provides a strong foundation for real-time and adaptive
feature extraction and analysis.

With a programmable data plane introduced to the net-
work, the reconfigurable processing pipeline provides the
potential for reconfiguration of collected telemetry. Conven-
tional methods entail administrators manually reconfiguring
the collection by modifying the collection rules, which adds
workload and is error-prone. SDN or programmable data
plane provides potential automation of the reconfiguration
via automatic applications or services. Both [10] and [11]
extract both flow and packet data, providing a comprehensive
view of the network traffic. This dual-level extraction is
beneficial for capturing both high-level trends and detailed
packet information, which is essential for tasks like anomaly
detection and device recognition. Both [12] and [14]
focus solely on packet-level data, which can provide detailed
insights but may miss broader patterns. The authors in [13]
extract flow data only, which is more efficient but may lack
the fine-grained details needed for certain analysis.

Programmable data plane has been widely used for In-
network Telemetry (INT) services to collect telemetry in-
formation in an in-situ manner. INT embeds telemetry in-
formation directly into the data packets as they traverse
the network. With programmable data planes, it is possible
to collect fine-grained traffic features inside the network
device and encode them within the packet headers. This
enables detailed monitoring of network behavior. Note that
this method is used in a group of network devices along
the routing path, different from the single-device deployment



TABLE II: Comparison with Related Work

Service Collection Method Flow Packet Reconfigurable ML
Model
[10] Anomaly Detection I(’;L-enabled v v v Random Forest
ata plane
. .. P4-enabled . .
[11] Device Recognition data plane v v v Logistic Regression
[12] IoT Fingerprint Captures X v X Random Forest
. P4-enabled Random Forest, K Nearest
[13] Anomaly Detection data plane v x v Neighbor, Support Vector Machine
[9] Anomaly Detection Captures v v X Meta-Learning
[14]  Encrypted Traffic Classification Pd-enabled x v X Random
crypted Zrathe Llassiheatio data plane Forest
[15] Application P4-enabled data plane v X v X
Ours Anom_aly De_tectlon, P4-enabled data plane v v v Meta-Learning
IoT Fingerprint, etc.
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Fig. 2: Top 10 feature importance among 31 flow-level features in MQTT2020 [16].
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Fig. 3: Top 10 feature importance among 108 flow-level features in CICIDS 2017 [17].

discussed in this work. In this work, the focal lens is on
feature collection and analysis in WAN on network edge.

C. Challenges and Gaps

Despite the advancements in the field, there are several
gaps in the existing work. First, while some studies focus
on either flow or packet data, few provide a comprehensive
analysis using both. This can lead to incomplete insights, as
flow data captures high-level trends while packet data pro-
vides detailed information. Second, the use of reconfigurable
data planes is limited, with only a few studies leveraging
this technology for real-time adaptability. Third, the choice
of ML models is often narrow. Some studies use only one
or two models, which may not be sufficient for diverse and
complex datasets.

Our method addresses these gaps by integrating a P4-
enabled data plane for flexible and efficient data collection,

extracting both flow and packet data for a comprehensive
analysis, and employing a meta-learning-based algorithm for
adaptability to diverse monitoring services based on different
feature sets. This holistic approach ensures that our method
can handle various tasks, providing robust and reliable feature
extraction and analysis. By leveraging reconfigurable data
planes, our approach also supports real-time adaptability,
making it suitable for dynamic network environments.

III. FEATURE ANALYSIS

With programmable data plane flexibly parsing the packet
header and processing the packets, various features and
statistics are possible to be collected directly from the data
plane. It can allow customizable feature extraction based
on service demands, varying from low-level packet-based
features and upper-level application-based features related to
application sessions and flows.



Having so many types of features available to be extracted,
traffic analysis and ranking is needed to select the meaningful
ones. Meaningful features can contribute to more accurate
learning and inference results of machine learning models,
while meaningless features may hurt model learning perfor-
mance. To quantify the significance among available features,
feature importance is one classical method. Permutation
importance-based feature importance is scored by randomly
shuffling values of a single feature and observing how much
the model’s performance drops. The greater the performance
drop, the more important the feature is.

To give an example analysis, features in two public datasets
are analyzed and compared: CICIDS 2017 [17] and MQTT-
I0T-IDS2020 [16]. These datasets include both benign and
malicious traffic from various services and protocols in
multiple types of IoT scenarios. Both flow-based and packet-
based features are listed in these datasets and each feature
is of different importance in revealing the patterns. Thus,
feature importance is computed and compared to understand
how feature importance may vary in each case.

Feature importance in different traffic patterns. Fig-
ure 3 and Figure 2 present the rank of feature importance
scores to evaluate how the features can reveal the traffic
patterns, i.e., malicious attacks in this case. MQTT-IoT-
IDS2020 [16] includes traffic captures specifically record-
ing MQTT-related attacks in IoT scenarios, while CICIDS
2017 [17] includes daily traffic captures suffered from
DoS/DDoS attacks. In these figures, we use the feature types
shared in both datasets for comparison and analysis. The
comparison indicates that: The same group of features shows
different levels of importance in identifying different attacks
in the same dataset. For instance, to identify volumetric
attacks (e.g., aggressive scanning (ScanA), UDP scanning
(ScanSU), or brute-force attempts) packet-level features like
IP TTL and TCP/UDP flags receive high importance scores.
Conversely, for stealthy attacks that target specific protocols
(e.g., Sparta SSH brute-force and MQTT brute-force), fea-
tures that closely reflect the intricacies of the MQTT protocol
itself are assigned greater importance.

IV. META-LEARNING-BASED CLASSIFICATION

Meta-learning operates on the fundamental paradigm of
“learning to learn”, where models acquire transferable knowl-
edge across diverse tasks during meta-training to enable
rapid adaptation to novel scenarios with minimal data. This
approach simulates real-world few-shot conditions through
episodic training: each episode presents a synthetic task
comprising a small support set (for adaptation) and query set
(for evaluation), forcing the model to develop generalizable
feature representations and adaptive learning strategies. The
core mechanism involves bi-level optimization, an inner loop
performs task-specific parameter tuning while an outer loop
refines the model’s global architecture to facilitate efficient
future adaptations. By exposing the model to thousands of
such simulated few-shot scenarios, it learns optimal initial-
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Fig. 4: Overview of the meta-learning algorithm.

Outer Loop

ization parameters and update rules that minimize the need
for extensive retraining when encountering new tasks.

This work introduced Model-Agnostic Meta-Learning
(MAML) as a meta-learning algorithm for few-shot classi-
fication. During meta-training phase, the model processes
batches of episodic tasks drawn from base classes [18].
Figure 4 demonstrates the training process of the algorithm.
For each task, the inner loop executes rapid adaptation:
the classifier module undergoes a few iterations of gra-
dient updates to update the initial parameters 6 from the
optimized model fp, using only the support set based on
0+ 60-p 272-~p(7’)/ Vo L7, (for). while the feature extrac-
tor remains frozen to preserve generalized representations.
The algorithm incorporates gradient correction, replacing null
derivatives with zero tensors, to maintain stability when
processing sparse network traffic features. Following inner-
loop adaptation, the outer loop computes meta-loss on the
query set and back-propagates through the entire computation
graph of inner updates, adjusting both feature extractor and
classifier weights via mixed-precision training. This dual-
loop strategy enables the model for task-specific specializa-
tion (inner loop) and cross-task generalization (outer loop).

For few-shot inference phase, the meta-trained model
demonstrates its adaptive capabilities. When presented with
new traffic classes (e.g., 5 samples of a new class), the feature
extractor first generates discriminative embeddings using
weights optimized for cross-task feature abstraction [19]. The
classifier then performs a few inner-loop updates exclusively
on these few samples, dynamically adjusting decision bound-
aries without changing the foundational feature representa-
tions. This process leverages an insight from meta-training:
optimal initialization points that lie in parameter regions
follows fast adaptation. Enhanced design like OneCycleLR
scheduling [20] further boost efficiency by automatically
tweaking learning rates, initially high for coarse adjustment,
then decaying for fine-tuning, while BatchNorm layers main-
tain feature distribution consistency across various tasks.

V. PROPOSED DESIGN
A. Workflow Overview

The workflow proposed in this paper is built on P4-
programmable data planes. Figure 5 illustrates the framework
overview, which consists of two primary components: a P4-
enabled switch and a controller. When network traffic reaches
the P4 switch, the switch extracts stateful in-band features,
encapsulates them in a UDP packet (feature report), and
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forwards the packet to the controller. The controller then
classifies the traffic using a pre-trained ML model.
Detection in the P4 switch proceeds in three stages:

o Packet parsing: Header fields are parsed and protocol
information is extracted, as shown in Figure 5, step (D.

« Statistic extraction: Stateful features are computed by
hashing into bloom filters and updating counter registers,
illustrated in Figure 5, steps @) and Q).

e Report encapsulation: When a packet arrives at the
ingress port, a timestamp is recorded. Once the
timestamp exceeds time window 7', collected features
{f1, .., fn} are read from registers. This metadata is
assembled into a custom header and encapsulated in a
UDP report, as depicted in Figure 5, step @).

When the controller receives the report encapsulated in
UDP packet from the switch (Figure 5, step @), features
are parsed into a DataFrame and labeled by a pre-trained
meta-learning model designed for few-shot classification.
The model is trained offline and then loaded for real-time
inference on a small number of examples (Figure 5, step ©)).
Because the collected features evolve when new sets arrive,
feature alignment is performed before the classification task
(Figure 5, step Q).

B. Feature Collection And Alignment

In-Band Feature Collection. With P4-enabled pro-
grammable switches deployed, the features discussed in
Figures 2 and 3 are collected in band upon arrival of traffic
at the data plane. To enable meta-learning based on a few
examples, common features {f1, ..., f} collected within the
time window are flow information based on 5-tuple like
port information and protocol {source port, destination port,
protocol}.

We focus on these features to capture trends of traffic ar-
rival rather than precise source or destination details, because
attackers may use spoofed IP addresses. For example, a TCP
SYN flood generates many half-open handshakes: the flood
of SYN packets causes a sudden rise in TCP traffic and new
sessions, and when those sessions time out, a burst of RST
packets follows. Such anomalies are visible in the packet
count, rate, and TCP-flag distribution observed within each
time window.

To collect these features, counters are first stored in tem-
porary 32-bit registers. This width is defined to balance the
need to handle high-volume attack traffic against memory
consumption. A Bloom filter, a space-efficient, probabilistic
data structure, is then used to identify unique TCP port pairs
in the heavy traffic without storing the full pair information.

Feature Alignment. When the controller receives the
collected feature values from various switches, cross-switch
feature alignment is triggered. This module resolves fea-
ture schema disparities between heterogeneous data sources,
which is critical in WAN environment where diverse services
coexist. The key idea is to group the traffic features and
find the representative common features. The standardization
process normalizes numerical features like flow duration and
port numbers, while label encoding converts categorical at-
tack types into unified numerical representations. This phase
outputs dimensionally consistent tensors ready for model
ingestion, ensuring compatibility between pre-training data
(e.g., port scan traffic in the first group of data) and incre-
mental samples (e.g., emerging traffic patterns in incoming
data).

C. Adaptive Feature Selection

To allow adaptive feature selection for dynamic demands
in operational service, this work introduces an idea of pre-
computation and selection to enable dynamic feature set
switching without recompilation of P4. During the initial
compilation phase, the P4 program is designed to compute
all potential features in parallel, storing them in dedicated
registers or metadata fields. This precomputation occurs
continuously as packets traverse the data plane, ensuring
all features remain updated regardless of current selection.
A feature selector table acts as a runtime switchboard,
controlled by a bitmap that determines which precomputed
feature gets collected and sent to the control plane.

In detail, the control plane populates the feature selector
table with default mappings. The incoming network traffic
triggers concurrent feature updates such as feature extrac-
tion and counter incrementation, while timestamps enable
duration calculations. When a flow termination is detected
(e.g., via idle timeout), the current selector value indexes the
feature table, triggering only the selected feature to be cloned
to the controller via packet-out. This design decouples feature
selection from feature computation, allowing the latter to be
reconfigured on the fly while maintaining line-rate processing
performance.

VI. EXPERIMENTAL SETUP AND RESULTS
A. Experimental Setup

To evaluate the proposed design, we created a Mininet
topology with six hosts acting as iperf3 TCP/UDP servers, a
seventh host serving as an iperf3 client for each server, and
a controller. We implemented our design in P44 [1] using
the BMv2 Simple Switch target to enable data collection in
the band. We then train the meta-learning model and replay
the public datasets for evaluation.



TABLE III: Model Performance

Train Infer.
Accuracy | Precision | Recall F1 Time Time
(ms) (ms)
AE 0.71 0.72 0.72 0.71 45 612
ProtoNet 0.43 0.33 0.50 0.30 25 189
OnlineML 0.43 0.45 0.49 0.34 47 1068
Ours 0.75 0.75 0.76 0.75 2357 792
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Fig. 6: Acccuracy vs. number of shots on CICIDS2017
dataset.

Public datasets are used for evaluation: CICIDS 2017 [21],
IoT Sentinel [12], MQTT2020 [16]. To evaluate the adaptive
performance of the proposed design on emerging traffic
pattern, the datasets are replayed in two types of scenarios: a)
initial traffic with class 1 and followed by traffic with class 2
in the same CICIDS 2017 dataset; b) initial traffic in dataset
CICIDS 2017 and followed by traffic in dataset [oT Sentinel
or MQTT2020 [16].

Multiple metrics are used to evaluate detection perfor-
mance of the proposed design. Here, T'P, I'N, FP, TN
denote the counts of true-positive, false-negative, false-
positive, and true-negative results, respectively. Accuracy

TEHIN measures the overall proportion of correct

TPYTN+FP+FN T
classifications. Precision TPIFP indicates how reliable a

positive label is. Recall TFZF% reflects the fraction of actual

anomalies that are correctly detected [22]. The Fl-score

2 M gives a harmonic mean of Precision and
ecision + Recall

Recall. The False Positive Rate (FPR) % shows the

proportion of benign traffic that is incorrectly flagged.

B. Experimental Results

In this section, we evaluated the design from three aspects:
(1) classification capability, (2) adaptive classification, (3)
system overheads brought by the proposed workflow.

Effects from model selection: Three meta-learning mod-
els [23], [24], [9] were evaluated as state-of-the-art solutions.
The widely-used Autoencoder (AE) model is also compared
and evaluated as baseline [24]. Table III summarizes the
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Fig. 7: Accuracy vs. number of shots on IoT Sentinel dataset.
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Fig. 8: Accuracy vs. number of shots on MQTT2020 dataset.

performance details of these models. Although AE present
a faster inference process, but it takes a relative long training
time. ProtoNet shows faster inference but lower accuracy on
new traffic pattern. Overall, the algorithm proposed in this
work has the best performance, the highest accuracy to 75%
with better trade-off between training and inference time.

Effects from the number of shots: Figure 6, 7 and
8 demonstrate the inference accuracy when labeling the
traffic representing different number of data shots. Results in
Figure 6 show that the proposed model presents an adaptive
classification performance with stable and high accuracy
performance. When the number of shots is low (e.g., 1-
shot), the accuracy decreases by 1% from the 5-shot case
for Autoencoder and naive meta-learning algorithm. When
it comes to the IoT sentinel dataset, the results present
a similar trend. The proposed algorithm still shows stable
performance with relatively high accuracy and outperforms
other algorithms by 8% to 17% higher accuracy. Similar trend
is also presented in other datasets in Figure 7 and 8.

Effects from the system latency: During the detection, the
end-to-end latency from feature collection and transmission
within the P4 switch until the ML-based inference result in
the controller is recorded as Figure 9. While the ProtoNet
presents a 1.5x faster latency performance than the algorithm
proposed in this work, its accuracy is relatively low. Despite
the relatively high CPU utilization of the proposed algorithm,
it achieves a better trade-off between accuracy and CPU
utilization compared to other SOTA.
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VII. DISCUSSIONS

Data Plane Resource Constraints. The dynamic feature
extraction capability relies on the limited memory in pro-
grammable switches. When high-dimensional features are
activated simultaneously, contention for memory resources
may occur, potentially affecting forwarding rules and other
network functions. This requires advanced feature analysis
mechanisms to prioritize critical features. Such priority re-
sults can be varied and depend on security-relevant attributes.

Meta-Learning Generalization. During initial deploy-
ment, the adaptability of the meta-model may be affected by
the pre-training data. For instance, if the controller encounters
new traffic distribution, the model may fail to rapidly gener-
alize from minimal samples. More data and updates of model
parameters may be needed to enhance model’s reliability.

Temporal Latency and Overhead in Feature Statistics.
Stateful time-windowed features introduce decision delays
for short-lived anomalies. Although real-time stateless fea-
tures can compensate, dynamically reconfiguring the pipeline
to balance batch-statistical features versus real-time analysis
increases control-plane complexity. The workflow proposed
in this work approaches this problem by introducing the
meta-learning-based updates.

VIII. CONCLUSIONS

This work proposes a workflow to adaptively collect the
new feature sets and promptly learn from them. It demon-
strates how in-band feature analysis can be dynamically
reconfigured for efficient few-shot learning. By integrat-
ing adaptive P4-based feature selection in programmable
switches with meta-learning in the control plane, the pro-
posed solution avoids manual recompilation overhead and
enables real-time classification of novel traffic patterns. The
optimized workflow significantly reduces end-to-end latency
while maintaining accuracy with minimal samples, overcom-
ing limitations of static feature sets and pretrained models.
This approach advances network automation by providing
a responsive, reconfigurable framework for next-generation
traffic engineering and operational services in dynamic net-
work environments. Future work regarding adaptive in-band
monitoring will likely focus on deploying the meta-learning-
based method presented in this paper on hardware pro-
grammable switches and investigating on scalable deploy-
ment scheme on the programmable switch.
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