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Heterogeneous Edge Networks
Yingchi Mao, Jun Wu, Xiaoming He, Ping Ping, Jiajun Wang, and Jie Wu, Fellow, IEEE

Abstract—In edge networks, distributed computing resources have been widely utilized to collaboratively perform a machine learning
task by multiple nodes. However, the model training time in heterogeneous edge networks is becoming longer because of excessive
computation and delay caused by slow nodes, namely stragglers. The parameter server even abandons stragglers which fail to return
outcome within a reasonable deadline, called straggler dropout, decreasing the model accuracy. To optimize the computation cost
and maintain the model accuracy, we focus on mitigating the heavy computation of stragglers and preventing straggler dropout.
Therefore, we propose a novel scheme named Dynamic Grouping and Heterogeneity-aware Gradient Coding (DGH-GC) to tolerate
stragglers by employing dynamic grouping and gradient coding. DGH-GC evenly distributes stragglers in each group and encodes
gradients based on their computation capacity to prevent them drop out. However, DGH-GC exacerbates the communication burden by
making data duplication to tolerate stragglers. Relying on the scheme, we further propose an algorithm called DGH-(GC)² to compress
transferred gradients in both upstream communication and downstream communication. Experimental evaluations prove that DGH-(GC)
outperforms all state-of-the-art methods and DGH-(GC)² further speeds up the convergence time of the trained model and saves about
26% average iteration time compared to the DGH-(GC).

Index Terms—Heterogeneous Edge Networks, Gradient Coding, Dynamic Grouping, Gradient Compression

✦

1 INTRODUCTION

With the increasing computation power of edge devices [1],
e.g., smartphones [2] and IoT sensors [3], training Deep
Neural Network (DNN) models on multiple edge devices
becomes feasible. The distributed model training in edge
networks takes advantage of the distributed parameter
server (PS) architecture, where edge devices work as nodes
and the edge server works as the central PS [4].

One of the main challenges for distributed DNN model
training in heterogeneous edge networks lies in the heavy
communication [5] load caused by excessive computation
[6] and straggler dropout [7]. Specifically, some nodes may
incur delays in computation or communication, which are
called stragglers [8] [9]. As shown in Fig. 1, the PS waits
for stragglers to submit their local gradients, and even
abandons stragglers with long computing time, which are
called straggler dropout [10] [11]. This largely increases
the communication cost and reduces the accuracy of the
training model [12]. Meanwhile, the attributes of heteroge-
neous nodes, i.e., the computation capacity [13], memory
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Fig. 1. Heavy communication load caused by stragglers in heteroge-
neous edge networks

size [14], and communication mode [15], further exacerbate
straggler dropout, resulting in inefficient communication
[16]. Besides, stragglers aggregation results in huge time
consumption, leading to higher electricity costs and heavier
greenhouse gas emissions [17] [18]. Therefore, it is vital to
design an efficient solution of straggler dropout for green
communication and computing [19] [20].

The straggler dropout has been widely studied in dis-
tributed computing [21]. From the perspective of parallelism
mechanism, the typical Time Asynchronous Parallel (TAP)
[22] and Staleness Synchronous Parallel (SSP) [23] were pro-
posed to mitigate the negative impact of stragglers on the
communication efficiency. Based on the SSP algorithm, Dy-
namic Stochastic Gradient Descent (DynSGD) [24] adjusted
the learning rate dynamically according to the delay of
stragglers in completing gradient computation. Considering
that the above parallelism schemes alleviated the model
accuracy, Raviv et al. [25] proposed gradient Coding (GC)
to tolerate stragglers by encoding gradients. However, GC
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is only applicable to homogeneous training environments,
which does not work in heterogeneous edge networks [26].
Given the heterogeneity of edge devices, Wang et al. [27]
proposed the Heterogeneity-aware Gradient Coding (HGC)
to allocate data of reasonable size to nodes depending on
their computation capacity, which tolerates a predetermined
number of stragglers to prevent them from dropping out.

Some researchers have also reduced the chance of strag-
gler dropout by grouping stragglers. Tang et al. [35] grouped
all participating nodes into several clusters using k-Means
clustering. Kopparapu et al. [38] proposed the Federated
Cloning-and-Deletion (FedCD) to group nodes with similar
data for addressing the non-IID problem in federated learn-
ing. Both of the above approaches employ the characteristics
of nodes or data features carried by nodes to achieve the
static grouping of stragglers. However, they fail to consider
the fact that stragglers may drop out after the static group-
ing.

To address the shortcomings of the static grouping for
stragglers, Kopparapu et al. [39] improved FedCD and
used a dynamic grouping approach called Fork-Merge-
Consolidate (FedFMC) that first dynamically forked nodes
into updating different global models, then merged and
consolidated separate models into one. Buyukates et al.
[28] proposed Dynamic Clustering with Gradient Coding
(DCGC) with the goal of dynamically adjusting the number
of stragglers in each cluster, based on the straggler dropout
in the previous iteration, making stragglers uniformly dis-
persed into each cluster to the maximum extent. However,
FedFMC and DCGC ignores the heterogeneity of edge de-
vices and fails to fully utilize the computation power of
nodes for data allocation.

Considering the strong heterogeneity of nodes and the
inappropriate groupings for stragglers that leads to strag-
gler dropout in edge networks, we adopt a novel grouping
for stragglers. It firstly employs the static grouping and then
utilizes the dynamic grouping to improve the rationality of
the static grouping for stragglers. Besides, a heterogeneity-
aware gradient coding is applied in both grouping phrases.
We propose a scheme termed Dynamic Grouping and
Heterogeneity-aware Gradient Coding (DGH-GC). Firstly,
DGH-GC initializes the static grouping based on the com-
putation capacity of nodes and adjusts stragglers dynam-
ically in each group according to the dropout frequency
of stragglers, to evenly distribute stragglers in each group
and tolerate more stragglers to mitigate excessive computa-
tion in heterogeneous edge networks. Secondly, DGH-GC
fully exploits the computation resource of heterogeneous
nodes for data allocation and encodes gradients that adapt
to the computation power of stragglers, reducing delays
caused by straggler dropout. Generally speaking, DGH-
GC solves heavy computation of stragglers and reduces
straggler dropout in heterogeneous edge networks.

However, DGH-GC increases the amount of data trans-
ferred between nodes and the parameter server by making
data duplication for tolerating stragglers, which exacerbates
the communication burden. To achieve the goal of optimiz-
ing the communication time in edge computing, we further
propose a new algorithm, namely DGH-(GC)², to compress
transferred gradients during the DNN training. Specifically,
DGH-(GC)² employs a combination of gradient sparsifica-

tion and ternary quantization to compress both upstream
communication and downstream communication. Through
this way, DGH-(GC)² can optimize the communication vol-
ume caused by tolerating more stragglers, which achieves
both computation efficiency and communication efficiency.
Extensive experimental evaluations are conducted on multi-
ple popular machine learning tasks on nodes with different
sizes and computation. Results prove that DGH-(GC) can
decrease the model training time while maintaining the
model accuracy compared to state-of-the-art methods. In
addition, DGH-(GC)² further speeds up the convergence
time of the trained model and saves about 26% average
iteration time compared to the DGH-(GC). This paper is an
extension of our previous work. The main contributions in
this work include:

• Two static groupings based on a greedy algorithm
and Karmarkar-Karp (KK) algorithm [29] are used to
evenly distribute stragglers in each group, mitigating
inherent heterogeneity gaps in edge networks. Given
the fact that the static grouping ignores dynamic
straggler dropout during the actual training, a dy-
namic grouping based on the frequency of straggler
dropout is proposed.

• Considering the heterogeneity of nodes in the dy-
namic grouping, we propose a novel scheme termed
DGH-GC. Specifically, DGH-GC allocates reasonable
data to stragglers and encodes gradients depending
on their computation capacity, which tolerates a pre-
determined number of stragglers to prevent them
from dropping out and mitigates delay caused by
straggler dropout.

• Furthermore, we propose a novel algorithm DGH-
(GC)² based on DGH-GC with a combination of
gradient sparsification and ternary quantization to
compress gradients, which reduces the transferred
data both in the upstream and downstream commu-
nication.

• Evaluations demonstrate that DGH-GC outperforms
all baselines on nodes with different scales and com-
putation capacity and DGH-(GC)² further accelerates
the convergence time of the trained model and op-
timizes the communication time compared to DGH-
GC.

The rest of this paper is organized as follows. Section 2
presents the related work. After that, a system framework
and the problem formulation are proposed in Section 3. In
Section 4, the algorithm design of DGH-GC is discussed
in detail. Then, we show an improved algorithm DGH-
(GC)² based on DGH-GC in Section 5. Next, experiments
are performed to evaluate the accuracy and communication
efficiency in Section 6. Finally, conclusions are drawn in
Section 7.

2 RELATED WORK

Mitigating the impact of stragglers on the communication
efficiency in distributed systems: three approaches can be
classified into the necessity of non-coding, coding, and
grouping.
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2.1 Non-coding approach
Considering the parallel mechanism of distributed comput-
ing, some scholars adopted non-coding approaches of asyn-
chronous communication [30] to solve the problem of strag-
glers communication. SSP [23] aimed at a homogeneous
cluster. In this case, if each node is executed asynchronously
and added with certain control logic, SSP can mitigate the
communication impact caused by stragglers in each itera-
tion at the cost of a certain model convergence accuracy.
SSP leads to a research boom of straggler communication
problems in the field of non-coding mode. However, for
the algorithm itself, SSP is not suitable for a heterogeneous
cluster, where SSP can prolong the communication waiting
time and even lead to the non-convergence of the DNN
training model. Considering the lagging nature of the local
param update in the heterogeneous environment, DynSGD
[24] made an improvement on the SSP, that is, DynSGD
assigns different learning rates to the param update of each
node. The learning rate is small for the updates generated
by stragglers but large for non-stragglers. Overall, DynSGD
adjusts the learning rate dynamically according to the delay
of stragglers in completing gradient calculation, thereby re-
ducing the communication cost and enhancing the accuracy
of the training model.

Although SSP and DynSGD can effectively solve the
problem of stragglers communication, distributed algo-
rithms using asynchronous communication mechanisms
may lead to a certain degree of degradation of the accuracy
of the DNN training model. Even if the training model has
a complex structure, and the edge environment is full of
heterogeneity, the asynchronous communication algorithms
severely affect the convergence of the training model [31]
[32].

2.2 Coding approach
To ensure the accuracy and convergence of the training
model while mitigating the impact of stragglers, gradient
coding approaches are introduced into distributed edge
computing. Raviv et al. [25] proposed Gradient Coding (GC)
which was not the same as traditional direct data coding. GC
encodes the gradients generated by using the optimization
algorithm, so as to eliminate the constraints of training lin-
ear models. Specifically, GC stores redundant data between
nodes, allowing for the tolerance of any stragglers in each
iterative training. Besides, it avoids the waste of computing
power and the degradation of model accuracy caused by
the discarding of computational gradients from stragglers.
The Gradient Coding with Multi-Message Communication
(MMC) proposed by Ozfatura et al. [33] reduced the commu-
nication time of each iteration in DNN training. Ozfatura
also proposed a Gradient Coding with Clustering (GCC)
and then applied the gradient coding within each group.
In the case that stragglers are uniformly distributed in each
group, GCC can tolerate multiple stragglers simultaneously
without increasing the calculation load. Gradient coding ap-
proaches, such as GC, MMC, and GGC are only applicable
to a homogeneous environment.

However, the modern edge distributed training envi-
ronment was heterogeneous [34]. The uniform grouping of
stragglers cannot be ensured, which makes the traditional

Fig. 2. Distributed Computing in Heterogeneous Edge Networks

gradient coding schemes unsuitable for edge computing.
In view of this, the Heterogeneity-aware Gradient Coding
(HGC) [27] proposed to tolerate a predetermined number
of stragglers, and made full use of the computing power
of heterogeneous nodes for data allocation and the reduc-
tion of the average calculation time for iterative training.
Compared with the traditional gradient coding scheme, the
calculation time for training a model by using the HGC
approach is reduced by three times.

2.3 Grouping approach

Grouping approaches are employed to mitigate the nega-
tive impact of stragglers on communication efficiency in
heterogeneous edge networks. The essence of grouping
approaches is to cluster nodes. Tang et al. [35] grouped
all participating nodes into several clusters using k-Means
clustering, based on their statistical characteristics to miti-
gate the problem of statistical heterogeneity and negative
transfers of the generalization. Ghosh et al. [36] proposed an
Iterative Federated Clustering Algorithm (IFCA) in which
nodes were distributed and partitioned into clusters. IFCA
alternately estimated the cluster identities of nodes and op-
timized model parameters for the node clusters via gradient
descent. Sattler et al. [37] used the gradient consin similarity
to segment nodes to avoid stragglers that withdraw from the
federated learning system. Simply speaking, different clus-
ters’ gradient directions have significant divergences and
they used the consin similarity to group nodes. Kopparapu
et al. [38] proposed the Federated Cloning-and-Deletion
(FedCD) to group nodes with similar data for addressing
the non-IID problem in federated learning.

To maintain efficient gradient computation during each
iterative training, the above approaches divide stragglers
by the static grouping, without considering the dropout
of stragglers during the actual training process. On this
basis, Kopparapu et al. [39] improved FedCD and used a
dynamic grouping approach called Fork-Merge-Consolidate
(FedFMC) that first dynamically forked nodes into updat-
ing different global models, then merged and consolidated
separate models into one. Buyukates et al. [28] proposed
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Dynamic Clustering based on Gradient Coding (DCGC).
On the basis of GGC, DCGC uses dynamic clustering to
accelerate the gradient calculation, and dynamically adjusts
the number of stragglers in each group, according to the
dropout of training nodes in the previous iteration. DCGC
realizes the uniform distribution of stragglers in the group,
increasing tolerable stragglers’ amount in the subsequent
training process and reducing the communication waiting
time.

However, DCGC does not consider the heterogeneity
of nodes in the gradient calculation, which will waste the
computational resources of nodes, and reduce the accuracy
of the training model. Therefore, DGH-GC proposed in this
paper can make full use of the computing power of hetero-
geneous nodes for data distribution, and encodes gradients
that adapt to the computing power of stragglers to prevent
stragglers from dropping out. In the meantime, DGH-GC
can dynamically adjust the number of stragglers in each
group based on the dropout frequency of stragglers, thereby
tolerating more stragglers, which improves the efficiency of
the edge distributed communication without reducing the
model accuracy.

3 SYSTEM FRAMEWORK AND PROBLEM
FORMULATION
Suppose that the distributed computing system in hetero-
geneous edge environment has m nodes {W1,W2, ...,Wm},
the computing power is expressed as C : {c1, c2, ..., cm}, as
shown in Fig. 2. Considering the heterogeneity of nodes,
parameter server (PS) divides these nodes into k groups, ex-
pressed as {G1,G2,...,Gk}, with equivalent computing power
in each group based on node computing power before
training, and the data set D is also evenly divided into k
non overlapping copies, expressed as {D1,D2...,Dk}. Each
group of nodes calculates one of the dataDi, then the partial
gradient gi(θt) is calculated based on the data Di. The PS
aggregates the partial gradient calculated by each node to
restore the full gradient g(θt) as,

g(θt) =
k∑

i=1

gi(θt), (1)

where θt means the parameter θ of the model trained in t
iteration round.

Each group has n nodes (
⌈
n=m

k

⌉
, n is an

integer) and the group-based approach is used
for m nodes. All groups can be expressed as
{W 1

1 ,W
2
1 , ...,W

n
1 ;W

1
2 ,W

2
2 , ...,W

n
2 ; ...;W

1
k ,W

2
k ...,W

n
k }

and the set of all grouped node computing power is
expressed as C : {c11, c21, ..., cn1 ; c12, c22, ..., cn2 ; c1k, c2k, ..., cnk}.

The data is allocated according to node computing
power within each group. Specifically, divide the data Di

of each group into di copies that do not overlap each other,
represented as Di :{D1

i ,D2
i , ...,D

di
i }. di is calculated as,

di=ctotali =
n∑

j=1

cji , (2)

where i denotes the group, j denotes the node in the group,
ctotali represents the total capacity of all nodes in i and cji
represents the computation capacity of the j in i. To tolerate

s stragglers, each data in i needs to be redundantly stored
r copies (r is the redundancy factor, r=s+ 1) and there are
di(s + 1) copies of data in total. The number of data copies
amountji allocated by j in i can be calculated as,

amountji=di · (s+ 1) · cji
ctotali

=(s+ 1) · cji . (3)

Iji represents the data partition to be calculated as,

Iji = {D(index+1) mod di

i ,D(index+2) mod di

i , ...,

D(index+amountji ) mod di

i },
(4)

where index =
∑j−1

h=1 amounthi denotes the index of each
group. The partial gradient calculated based on the data
partition Ddi

i is gdi
i (θt) and the partial gradient calculated

from the node j in i is ,

{g(index+1) mod di

i (θt), g
(index+2) mod di

i (θt), ...,

g
(index+amountji ) mod di

i (θt)}.
(5)

The intra-group gradient gi(θt) of group i can be ob-
tained by aggregating the partial gradients of each node
within the group using a linear combination fi as,

fi = gi(θt)=
di∑
d=1

gdi (θt), (6)

where fi is the rule of gradient aggregation in group i.
After each group aggregates partial gradients based on

fi, the intra-group gradient gi(θt) is passed to the PS.
The PS firstly aggregates the full gradient g(θt) of the

global model, and then updates the model parameter by
θt+1 = θt − αg(θt) and proceeds to the next iteration until
the end of the training.

When using the system framework shown in Fig. 2
to train the DNN model, a synchronous communication
mechanism is used for the distributed training. The time
for each iteration depends on the group with the slowest
training, which can be expressed as,

T (t) = max
i∈{1,2,...,k}

{T (t)
i }, (7)

where T (t) denotes the overall iteration time after the num-
ber of training iteration t, k represents the number of groups
and Ti

(t) stands for the iteration time needed for the training
of i after t training iteration. Ti

(t) depends on the slowest
working node within the group as,

Ti
(t) = max

j∈{1,2,...,n}
{Total T

j(t)
i }, (8)

where Total T
j(t)
i represents t of j in i during the iteration

training, and n represents the number of nodes in each
group. Total T

j(t)
i is made up of two parts: computation

time Comp T
j(t)
i and communication time Comm T

j(t)
i .

That is,

Total T
j(t)
i = Comp T

j(t)
i + Comm T

j(t)
i . (9)

• Computation time: the computation time of each
node depends on the amount of data allocated and
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the computation capacity of the nodes. The compu-
tation time of each node is expressed as,

Comp T
j(t)
i =

∥∥∥Iji ∥∥∥
cji

, (10)

where
∥∥∥Iji ∥∥∥ and cji represent the data volume and

the computation capacity of j in i, respectively.
• Communication time: The communication time is de-

termined by the network condition and the amount
of the transferred data. In the edge environment, the
network connection performance of different edge
devices varies as well as the large fluctuation of the
network. Considering the complexity of the above
reasons, we only assume that the communication
time depends on the amount of the transferred data.
Comm T

j(t)
i is used to indicate the communication

time of j of i in t.

To sum up, the total time for each iteration of the training
can be expressed as,

T (t) = max
i∈[1,k]

{max
j∈[1,n]

{

∥∥∥Iji ∥∥∥
cji

+ Comm T
j(t)
i }}. (11)

To improve the communication efficiency of the DNN
model training, the overall optimization goal is to minimize
the total time of each iteration training as,

argminT (t). (12)

For ease of reading, the main notations used in this paper
are summarized in the following Table 1.

TABLE 1
Symbols

Symbol Definition

m Total number of nodes
n Number of nodes in each group
{W1,W2, ...,Wm} node set
C Computing power
{c1, c2, ..., cm} node computing power set
k Number of groups
{G1,G2,...,Gk} node group set
{D1,D2...,Dk} Data set divided into k copies
gi(θt) Partial gradient based on group i
g(θt) Full gradient based on all groups
Wn

k node n in group k
cnk Computing power of node n in group k
di Number of divided data in group i
r Redundancy factor
s Number of tolerable stragglers
amountji Number of data duplication
Ij
i Data partition by amountji

fi Linear combination of partial gradients

Due to the reduction of the model accuracy caused by
straggler dropout, tolerating a maximum number of strag-
glers to take full utilization of their computing resources
becomes necessary. However, the more stragglers, the more
significantly the computing time of the system will increase.
Trading off the model accuracy and total system time in-
fluenced by the number of stragglers is worth considering.
We propose DGH-GC to solve the above problem. It makes

Fig. 3. General idea of DGH-GC

each node possible to have a similar completion time so that
the consistent straggler dropout incurred by heterogeneity
could be eliminated.

4 DGH-GC
DGH-GC is proposed for the overall optimization objec-
tive. The implementation process of DGH-GC, as shown
in Fig. 3, is divided into two steps. The first step refers to
grouping heterogeneous nodes, including static grouping
and dynamic grouping based on the dropout frequency of
stragglers. That is, stragglers are evenly distributed in each
group and more stragglers are tolerated to improve commu-
nication efficiency. For the second step, the heterogeneity-
aware gradient coding is applied within each group to make
full use of the computation power of heterogeneous nodes
and encode gradients to prevent them from dropping out.

4.1 Static Grouping and Dynamic Grouping
In the static grouping, all nodes are divided into k groups.
Each group tolerates r − 1 stragglers. k is limited by the
following factors,

• To tolerate more stragglers than HGC, set k > r − 1.
• The number of data copies should satisfy amountji ≤

di to obtain r · cji
ctotal
i

≤ 1. To satisfy the case that

all nodes have the most computing power, ctotali ≥
r · cmax is required, where cmax represents the node
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with the most computing power, and the number of
k has to satisfy k ≤ ctotal

r·cmax
.

In summary, the number of groups k should satisfy the
following,

k ∈ (r − 1,
ctotal

r · cmax
]. (13)

We design a static grouping approach based on the
greedy algorithm and Karmarkar-Karp (KK) [29] to obtain
the optimal grouping for stragglers. The greedy algorithm
is less complex than the differential algorithm, but always
makes the best choice when solving the problem. It is easy
to fall into the local optimal and the final result is not global
optimal. However, the KK considers the global optimum
in each selection. Therefore, it is necessary to decide which
grouping approach to use based on the set C : {c1, c2, ..., cm}
and k values of each node’s computing power. After obtain-
ing group’s number k, the elements in set C are sorted first
based on nodes’ computing power and then the differences
among the k elements are compared, starting from the first
element. When the difference is small, that is, when the
distribution of numbers is relatively uniform, the greedy
algorithm can be used to get the optimal grouping and the
KK can be used while the difference is large. The specific
process of the static grouping is as follows,

1) Firstly, input the set C : {c1, c2, ..., cm} of the compu-
tation power of m nodes and the redundancy factor r. Then,
set k = kmax using (13). Last, sort set C in decreasing order.

2) Judge differences in set C [29]. If differences are small,
the static grouping based on the greedy algorithm is em-
ployed: Initialize k empty sets {G1,G2, ...,Gk}. Consider one
element in set C at a time, and place it in the subset with the
smallest sum so far. In the case of subsets with equal sum,
choose any subset until set C is empty. While differences are
large, we use the KK to realize the static grouping: A list of
k-tuples is created for each of the integers in set C. The first
integer of this tuple is the value in set C and the rest of the
integers are set to 0. Combine the first two tuples in the list
(the two tuples with the largest integers). Given the tuples
A = (a1, a2, ..., an) and B = (b1, b2, ..., bn), both sorted in
decreasing order, A is combined with B to form a new tuple
C as,

C = (a1 + bn, a2 + bn−1, ..., an + b1). (14)

After the combination of tuples A and B, the KK algorithm
keeps track of the relative differences between subsets only,
and normalizes set C by subtracting its minimum value.
This merging process continues until only one tuple remains
and the algorithm ends.

3) Determine whether the sum of each subset satisfies
the condition ctotali ≥ r · cmax. If so, output the group.
Otherwise, make the groups’ amount k = k − 1, and re-
execute the static grouping approach.

After the static grouping, the dynamic grouping is em-
ployed to improve the rationality of groupings for strag-
glers. Dynamic grouping based on dropout frequency of
stragglers includes two key steps, i.e., threshold analysis and
dynamic adjustment.

Fig. 4. Data allocation process based on heterogeneity-aware gradient
coding

4.1.1 Analysis of Threshold
Firstly, the number of iterations b for static grouping training
is predetermined. Then, it is determined whether to dy-
namically adjust stragglers groups depending on the actual
expectation after b training times. The specific steps are as
follows,

• Calculate the expectation Estart of the tolerable
straggler number based on the assumption that k
nodes has equal probability to become stragglers in
each iteration.

• Perform b iterations, and calculate the actual expecta-
tion Ereal of the number of tolerable stragglers by the
frequency of becoming a straggler of each node. De-
termine whether the actual expectation Ereal reaches
the threshold, i.e., the static expectation Estart. If not,
that is Ereal < Estart, the effect of static grouping
is poor and has to be dynamically adjusted until
Estart=Ereal. Otherwise, no adjustment is needed.

4.1.2 Dynamic Adjustment
In general, dynamic adjustment includes three steps. Firstly,
heterogeneity-aware gradient coding is applied within each
group to assign data Iji to nodes. That is,

Iji = {D(index+1) mod di

i ,D(index+2) mod di

i , ...,

D(index+amountji ) mod di

i },
(15)

where index denotes the index of nodes in the group, di
means dividing DataDi into di copies equally, and amountji
indicates the number of data copies by j in i. Then, to make
intergroup nodes replaceable, the nodes with comparable
computing power between groups need to have data from

each other. That is, allocate alternative data Pj
i =

k∑
i=1
Iji

to the nodes, where k represents the number of groups.
Secondly, estimate k nodes with high probability to become
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stragglers based on previous iterations. Thirdly, set the
group priority of stragglers according to their number and
assign n − r+1 non-stragglers to each group based on the
priority, which tolerates r − 1 stragglers. If non-stragglers
are not enough, offer the priority to the non-stragglers and
then assign the alternative nodes of stragglers based on the
data allocation Pj

i until all groups are allocated.
The data allocation process based on heterogeneity-

aware gradient coding is shown in Fig. 4. For example,
when the Set Iji is {5, 5, 4, 4, 3, 3, 3, 1, 1, 1, 1} and the
redundancy factor r is 2, the optimal static grouping using
the KK is G1 : {4, 3, 3, 1}, G2 : {5, 3, 1, 1}, G3 : {5, 4, 1, 1}. The
data allocation process for each group of nodes is as follows.
Firstly, the dataset D is divided equally into k = 3 copies,
i.e., {D1,D2,D3}. Within each group, the data set Di is

divided equally into di=ctotali =
n∑

j=1
cji , where n = 12/3 = 4

and d1= 11, d2= 10, d3= 11. Then the initial data is divided
by (15). Finally, the divided data is assigned to each node.

4.2 Gradient Coding for Dynamic Grouping
Besides realizing the node grouping, DGH-GC also fully
exploits the computation resources of heterogeneous nodes
for data allocation and encodes gradients that adapt to the
computation power of stragglers, reducing delays caused by
straggler dropout. For data allocation, each data partition
Iji has to be assigned with at least s + 1 nodes to tolerate s
stragglers by using (15). For the coding phrase, to prevent
stragglers from dropping out, gradients coding matrix B is
employed in each group as,

B = [b1,b2, . . . ,bm]
T
, (16)

where bj = 1 if Dj
i ∈ I

j
i , else bj = 0. By constructing

coding matrix B, we encode gradients that adapt to the
computation power of stragglers as,

g̃i = bi · [g1,g2, . . . ,gi]
T
, (17)

where gi means the gradient that aggregates the partial
gradient of each node in Group i, and g̃i represents encoded
gradients by B for the global gradient aggregation of the
server.

We describe the workflow of DGH-GC in Algorithm 1.
The core idea of DGH-GC is to initialize the static grouping
based on the computation capacity of nodes before the
distributed training and adjust stragglers dynamically in
each group according to the dropout frequency of stragglers
during the training. Besides, gradient coding is applied in
the grouping phrase to allocate reasonable amounts of data
to stragglers, and in the coding phrase to encode and decode
gradients transmitted between the server and nodes.

4.3 DGH-GC Complexity
The complexity of greedy algorithm and Karmarkar-Karp
algorithm are both O (2m) [29], where m is the number of in-
tegers in the input set C. Considering the dynamic grouping,
the complexity is O (s) with s stragglers. Given the gradient
code, the complexity is O

(
1√
kT

)
with the group number

k and iteration time T [27]. Thus, the overall complexity
of DGH-GC is O

(
2m + s+ 1√

kT

)
, which is slightly higher

than HGC.

Algorithm 1 Dynamic Grouping and Heterogeneity-aware
Gradient Coding(DGH-GC)
Input: k: number of groups, r: redundancy number, C :
{c1, c2, ..., cm}: computation power of nodes, b: training
time for the static grouping, Iji : data partition for the node
j in the group i, n: number of nodes in each group, m: total
number of nodes, s: total number of stragglers
Output: g̃i: encoded gradient
1: Initialize the static grouping:
2: Set k = kmax by using (13)
3: Judge differences in Set C : {c1, c2, ..., cm}
4: if differences are small then
5: static grouping based on the greedy algorithm
6: else
7: static grouping based on the Karmarkar-Karp algo-

rithm
8: end if
9: Conduct the dynamic grouping:

10: Perform b distributed training
11: Calculate Estart by the probability to become a straggler

for each node
12: Calculate Ereal by the frequency to become a straggler

for each node
13: if Ereal < Estart then
14: repeat
15: Allocate data Iji to all nodes by using (15)
16: Assign n − r+1 non-stragglers to each group to

tolerate r − 1 stragglers
17: until Estart=Ereal

18: else
19: break
20: end if
21: Encode gradients based on Heterogeneity-aware Gradi-

ent Coding by using (16-17)
22: return g̃i

5 DGH-GC WITH GRADIENT COMPRES-
SION
Due to the reduction of the model accuracy caused by
straggler dropout, tolerating a maximum number of strag-
glers to take full utilization of their computing resources
becomes necessary. However, DGH-GC increases the com-
putation time in the total system time when tolerating
more stragglers by making data duplication, which fails to
meet the optimal solution to the problem (12). Considering
that the model accuracy is positively correlated with the
computation time, achieving a high model accuracy with
low computation time is difficult to handle.

Since formula (11) gives that the total system time in-
cludes not only the computation time, but also the com-
munication time, optimizing the communication time to
reduce the total system time is a feasible method. It can
be seen from reference [40] that nodes will upload many
useless gradients to the parameter server, which increases
the amount of transferred data during the communication
phase. Gradient compression is a common lossy compres-
sion technology to reduce the communication cost. There-
fore, we propose a new gradient compression scheme based
on DGH-GC (Dynamic Grouping and Heterogeneity-aware
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Fig. 5. Comparison Between DGH-GC and DGH-(GC)²

Gradient Coding with Gradient Compression, called DGH-
(GC)²) to make up for the increased computing time caused
by tolerating stragglers.

5.1 Algorithm Design

The core idea of DGH-(GC)² is to reduce the number of
gradient bits and unimportant gradients by introducing
the sparse ternary quantization gradient compression, thus
compressing the amount of communication volume be-
tween the node and the parameter server after grouping.
Many gradient compression algorithms adopt the one-way
compression, including the upstream communication by
compressing the transferred data from nodes to parameter
servers or the downstream communication from parameter
servers to nodes. Different from the one-way compression,
DGH-(GC)² combines upstream compression and down-
stream compression to allow for efficient communication in
heterogeneous edge networks. As shown in Fig. 5, DGH-
(GC)² compresses gradients between different node groups
and the parameter server relying on the DGH-GC scheme.
Compared to DGH-GC, DGH-(GC)² decreases the commu-
nication time and maintains the same computation time in
the total system time.

5.1.1 Upstream Compression
In each round of distributed DNN training, firstly, all nodes
in different groups download the model parameter θit−1

broadcast by the parameter server. Then, the DGH-GC algo-
rithm is employed to allocate data for nodes with different
computing power and encode gradients in line with strag-
glers to prevent them drop out. In the following, gradient
sparsification and ternary quantization are performed to
reduce the communication time.

Considering the fact that top-k sparsification shows the
most promising performance in time-critical distributed
learning environments, we adopt the method described in
[40] to communication the fraction of the largest elements
at full precision. Firstly, the factor m that sparses gradients
needs to be determined as,

m = max(np, 1), (18)

where n represents the number of nodes in each group, and
p means the sparsity. After aggregated gradients g̃i of Group
i are encoded by DGH-GC, the first m important gradients
are transmitted during each round of DNN training as,

s← topm(|g̃i|), (19)

where topm is the sparsity function, and s is the sparse
gradient.

Higher compression gains can be achieved when spar-
sification is combined with quantization of the non-zero
elements. We quantize the remaining top-m elements of the
sparsified updates to a ternary tensor. Several operations are
taken to reduce the communication cost as,

mask = ε(|g̃i| − s), (20)

gti = sign(mask⊙ g̃i), (21)

where ε is the step function, and the sparse gradient s is
used as the threshold of generating a mask for quantization.
⊙ is the Hadamard product, and sign is the quantization
function. Finally, quantized ternary gradient gti after sparsi-
fication in Group i during the training round t is computed.

The above significantly reduces the size of updated gra-
dients from nodes in all groups to the parameter server, thus
reducing the cost of the upstream communication. However,
if no additional measures are taken, the cost of downstream
communication will not decrease. To further eliminate the
remaining sources of redundancy in the communication, the
next section will introduce the downstream compression at
the server-side.

5.1.2 Downstream Compression
The server aggregates all compressed local gradients after
sparse ternary quantization to generate the global gradient
gt. At the server side, the same ternarization is used to
update the global model parameter θit in each node group
as,

θit = θit−1 + η ∗ sign(mask ⊙ gt), (22)

where θit−1 represents the model parameter trained by
Group i in the t− 1 round of iteration. η is the learning rate
and gt means the aggregation gradient after the t round of
training by nodes in all groups.

Therefore, the server compresses the normalized global
model again from the perspective of downstream commu-
nication and pushes the quantized global model to all nodes
in different groups.
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Different from standard edge computing algorithms,
DGH-(GC)² compresses communications in the both upload
and download stages, which brings the main advantage
when deploying time-critical distributed machine learning
tasks for resource-constrained nodes. The overall frame-
work of the proposed DGH-(GC)² is summarized in Algo-
rithm 2.

Algorithm 2 Dynamic Grouping and Heterogeneity-aware
Gradient Coding with Gradient Compression
Input: k: number of groups, r: redundancy number, b:
training time for the static grouping, n: number of nodes, p:
sparsity, θ: global model parameter
Init: Broadcast θ to each node
group

1: for round t = 1, . . . , T do
2: for Gi ∈ {G1,G2, ...,Gk} in parallel do
3: node group Gi does:
4: Download parameter θit−1

5: Compute local gradient gi(θit−1)
6: g̃i ← DGH-GC(gi(θ

i
t−1), r, b)

7: m← max(np, 1)
8: s← topm(|g̃i|)
9: mask ← ε(|g̃i| − s)

10: gti = sign(mask⊙ g̃i)
11: Upload gti to Parameter Server
12: end
13: end for
14: Parameter Server does:

15: gt = 1
k

k∑
i=1

gti

16: mask ← ε(|gt| − s)
17: θit ← θit−1 + η ∗ sign(mask ⊙ gt)
18: Broadcast θit to node group Gi
19: end
20: end for

5.2 DGH-(GC)² Complexity
Relying on the DGH-GC scheme, DGH-(GC)² achieves a
combination of gradient sparsification and ternarization to
further compress gradients. Considering that the complexity
of top-k sparsification and ternarization is O (n) [40], where
n represents the number of gradients transferred between
nodes and the parameter server, therefore, the overall com-
plexity of DGH-(GC)² is O

(
2m + s+ 1√

kT
+ n

)
, which is

more complicated than DGH-GC.

6 EXPERIMENTS
6.1 Experiment Setup
The experiments are carried out with two DELL PowerEdge
R740 servers and 20 nodes with different CPU processing
power. Each server is equipped with two 28-core Intel Xeon
Platinum 8180M CPUs and one NVIDIA GeForce RTX 3090
GPU. The memory capacity of each server is 93GB. The
memory capacity of each CPU node is 32GB. The software
platform of our experiments is PyTorch, which is a deep
learning experimental platform that provides a high degree
of flexibility and efficiency.

TABLE 2
EXPERIMENTAL SETUP FOR nodes

Number of nodes with different CPU processing power (pcs)
Groups

600MHZ 1.2GHZ 1.8GHZ 2.4GHZ 3GHZ

Group-A 5 0 3 2 2

Group-B 5 3 3 4 4

Experiments focus on comparing the model training
accuracy and the communication efficiency of DGH-GC
with four gradient coding approaches: GC, HGC, GGC
and DCGC. The experimental models are selected from
the Convolutional Neural Network (CNN) model and the
LeNet5 network model. MNIST and CIFAR-10 are used for
experimental datasets.

The number of iterations I is set to 500, the learning rate
α is 0.01, and the redundancy factor r is set to 2. Besides,
the data transmission rate between nodes and servers is 3-
5 MB/s. The settings are similar to [27]. In addition, the
experimental settings of nodes are shown in Table 2. Group
A has 12 nodes. Specifically, the number of nodes with
five types of CPU processing power - 600MHZ, 1.2GHZ,
1.8GHZ, 2.4GHZ, 3GHZ are 5, 0, 3, 2, and 2, respectively.
Group B has 20 nodes, and the number of nodes with
five types of CPU processing capabilities are 5, 3, 3, 4 and
5, respectively. According to Equation (13), Group A is
divided into 3 groups at the most, and Group B contains
5 groups maximally. Experiments are conducted based on
the above preparation, and the evaluation metrics of the
experiments include the communication efficiency and the
model accuracy.

6.2 Experiments with DGH-GC

6.2.1 Training Time b
The param value b in DGH-GC indicates that one dynamic
adjustment is executed after b rounds of iterations. The b
value affects the number of dynamic groupings and the
grouping effect of DGH-GC. Five different b values are
selected for the comparative experiments on 12 nodes and
20 nodes, respectively. The experimental results are shown
in Table 3 and 4, and each value is averaged after 10
independent experiments.

TABLE 3
DGH-GC AT DIFFERENT b VALUES FOR 12 nodes WITH 3 GROUPS

CNN(MNIST) CNN(CIFAR-10) LeNet5(CIFAR-10)
PARAM b

Time(s) Accuracy% Time(s) Accuracy% Time(s) Accuracy%

100 1.02 95.3 0.96 62.6 1.1 64.4

50 0.67 95.4 0.64 62.6 0.68 64.8

30 0.79 95.5 0.76 62.5 0.82 65

20 0.88 95.4 0.84 62.4 0.93 64.5

10 0.95 95.2 0.92 62.8 1.02 64.7
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TABLE 4
DGH-GC AT DIFFERENT b VALUES FOR 20 nodes WITH 5 GROUPS

CNN(MNIST) CNN(CIFAR-10) LeNet5(CIFAR-10)
PARAM b

Time(s) Accuracy% Time(s) Accuracy% Time(s) Accuracy%

100 0.90 93.6 0.92 60.9 0.96 62.6

50 0.56 93.6 0.54 61.2 0.59 62.5

30 0.68 93.8 0.64 60.8 0.70 62.8

20 0.75 93.4 0.72 61.0 0.81 62.4

10 0.87 93.2 0.83 61.1 0.89 62.5

Table 3 shows the experimental results of the distributed
training with different b values at 12 nodes. The experimen-
tal results of the training of the MNIST dataset on the CNN
model are shown in Column 2 and 3 of Table 3. The accuracy
corresponding to different b values are 95.3%, 95.4%, 95.5%,
95.4%, and 95.2%, respectively with a small gap. According
to the experimental results, the difference of b values has
almost no effect on the model training accuracy. However,
in terms of communication efficiency, the shortest average
iteration time is 0.67s when b = 50, while the longest is
1.02s when b = 100. It can be seen from the experiments
that the average iteration time increases with the decrease
of b values from the optimal value b = 50. The b value of 30,
20 and 10 corresponds to the average iteration time of 0.79s,
0.88s, and 0.95s, respectively.

The experimental results of the training of the CIFAR-10
dataset on the CNN model are shown in Column 4 and 5 of
Table 3. Compared with the MNIST dataset, the CIFAR-10
dataset is more complex, and therefore has a lower accuracy
rate when training the same model. However, due to the
smaller number of training samples in the CIFAR-10 dataset,
the time used to train the CNN model is shorter. The model
accuracy is not greatly affected by the b value, which is
maintained at 62.6%. Among all the results, the shortest av-
erage iteration time is 0.64s when b = 50, while the longest
one is 0.96s when b = 100. Similarly, the average iteration
time increases gradually when the b value decreases from
50 gradually.

The experimental results of the training of the CIFAR-
10 dataset on the LeNet5 model are shown in the last two
columns of Table 3. Basically, the b value does not affect the
accuracy of the training model. The average iteration time
is the shortest when b = 50, and DGH-GC has the best
communication effect on the optimization of the distributed
training.

Table 4 shows the results of the distributed training with
different b values at 20 nodes. It can be observed from Table
4 that the value of b can hardly affect the model accuracy.
When b = 100, the communication cost with DGH-GC is
the least efficient. This is due to the fact that the number
of samples is large enough, yet the number of groupings
is small and close to static grouping, leading to the worst
communication efficiency, while the best communication
efficiency is achieved when b = 50. The average iteration
time of the distributed training increases with the decrease

of the value of b. This is because when the value of b
decreases gradually, the number of dynamic groupings be-
comes large, which leads to certain time delay. Secondly,
due to the small number of samples, the results of stragglers
dynamic grouping are not ideal initially, which reduces the
communication efficiency. The value of b is determined as 50
by experiments, and applied to the comparison experiments
below.

6.2.2 Average Iteration Time
Fig. 6 shows the experimental results of the average iteration
time based on five approaches, i.e., GC, HGC, GCC, DCGC,
and DGH-GC for training the MNIST dataset and CIFAR-10
dataset on the CNN model and the CIFAR-10 dataset on the
LeNet5 model under 12 and 20 nodes, respectively.

From Fig. 6, it can be seen that HGC, GCC, DCGC and
DGH-GC perform significantly better than the traditional
GC algorithm in terms of communication efficiency, regard-
less of whether there are 12 or 20 nodes.

DCGC combines the idea of dynamic grouping based on
GCC so as to tolerate more stragglers and make its com-
munication efficiency higher than GCC. The experimental
results show that the communication efficiency of DCGC
outperforms that of GCC by about 12%.

The communication efficiency of GCC and DCGC is
higher than that of HGC in the distributed training for 12
nodes, but is lower than that of HGC in the distributed
training for 20 nodes. The reason is that the heterogeneity
of 12 nodes is stronger, while the heterogeneity becomes
smaller in the distributed training for 20 nodes, although
the number of nodes becomes larger. Therefore, in the
12-node experiment, HGC considers the heterogeneity of
nodes, achieving a higher edge distributed communication
efficiency.

In all experiments, DGH-GC achieves the highest com-
munication efficiency. The reason is that firstly, DGH-GC
not only considers node heterogeneity, but also combines
the idea of dynamic grouping to distribute stragglers in
each group to the maximum extent. Secondly, DGH-GC
does not perform the dynamic grouping in each iteration,
but sets a param b to reduce the number of adjustments,
thus reducing the time consumption, compared with the
dynamic grouping in DCGC. As can be seen from Fig.
6, DGH-GC remains optimal in terms of communication
efficiency even though the network model has changed and
becomes more complex. The average speedup of DGH-GC
is about 2.3 times that of the traditional training GC, about
1.53 times higher than HGC, about 1.58 times higher than
GCC, and about 1.45 times higher than DCGC.

6.2.3 Number of Groups
Fig. 7(a) shows the experimental results of 12 nodes, divided
into 2 and 3 groups, respectively. The average iteration time
when k = 3 is significantly lower than that when k = 2.
Meanwhile, Fig. 7(b) shows the experimental results of 20
nodes, divided into groups 2, 4, and 5, respectively. It can
be seen that the average iteration time becomes shorter
with the increase of the number of groups k, and the
communication efficiency when k =5 is about 1.9 times faster
than that when k =2. The number of groups k determines
the maximum number of stragglers that can be tolerated in
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Fig. 6. Average iteration time of different gradient code approaches
under 12 and 20 nodes
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Fig. 7. Average iteration time of DGH-GC for 12 and 20 nodes in different
groups

each iteration. The larger the k, the more obvious DGH-
GC increases the number of stragglers tolerated in each
iteration by dynamically adjusting the groups, resulting in
faster iteration time and improvement of communication
efficiency.

6.2.4 Model Accuracy

TABLE 5
TRAINING ACCURACY

ACCURACY(%)

CNN(MNIST) CNN(CIFAR-10) LeNet5(CIFAR-10)APPROACH

m=12 m=20 m=12 m=20 m=12 m=20

GC 95.6 93.2 62.4 61.5 65.1 62.7

HGC 95.4 93.3 62.3 61.1 64.5 62.6

GCC 95.1 93.6 62.6 61.1 64.8 62.4

DCGC 95.7 93.4 62.9 61.4 65 62.4

DGH-GC 95.4 93.6 62.6 61.2 64.8 62.5

AVERAGE 95.4 93.4 62.5 61.2 64.8 62.5

Table 5 shows the experimental results of training accu-
racy under MNIST dataset and CIFAR-10 dataset on CNN
model and under CIFAR-10 dataset on LeNet5 model based
on five approaches, i.e., GC, HGC, GCC, DCGC and DGH-
GC at 12 nodes and 20 nodes, respectively.

As can be seen from Table 5, the accuracy of the five
approaches, i.e., GC, HGC, GCC, DCGC and DGH-GC un-
der MNIST dataset on CNN model with 12 nodes and 20
nodes are 95.6%, 95.4%, 95.1%, 95.7%, 95.4% and 93.2%,
93.3%, 93.6%, 93.4%, 93.6% with the average accuracy of
95.4% and 93.4%, respectively. There is almost no difference
between the accuracy and the average accuracy of the five
approaches.

When replacing the dataset with CIFAR-10, the average
accuracy of the five approaches is 62.5% (12 nodes) and
61.2% (20 nodes), trained on the CNN model. The results are
much worse than that of MNIST dataset, which is because
CIFAR-10 is a more complex color image dataset, leading
to a lower accuracy when trained on the CNN model.
However, the training accuracy of the five approaches still
does not differ much.

When applying the network model to LeNet5 to train
the CIFAR-10 dataset, the accuracy is improved by about 2%
on average compared with the CNN model. It can be seen
from the table that regardless of 12 or 20 nodes and whether
the network model and dataset are changed, the accuracy
of the five approaches remains slightly above or below
the average value. The reason is that all these approaches
utilize gradient encoding to store the data redundantly
without changing the gradients obtained from each iteration
of the aggregation. Therefore, DGH-GC does not suffer the
decrease of the model training accuracy.

6.3 Comparison to DGH-GC

After exhibiting results of DGH-GC, we now present re-
sults of DGH-(GC)². We will prove that DGH-(GC)² further
reduces the communication time for model training than
DGH-GC through a combination of sparsification and quan-
tization.
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6.3.1 Sparsity p
Fig. 8 shows the experimental results of the accuracy based
on DGH-(GC)² for training the MNIST dataset and CIFAR-
10 dataset on the CNN model and the CIFAR-10 dataset
on the LeNet5 model. The DGH-GC algorithm is used to
group 12 nodes and 20 nodes respectively and determine the
number of groups k = 2. Since we set the redundancy factor
r = 2, data from r − 1 = 1 straggler is backed up for each
group, and a total of 2 stragglers are tolerated to evaluate the
effect of DGH-(GC)² on model accuracy at different sparsity
p.

As can be seen in Fig. 8, the accuracy of the training
model using the DGH-(GC)² algorithm is severely impaired
as the sparsity p decreases, both with 12 nodes and 20
nodes. The reason is that the significant reduction of sparsity
p leads to a sharp decrease in the number of gradients
transmitted to the parameter server by the grouped nodes in
each iteration round. The gradients valid for model updates
are sieved out along with the invalid gradients.

Specifically, in Fig. 8(a), when 12 nodes are utilized to
train the CNN model on the MNIST dataset, the accuracy of
the training model decreases by 0.5%, 1.3%, 2.6%, 6.2% and
12.7% as the sparsity p varies by 0.05, 0.01, 0.005, 0.002 and
0.001, respectively, compared to the uncompressed model.
When switching to 20 nodes with stronger heterogeneity to
train the CNN model, with the reduction of sparsity p, the
model accuracy decreases by 0.5%, 1.7%, 3.1%, 7.3% and
14.0% respectively. It is not difficult to conclude that the
sparsity p plays a decisive role in the accuracy of the model,
especially when the sparsity p = 0.001, the sparsity of
gradients greatly reduces the accuracy of the model whether
it is 12 nodes or 20 nodes. While p takes 0.05 and 0.01,
gradient compression brings a slight global model loss.

Using a more complex dataset CIFAR-10 to train the
CNN model, the relationship between the sparsity p of
DGH-(GC)² and the model accuracy is shown in Fig. 8(b).
The loss of model accuracy is more pronounced than train-
ing the MNIST dataset on the CNN model, especially in
the case of training 20 nodes. This is because, with the
increasing heterogeneity of nodes, differences between gra-
dients computed by nodes in the same group are quite large,
that is, values of gradients are unevenly distributed in each
group, concentrated in the maximum and minimum. When
using DGH-(GC)² to group 20 nodes, large gradients in
the each group can determine the convergence speed and
accuracy of the global model. Specifically, if large gradients
are discarded while small gradients are retained, the model
convergence slows down and the model accuracy is im-
paired seriously. As the enhancement of gradient sparsity,
more large and valid gradients are abandoned during the
distributed training, resulting in a large-scale accuracy loss.

In Fig. 8(c), the LeNet5 network we utilize is an optimiza-
tion of the CNN network, which has more network layers
and is more suitable for the classification of the CIFAR-
10 dataset. Therefore, the loss of the model accuracy is
significantly improved compared to that in Fig. 8(b). The
optimized LeNet5 network can offset the interference of
gradient sparsification to some extent because it has more
layers to generate valid gradients and parts of them are
saved. However, when taking the sparsity p less than 0.05,
the global model accuracy trained with 12 nodes and 20

nodes is quite lower than that without compression. Specif-
ically, the loss rate of the global model accuracy trained
with 12 nodes and 20 nodes reaches 21.2% and 20.3% at
p = 0.001.

From the above three sets of experiments, p = 0.05 is
a reasonable parameter to compress gradients. Therefore,
the following experiments are conducted at p = 0.05 to
evaluate the optimization of the communication time when
using DGH-(GC)².
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Fig. 8. Accuracy of DGH-(GC)² at different sparsity p under 12 and 20
nodes with 2 stragglers

6.3.2 Impact of Stragglers
We further discuss the performance comparison of DGH-GC
and DGH-(GC)² over experiments with different numbers
of stragglers. In Fig. 9, we group 12 nodes to tolerate 2
stragglers, and compare the model accuracy and average
iteration time of two methods at a sparsity of p = 0.05.
Employing the provided datasets and models for training,
it can be observed that models trained with DGH-(GC)²
converge at about 200 iterations, faster than with DGH-
GC, which requires about 300 iterations to converge. How-
ever, the model accuracy trained by DGH-(GC)² is reduced.
Meanwhile, DGH-(GC)² accelerates DGH-(GC) in terms of
the average iteration time of the trained model by achieving
approximately 25% time savings. This is because DGH-
(GC)² compresses the amount of data transmitted between
worker groups and the parameter server in edge comput-
ing through a combination of gradient sparsification and
ternary quantization, thus achieving the proposed optimiza-
tion goal by equation 12.
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Fig. 9. Accuracy and average iteration time of DGH-(GC)² at sparsity
p = 0.05 under 12 nodes with 2 stragglers

In Fig. 10, we set 3 stragglers to examine the impact of
stragglers on the above two algorithms. The same experi-
mental results as in Fig. 9 are still able to obtain, i.e., DGH-
(GC)² speeds up the convergence of the model and decreases
the time burden of the model training, but at the cost of
compromised model accuracy. It is not difficult to observe
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Fig. 10. Accuracy and average iteration time of DGH-(GC)² at sparsity
p = 0.05 under 12 nodes with 3 stragglers

that increasing the number of stragglers reduces the average
iteration time compared to Fig. 9. This is because when the
redundancy factor r remains unchanged, the effect of back-
ing up stragglers’ data by dynamically adjusting groupings
is more obvious. With the number of groups for stragglers
increased, the parameter server obtains valid gradients for
model updates earlier and speeds up the convergence time
of the global model.

7 CONCLUSIONS
In the edge environment, the differences in computation
power of terminal equipment lead to the severe straggler
dropout in the distributed training, which reduces the
model accuracy and communication efficiency. To achieve
efficient computing and communication, in this paper, we
firstly focus on dealing with the straggler dropout and
then address the problem that tolerating stragglers increases
the communication cost. First, we design a novel algo-
rithm called DGH-GC to tolerate stragglers. Specifically, we
employ static grouping and dynamic grouping to evenly
distribute nodes with different computation capacity in each
group. Grouping nodes decreases the frequency of strag-
gler dropout and waiting time that the parameter server
waits for stragglers to submit model updates. In addition,
DGH-GC applies a heterogeneity-aware gradient coding to
allocate reasonable data to stragglers based on their compu-
tation capacity and encode gradients to prevent stragglers
from dropping out. Since DGH-GC increases the amount of
data transferred between nodes and the parameter server by
backing up the data of stragglers, we further propose a new
algorithm, namely DGH-(GC)² that combines the gradient
sparsification and ternary quantization to simultaneously
compress upstream and downstream communication, thus
greatly reduce the total time for model training. Finally,
we evaluate our algorithms on multiple popular machine
learning tasks under nodes with different scales and com-
putation capacity. Experimental results show that DGH-
GC outperforms all the state-of-the-art baselines and DGH-
(GC)² further accelerates the convergence time of training
models and reduces the communication time by about 26%
more than DGH-GC.
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