
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

Minimum Backups for Stream Processing With
Recovery Latency Guarantees

Hongliang Li, Member, IEEE, Jie Wu, Fellow, IEEE, Zhen Jiang, Member, IEEE, Xiang Li,
and Xiaohui Wei, Member, IEEE

Abstract—The stream processing model continuously processes
online data in an on-pass fashion that can be more vulnerable to
failures than other big-data processing schemes. Existing fault-
tolerant (FT) approaches have been presented to enhance the re-
liability of stream processing systems. However, the fundamental
tradeoff between recovery latency and FT overhead is still un-
clear, so these scheme cannot provide recovery latency guarantees.
This paper introduces the FT Configuration (FTC) problem and
presents a solution for guaranteed recovery latency with minimum
backups. A failure effect model is presented to describe the relation-
ship between recovery latency and FTC (the amount and locations
of backups). With this model, we design an algorithm to compute
FTCs for different types of stream topologies according to recov-
ery latency requirements. Extensive experiments are conducted to
verify the correctness and effectiveness of our approach. We prove
that our algorithm guarantees recovery latencies for all directed
acyclic graph (DAG) stream topologies. For line(s) and tree topolo-
gies, our algorithm solves the FTC problem with a time complexity
of O(N). For a general DAG topology, a heuristic function is used
to generate FTCs. This causes fewer than 10% more backups on
average compared to the optimal solution with a time complexity
of O(N 2).

Index Terms—Distributed system, fault-tolerant (FT), recovery
latency, stream processing, upstream backup.

Manuscript received January 30, 2017; revised April 19, 2017; accepted
June 1, 2017. This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 61602205, in part by the National Key
Research and Development Plan of China under Grant 2016YFB0201503, in
part by the Provincial Key Research Project on Science and Technology of Jilin
under Grant 20160203008GX, in part by the China Scholarship Council, and in
part by the NSF of the U.S. under Grant CNS 1629746, Grant CNS 1564128,
Grant CNS 149860, Grant CNS 1461932, Grant CNS 1460971, Grant CNS
1439672, Grant CNS 1301774, and Grant ECCS 1231461. Associate Editor:
S.-Y. Hsieh. (Corresponding author: Hongliang Li.)

H. Li is with the College of Computer Science and Technology, Jilin Univer-
sity, Changchun 130022, China, with the Key Laboratory of Symbolic Com-
putation and Knowledge Engineering of the Ministry of Education, Changchun
130012, China, and also with the Department of Computer and Informa-
tion Sciences, Temple University, Philadelphia, PA 19122 USA (e-mail: li-
hongliang@jlu.edu.cn).

J. Wu are with the Department of Computer and Information Sciences, Temple
University, Philadelphia, PA 19122 USA (e-mail: jiewu@temple.edu).

X. Li and X. Wei are with the College of Computer Science and Tech-
nology, Jilin University, Changchun 130022, China, and also with the Key
Laboratory of Symbolic Computation and Knowledge Engineering of the Min-
istry of Education, Changchun 130012, China (e-mail: lxiang@jlu.edu.cn;
weixh@jlu.edu.cn).

Z. Jiang is with the Department of Computer Science, West Chester University
of Pennsylvania, West Chester, PA 19382 USA (e-mail: zjiang@wcupa.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2017.2712563

ACRONYMS

FTC Fault-tolerant configuration.
f-cover forward cover.
b-cover backward cover.

NOTATIONS

G(V,E) The DAG that represents a stream topology.
N Amount of tasks in a stream topology, N = |V |.
T (v) Reprocessing latency of v ∈ V .
U(v) Upstream latency of v ∈ V .
L(v) Task recovery latency of v ∈ V .
O Recovery latency of a stream topology.
Pv The set of adjacent upstream tasks of task v, v ∈

V , Pv ⊂ V .
Qv The set of adjacent downstream tasks of task v,

v ∈ V , Qv ⊂ V .
Vs The set of source of a stream topology.
Vt The set of sink of a stream topology.
D(v1 , v2) Distance between two tasks v1 and v2 .
R Recovery latency requirement.
FTC(G,R) FT configuration of stream topology G un-

der recovery constraint R, {M(v1), ..,M(vN)},
M(v) = {0, 1}.

Vb Set of backup tasks of a stream topology, Vb ⊆ V .
M Amount of backup tasks, M = |Vb | =∑

v∈V M(v).
Cv A set of all adjacent upstream backup tasks of

task v, v ∈ V .
I(v) Task index according Breadth-first Search.
F (v) The percentage of workload a candidate backup

task can b-cover.
B(v) The combined workload a candidate backup task

can b-cover.

I. INTRODUCTION

R ECENTLY, a new class of “Big Data” applications has
been widely recognized: applications that demand that

large-scale data streams be processed and analyzed in real time
or near real time. Examples can be found in various areas, in-
cluding trading high-frequency stocks, monitoring and control-
ling production lines, and detecting and managing traffic con-
gestion. These applications take one or more data streams as
input, perform a series of predefined functions, and generate
output in the form of data streams again. They share a common

0018-9529 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

characteristic: Strict processing latency constraints, i.e., their
processing rates must match the data arrival rate to provide
a fast and accurate response. This leads to an increase in the
popularity of a new computing paradigm known as the Stream
Processing Model (SPM) [1]–[3].

Over the last decade, many approaches have been proposed
and various stream processing systems have been implemented
in both academia and industry [2], [4]–[8]. In these systems, a
stream processing application is usually modeled as a directed
acyclic graph (DAG), i.e., Stream Topology [9], which consists
of a number of interconnected tasks (also denoted as process-
ing elements in the literature). Each task consumes data from
upstream task(s), processes the data, and emits results as data
stream(s) to downstream task(s) [10]. Data streams arrive con-
tinuously and are usually considered infinite. The inability to ob-
tain complete data beforehand has led to a computing paradigm
completely different from the traditional “process-after-store”
mode. The SPM performs “one-pass” processing over data on
the fly before or even without storing the data.

This unique characteristic poses a novel fault-tolerant (FT)
problem. It is one of the fundamental open challenges of the
SPM [1], [11]. On one hand, failures in stream processing sys-
tems can cause severe damages, such as data loss and inaccurate
or incorrect results, and the SPM can be more vulnerable to fail-
ures than other big-data processing schemes. On the other hand,
the stream processing systems that have been implemented over
distributed systems and deployed on data centers and cloud cen-
ters, known as distributed stream processing systems (DSPS)
[6], [7], [10], have achieved higher processing throughput and
scalability but increased the failure rates at the same time [12].

Although FT and reliability in distributed systems [13] is
a classic problem that has been widely studied, SPM intro-
duces new challenges, like strict recovery latency constraints
and complex recovery dependencies. Existing FT approaches
enable DSPS to recover from host-level failures with a short
recovery latency [14]–[17]. Replication-based approaches [18],
[19] maintain a backup instance for each primal instance [20]
and introduce almost no recovery latencies. However, they suf-
fer from considerable FT overhead. In recent years, the upstream
backup model [10], [15], [16], [21] has been widely applied due
to its short recovery latency and reasonable FT overhead. In the
upstream backup model, each task can maintain a backup of
its output data for its downstream tasks. The tasks that perform
backups are called backup tasks. Although extensive results have
been presented in the related literature to illustrate the perfor-
mance of different upstream backup approaches, to the best of
our knowledge, none provides recovery latency guarantees. The
relationship between recovery latency and FT overhead (i.e., the
amount of upstream backups) is still unclear.

There are recovery dependencies among a recovering task and
its dependent upstream backup task(s). The recovery latency of
a recovering task is closely related to the backup configuration
(the amount and location of backup tasks) of a stream topology.
When failure occurs, the recovery latency of the stream topology
is equal to the largest task recovery latency. The recovery latency
of a task means the time consumed from when it is restarted to
when it is recovered back to its prefailure status, which consists
of two parts: 1) upstream latency, the time used to obtain recent

Fig. 1. Example of recovery latencies of the same stream topology under
different FTCs.

backup data from its adjacent upstream task(s); and 2) reprocess
latency, the time to recover a task to its latest state. Given the
failure rate and backup interval, the reprocessing latency can be
estimated [10], [22], [23]. A task’s upstream latency depends
on the location of the dependent backup tasks. If an adjacent
upstream task is not a backup task, it has to start its own recovery
procedure recursively to regenerate the data needed. This causes
extra latencies. For example, in Fig. 1 Case II, task b will be
involved in the recovery process of task a.

Setting all tasks as backup tasks [10], [21] ensures that any
recovering task’s adjacent upstream task(s) is(are) its dependent
backup task(s) and that all required backup data are available
right after task restarting. This introduces zero upstream laten-
cies and minimizes the recovery latency. However, maintaining
backup data introduces overhead in runtime. Even though the
overhead can be reduced by trimming the backup data queue
with checkpointing [5], [7], upstream backups could still bring
considerable runtime overheads to both space and time [15],
[16]. Decreasing the number of backup tasks reduces FT over-
head. Therefore, the other extreme is to perform backup only on
the input streams [6], [15] to minimize backup overhead. In this
method, all upstream tasks will be involved recursively to regen-
erate the needed data and introduce maximum extra latencies.
Both the number of backups (FT overhead) and the location of
backups affect the recovery latency. As shown in Fig. 1, differ-
ent configurations with the same number of backups may lead
to different recovery latencies (Case I and Case II), and more
backups do not necessarily reduce recovery latency (Case II and
Case III).

It is straightforward to ask what is the relationship between FT
configuration (FTC) (the amount and location of backups) and
recovery latency. Given a stream topology [9], how can we setup
the FTC to minimize backups and guarantee recovery latency at
the same time (defined as FTC problem in Section III-B)? This
is a very practical question that does not appear to have been
addressed in previous literature. The purpose of this paper is to
introduce a model that describes the tradeoff between FTC and
recovery latency and to present an approach to compute FTC
with minimum backups (FT overhead) according to recovery

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: MINIMUM BACKUPS FOR STREAM PROCESSING WITH RECOVERY LATENCY GUARANTEES 3

latency requirements. The main contributions are summarized
as follows.

1) We present a quantitative failure effect model that de-
scribes the relationship between the recovery latency and
the FTC of a stream topology. We introduce the FTC
problem based on this model.

2) We propose an algorithm for different types of stream
topologies: sequential/parallel lines, tree, and general
DAG. We prove that our algorithm keeps recovery latency
guarantees for all DAG stream topologies.

3) We conduct extensive simulations to verify the correctness
and effectiveness of our approach with different applica-
tions and setups.

The rest of this paper is organized as follows. In the next
section, we summarize related works. Section III presents the
problem modeling and analysis. We propose and analyze our ap-
proach in Section IV, and Section V discusses the experimental
results. Section VI concludes this paper.

II. RELATED WORK

A. Reliable Stream Processing

Active replication and checkpoint/recovery are two widely
studied traditional FT mechanisms, and both have applications
in distributed stream processing systems. Active replication
maintains at least one active replica instance to enable instant
switch from the primary instance to its replication when failure
occurs. This ensures a minimum response time, but suffers from
a high overhead that at least doubles resource consumption. It
is applied in earlier stream processing systems and in data en-
gines [1], [18] hosted by a small cluster of machines. With the
scale of applications increasing rapidly [8], the active replication
model becomes inefficient or even impractical for DSPS, which
is why most recent research explores FT approaches based on
checkpoint/recovery [5], [19], [21], [24].

Hwang et al. [10] introduced an upstream backup model that
takes advantage of close upstream–downstream dependencies.
Upstream tasks keep output buffer as a backup for a downstream
task for as long as necessary. If a downstream task fails, backup
data are replayed to restore the latest running state and to gen-
erate correct results. This is an efficient approach to the stream
processing model, but it only supports applications that depend
on recent data, not those that depend on a complete history
of previous data. Therefore, recent works combine upstream
backup with checkpoint/recovery to solve this problem [15],
[19], [21]. The runtime status, including the accumulated results,
of a task is stored in checkpoint files and restored after failure.
Checkpointing events are used to trim upstream backup data.
This approach achieves short recovery latency and has become
the most commonly used FT method for SPM. However, main-
taining upstream backups may still introduce considerable FT
overhead (both computing time and memory space) [15], [16].

B. FT Strategy

Recent works have begun to pay attention to the tradeoff be-
tween FT overhead and recovery latency. Some of the works
are based on hybrid FT schemes, such as active replication

and checkpoint/recovery [16], [17], [19], [25], and they adap-
tively choose different FT strategies according to application
types and/or recovery time thresholds. Martin et al. [25] used
spare resources to run active replicas of operators. When the
system is under heavy workloads, operators switch to passive
replicas. Other works present optimization models to choose be-
tween different FT schemes. FTOps [17] selects the optimal fault
tolerance mechanism in offline fashion, while [19] makes adap-
tive decisions based on online estimations of processing per-
formance. FTOps only supports tree-structured jobs, not DAG-
structured plans, which narrows its applications. Heinze et al.
[19] minimized recovery time violations, but the recovery la-
tency is not guaranteed. Su et al. [16] model correlated failures
and make optimized plans for replications to avoid tentative
outputs.

Apart from FT strategies for stream processing systems, re-
lated works study the FT strategies for workflow applications
[23], [26]. Salama et al. [23] presented a materialization config-
uration for workflow applications with the objective of minimiz-
ing overall execution time. Like our work, [23] makes decisions
about the amount and the location of materialization tasks. How-
ever, their application backgrounds and objectives are different.
In the stream processing model, all tasks execute concurrently
as a pipeline. In the workflow model, tasks are executed step-
by-step and only tasks without upstream-downstream depen-
dencies can execute concurrently. Therefore, the FT strategy
for the stream processing model focuses on reducing the max-
imum task latency to avoid performance bottlenecks instead of
on reducing the overall latency of the entire workflow.

C. Processing Latency and Recovery Latency Modeling

Chain [27] is one of the earliest works focusing on the mod-
eling of processing latency and task allocation strategies for
stream processing systems. It presents an approach to assign re-
sources to tasks with the objective of minimizing the makespan
of a data flow job in the single machine environment. In recent
years, the task allocation problem for DSPS has been widely
studied [9], [28], [29]. Studies seek task allocation plans that
avoid processing latency bottleneck. These works use similar
models for processing latency and stream topology in the SPM,
and they provide the background for our work. Eidenbenz et al.
[9] presented strong theoretical results for a common type of
stream topology (i.e., SPD). They propose solutions for com-
puting the optimal resource shares of stream processing tasks
under a continuous resource partitioning scenario. This work
differs from our work because its objective is to minimize the
overall processing latency. Optimal resource shares can be used
as a guide for placing backup resources, and therefore, we use
it as a comparison method in our simulations.

The recovery latency of a stream processing task is related
to multiple parameters such as state size, queue length, window
size, and checkpoint intervals [19]. There are two approaches to
estimate recovery latency, experimental methods, and theoret-
ical methods. Heinze et al. [19] designed a clustering method
based on historical samples to estimate recovery time. Salama
et al. [23] used the reliability model [22] to estimate the recov-
ery latency assuming that the checkpoint interval and the failure

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

rates of individual tasks are given. This work provides the back-
ground of our failure effect model. The reprocessing latency of a
recovering stream processing task can be estimated based on the
same method. Note that this method estimate the reprocessing
latencies of individual tasks independently, and it supports tasks
with nonidentical failure rates. However, these methods are not
suitable for the stream processing model when tasks have re-
covery dependencies with their upstream backups. In this paper,
we propose a failure effect model based on the dependencies
between recovering tasks and their dependent backup tasks.

III. PROBLEM FORMULATION AND ANALYSIS

A. Stream Processing Model

A stream topology is modeled as a directed acyclic graph
(DAG) [9] G = (V,E), where v ∈ V and e ∈ E represent a
task and a directed link between two adjacent upstream and
downstream tasks [10], respectively. The number of tasks in a
stream topology is |V | = N . Each task performs a predefined
function on the data from the input stream(s) and emits data
to output stream(s). A task without any incoming link is called
source, and one without any outgoing link is called sink. There
could be multiple sources and sinks in a stream topology. Vs and
Vt denote sets of source and sink, respectively.

A task state consists of a data state and an internal state [5],
[15]. There are two types of tasks, known as stateful tasks (e.g.,
join and aggregate), which have both states, and stateless tasks
(e.g., map and filter), which have only a data state [21]. We
assume each task is able to perform upstream backup [10] and
that upstream task will backup output data for downstream task
for as long as necessary in case downstream task needs to recover
from failure. The tasks that are chosen to perform upstream
backup are called backup tasks, denoted by set (Vb ⊆ V). Next,
we give the definition of FTC.

Definition 1: FTC of a stream topology G(V,E) is a
set {M(v1), ..,M(vn)}, where v ∈ V , n = |V | and M(v) =
{0, 1}. M(v) = 1 when v ∈ Vb , and M(v) = 0 otherwise.

We also assume that stateful tasks perform periodical check-
pointing [21], [30] to preserve internal states and trim backup
data. The data state of a stream task is usually much larger than
the internal state [15], and a great proportion of stream pro-
cessing tasks are stateless tasks that do not have internal states.
Therefore, we only consider data state in our model, and we
assume that the FT overhead of a stream topology is reflected
by the amount of backup tasks (M =

∑
v∈V M(v)). When a

task failure occurs, the task is revived to its latest materialized
state using recent checkpoint file. Then, the recovering task
fetches the needed backup data from upstream backup task(s)
and reprocesses them to get back to the latest state before the
failure.

B. Failure Effect Model

We present a failure effect model to describe the relationship
between the FTC (the amount and location of backups) and
performance (recovery latency) of a stream topology. In this
paper, we consider task failures that may be caused by various

reasons, such as processor failure, network failure, and software
malfunction. When a task failure occurs, a restarted task seeks
previous input data from all of its adjacent upstream task(s),
and then, it reprocesses them to recover its latest state. A task’s
recovery latency is denoted as L(v) and consists of two parts:
1) upstream latency (U(v)), the time it takes to obtain previous
data from adjacent upstream tasks and 2) reprocessing latency
(T (v)), the time it takes to reprocess data from the last check-
point. Let R denote the recovery latency requirement of a stream
topology. R is satisfied when ∀v ∈ V ,L(v) ≤ R:

L(v) := U(v) + T (v). (1)

A cost function T : V → R+ determines the time needed for
a task to reprocess data during failure recovery. Next, we dis-
cuss how to estimate the reprocessing latency T (v) in practice.
In this paper, we assume tasks have independent failure rates.
The reprocessing latencies of individual tasks can be estimated
independently based on the classic FT theory for sequential ap-
plication [22]. Given the failure rate of a task, the optimal check-
point interval can be computed based on the method in [22]. Let
T (v)ckpt denotes the checkpoint interval of task v. Furthermore,
the reprocessing latency of a task can be estimated based on its
checkpointing interval (T (v) ≈ 1/2 · T (v)ckpt) [10], [22], [23].
Note that tasks can have nonidentical failure rates in our failure
effect model.

Based on the aforementioned discussion, we assume without
loss of generality that for all tasks v ∈ V , T (v) is given as an
input. Next, we show how to model the upstream latency, i.e., the
time needed to retrieve all backup data from upstream task(s).
We give a recursive version based on upstream backup[10], [21]
and then present a nonrecursive version (used in our algorithm)
in Section IV.

If task v ∈ V is recovering, Pv is a set of its adjacent upstream
tasks, and Pv ⊆ V , then for each upstream task u ∈ Pv , U(u, v)
denotes the upstream latency from u to v:

U(u, v) :=

{
0, if M(u) = 1

L(u), otherwise.
(2)

As shown in (2), if an upstream task u is a backup task (i.e.,
M(u) = 1), then it is able to provide the data v needs right away
(i.e., U(u, v) = 0). Otherwise, it has to engage its own recov-
ery process to regenerate data for v so that U(u, v) = L(u).
Since all tasks execute concurrently in SPM [9], U(v) =
maxu∈Pv

{U(u, v)}. The recovery latency of a task can be for-
mulated recursively as

L(v) := max
u∈Pv

{(1−M(u))L(u)}+ T (v). (3)

A backup task preserves results from upstream tasks and
provides backup data for downstream tasks. Next, we give the
definition of forward cover and of backward cover, hereafter
referred as f-cover and b-cover, to help us with a nonrecursive
model of task upstream latency.

Definition 2: Forward-cover (Backward-cover): We say a
backup task u f-covers (b-covers) task v and v is f-covered (b-
covered) by u, denoted by u→

f c
v (v←

bc
u), when u ∈ V , v ∈ V ,

and u is an adjacent upstream (downstream) backup task for v,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: MINIMUM BACKUPS FOR STREAM PROCESSING WITH RECOVERY LATENCY GUARANTEES 5

Fig. 2. Example of forward-cover (backward-cover) and upstream cover set.

e.g., there is no other backup task on the path from u to v, that
satisfies recovery latency requirement L(v) ≤ R.

Definition 3: Upstream Cover Set of task v is a set of all
upstream tasks that f-cover v, denoted by Cv (Cv ⊆ V) and
∀u ∈ Cv , u→

f c
v.

As exampled in Fig. 2, one backup task can f-cover (b-cover)
multiple tasks (task a), and a task may depend on multiple
backup tasks in its recovery process (task h). According to the
definition, a task’s upstream cover (UC) set contains sufficient
backups to provide all data needed in a task failure recovery. Let
us say u ∈ Cv , and a set of all nonbackup tasks on a path from u
to v (including v) is denoted by J(u,v) . The distance between u
and v is the largest latency among all possible paths from u to v
and is denoted by D(u, v) = max{∑z∈J(u , v)

T (z)}. Therefore,
the recovery latency of a task v equals the largest distance from
all backup tasks in its UC set Cv :

L(v) = U(v) + T (v) = max
u∈Cv

{D(u, v)}. (4)

C. FTC Problem

We define the FTC problem based on the failure effect model.
We assume all tasks have independent failure rates, and our goal
is to tolerate a single failure at one time. The overall recovery
latency of a stream topology is equal to the largest recovery
latency of a task, i.e., O = maxv∈V {L(v)}. Therefore, the re-
covery latency requirement is fulfilled when all tasks’ recovery
latencies are less than or equal to R.

Problem I (FTC): Given a stream topology graph
G(V,E) (N = |V |) and the recovery latency require-
ment R, find the fault-tolerant configuration FTC(G,R) =
{M(v1), ..,M(vN)} with minimum backups (M) that
satisfies R:

minimize M :=
∑

v∈V

M(v)

subject to

M(v) := {0, 1} v ∈ V

L(v) ≤ R v ∈ V .

(5)

D. Assumptions

In this paper, we make the following assumptions. First, we
assume independent failure rates on each task. The reprocessing
time of each task can be estimated as [10], [22], and [23], and are

given as inputs. A scenario in which the failure rate of each task
is not independent will be studied in our future work. Second,
we make the assumption that there is, at most, one failed task
for each stream topology at one time, which is realistic when
tasks are distributed on different physical machines. Finally, we
assume that the backup overhead of the data state dominates that
of the internal state, i.e., the FT overhead of a stream topology
is reflected by the amount of backup tasks. This assumption is
discussed in Section III-A.

IV. ALGORITHM

In this section, we propose an algorithm (algorithmF T C) to
solve the FTC problem for different types of stream topologies:
line(s) topology, tree topology, and general DAG. We show how
algorithmF T C computes optimal FTCs for the first two types
of topologies with a complexity of O(N). Then, we present a
general version of the algorithm that uses a heuristic ranking
method to compute FTCs for all DAG with a complexity of
(O(N2)).

A. Main Algorithm

For any input stream topology G(V,E) we assume that tasks
are indexed according to their Breadth F irst Search orders.
If we add one virtual sink to connect all sinks when G has
multiple sinks, then we can perform a breadth-first search from
the sole sink as root and index the tasks from 1 to N (virtual sink
is indexed 0) according to the search orders. After the traversal,
tasks with more hops from root have a larger index. We refer
to the index of a task as I(v). Tasks are in descending orders
according to their indexes in V = {v1 , .., vN }.

AlgorithmF T C scans all tasks in descending order accord-
ing to topological indexes. This is based on the fact that in order
to achieve the FT of a source, the input stream must always be
backuped, e.g., using Apache Kafuka [31]. Next the algorithm
maintains a set of pending search sources, denoted as S, initial-
ized with all source of the stream topology. Then, it launches
a round of search starting from each task in S to set up new
backup task(s). At each round, it chooses a task from S with the
largest index (I(v)), removes it from S, scans a candidate set
of downstream tasks to choose new backup task(s), and put the
new backup task(s) into S. Vm contains tasks that are chosen to
be backup tasks in the current search round. At the end of each
round, Vm will be merged into S. The algorithm ends when the
pending search set is empty. Since at least one backup will be set
up each round, AlgorithmF T C performs, at most, M rounds
of searches. It is easy to prove that all tasks are scanned at least
once in this process.

In each round, function ChooseBackup() is called to choose
new backup(s). New backups must satisfy the following con-
straints.

1) Rule I—The new backup task is f-covered (definition. 2)
by the current searching source.

2) Rule II—The processing result of the current searching
source is backuped by all new backup task(s).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

Fig. 3. Example of applying AlgorithmF T C to line(s) topology.

Algorithm 1: AlgorithmF T C (G,R).
Input: A stream topology graph G(V,E) and recovery

latency requirement R
Output: FTC set Vb

1: Initialize N , M(v) and searching source S := S ∪ Vs ;
2: while (S �= ∅) do
3: v := arcmax

v∈S
{I(v)}; //choose current searching

source
4: Vm := ChooseBackup(v, V, R, Vb); //choose

new backup tasks
5: update Vb and S;
6: end while
7: return Vb ;

3) Rule III—The combined workloads of the tasks b-covered
by chosen backup tasks in current round are maximized
(
∑

v←
b c

u,u∈Vm
T (v)).

The first rule ensures that the chosen backup task and its
upstream tasks from the searching source do not exceed the
recovery latency requirement. The second rule states that the
processing results of the current searching source must be fully
backed up in their downstream backup tasks to prevent data
loss. Finally, the last rule seeks to maximize the benefits of each
backup tasks and to reduce the total number of backup tasks.

Next, we show how this algorithm computes the FTC for
different stream topologies, which eventually follows the same
ranking method (discussed in Section IV-D).

B. Line(s) Topology

The first type of stream topology is called line(s) topology,
where each graph consists of either a sequential line of series
tasks [9] connected one-by-one or multiple parallel lines joining
a common sink, as illustrated in Figs. 3 and 4(a) and (b). This
type of stream topology is common when multiple processing
steps are connected in a sequence like in production lines.

Fig. 4. FTC examples of line(s) and tree topology.

Algorithm 2: ChooseBackup-Line(s)Topology (v,V,R,Vb).
Input: Current source v, BreadthFirstSearch order

searching array V , recovery latency requirement R and
current backup tasks Vb

Output: Set of chosen backup tasks Vm

1: Initlize Vm := ∅; vmark := v;
2: get v’s adjacent downstream task u;
3: while (R >= d(u, v) + T (u)) do
4: vmark := u;
5: get v’s adjacent downstream task u;
6: end while
7: Vm := Vm ∪ {vmark};
8: return Vm

Function ChooseBackup-Line(s)Topology outlines the pro-
cess of setting up backup tasks for line(s) topologies. As illus-
trated in Fig. 3, tasks are indexed according to the breadth-first
search orders. Tasks in pending searching sources S are in de-
creasing order according to task indices. AlgorithmF T C calls
ChooseBackup-Line(s)Topology for the first searching source in
S at each round. ChooseBackup-Line(s)Topology chooses new
backup tasks (Vm). The current FTC set Vb is then updated ac-
cordingly. New backup tasks from the current round are added
into S as pending searching sources for future rounds. Finally,
AlgorithmF T C finishes when S = ∅.

In order to satisfy Rule I, a candidate task set is generated
according to recovery latency R. The candidate set contains
tasks that are f-covered by the current searching source. In both
sequential and parallel line(s) topologies, each task has one ad-
jacent downstream task. Any newly chosen backup tasks can b-
cover all processing results from the current search source, thus
satisfying Rule II. We apply an approach that simply chooses
new backup tasks with the smallest indices among all candidate
tasks to apply Rule III. Fig. 4 (a) and (b) provides more examples
of when tasks are given nonidentical reprocessing weights.

Lemma 1: Algorithm ComputeFTC keeps recovery latency
guarantees for line(s) stream topologies.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: MINIMUM BACKUPS FOR STREAM PROCESSING WITH RECOVERY LATENCY GUARANTEES 7

Algorithm 3: ChooseBackup-TreeTopology (v, V,R, Vb).
Input: Current source v, BreadthFirstSearch order

searching array V , recovery latency requirement R and
current backup tasks Vb

Output: Set of chosen backup tasks Vm

1: Initlize Vm := ∅; r := T (v);
2: if (M(v) == 1) then
3: r := 0;
4: end if
5: while (r <= R) do
6: vmark := v;
7: get v’s adjacent downstream task u;
8: if (M(v) == 1) then
9: Vm := ∅; //End current search
10: return;
11: end if
12: r := r + T (u);
13: v := u;
14: end while
15: Vm := Vm ∪ {vmark};
16: return Vm

C. Tree Topology

The second type of stream topology is called tree topology,
where tasks are connected as a tree rooted by a common sink.
In this topology, each task has only one adjacent downstream
task, as illustrated in Fig. 4(c). This type of stream topology
represents a type of application (e.g., monitoring applications)
that aggregates information from multiple sources to generate
results. Unlike line(s) topology, tree topology has multiple joint
nodes that may introduce opportunities for sharing backup tasks.
Therefore, the ChooseBackup function follows a similar routine
as the line(s) topology, but finishes the search on an earlier
path where a scanned task is already set up as new backup
task. The function for tree topology is shown in ChooseBackup-
TreeTopology().

Lemma 2: Algorithm ComputeFTC keeps recovery latency
guarantees for tree stream topologies.

D. General DAG Topology

In this section, we present a general version of ChooseBackup
that computes FTCs for all types of stream topologies, which we
call general DAG topologies. Note that general DAG topologies
include line(s) and tree topologies. We first discuss how previous
functions solve the FTC problem for line(s) and tree topologies.
1) Tasks in line(s) and tree topologies only have one adjacent
downstream task. A downstream task is capable of b-covering
current searching sources and satisfies Rule II all by itself. 2) In
line(s) and tree topologies, all downstream tasks are connected
as a sequence. The combined workloads a candidate task could
cover increases linearly with its distance from current searching
source. Therefore, candidate tasks of a longer distance should be
chosen first according to Rule III. The line(s) and tree topologies
use similar methods to rank candidates based on their distance

Fig. 5. FTC of general DAG topology.

from the current searching source (6). For the tree topology,
if a current search task is marked a backup task (by previous
searching tasks), its rank is set to a value big enough to guarantee
that it will be picked. Otherwise, tasks are ranked in the same
way as line(s) topology. As a result, the line(s) topology is a
special case of tree topology:

rank(v)
v∈V ,u→

c
v

:=

{
D(u, v), line(s)

D(u, v) + (1−M(v)) ·R tree.
(6)

Unlike line(s) and tree topologies, some stream topologies
contains tasks with multiple upstream/downstream neighbors,
which we call general DAG stream topologies. This type of
topology is also practical in the stream processing model, e.g.,
a stream topology running in DSPS supporting autoscale [21],
[32] technology, as illustrated in Fig. 5.

We present a heuristic function to compute the FTC for the
general DAG topology. First, function GenerateCandidates()
generates a candidate set Z that contains all possible backup
tasks for this round. All downstream tasks within a distance of R
from the current source are in Z. This process requires a traversal
of all the tasks in the worst case. Second, we compute the b-cover
percentage F (v) (7) of each candidate. The search ends when the
current source is fully b-covered by new backup tasks, i.e., the
combined b-cover percentages of all chosen backup tasks in this
round equals “1,” which satisfies Rule II in Section IV-A. Third,
according to Rule III, we compute the ranks of candidate tasks
according to the amount of workload a candidate can b-cover.
We refer to this as backup workload B(v)(8). B(v) is computed
in a recursive manner according to the distance from the current
searching source and how the workload is partitioned along
the way. Fig. 6 illustrates the b-cover percentage and backup
workload. The candidate with highest rank B(v) is chosen in
each round. Finally, we remove tasks that have been b-covered
from the new backup task to eliminate redundant backups. It is
easy to prove that ChooseBackup-DAGTopology() is a general
version that supports line(s) or tree topologies:

F (v) :=

{
1, if v ∈ Vs
∑

u∈Pv ,u∈Z
F (u)
|Qu | , otherwise

(7)

B(v) :=

{
T (v), if v ∈ Vs
∑

u∈Pv ,u∈Z
B (u)+T (u)
|Qu | , otherwise.

(8)

Lemma 3: Algorithm ComputeFTC keeps recovery latency
guarantees for general DAG stream topologies.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

Fig. 6. Example of backward-cover percentage and backup workload.

Algorithm 4: ChooseBackup-DAGTopology (v, V,R, Vb).
Input: Current source v, searching array in

BreadthFirstSearch orders V , recovery latency
requirement R and current backup tasks Vb

Output: Set of chosen backup tasks Vm

1: Vm := ∅;
2: Z := v1 , .., vz := GenerateCandidate(v, V,R, Vb);
3: F (v) := ComputePercentage(); // (7)
4: B(v) := ComputeRank(); // (8)
5: while (Z �= ∅) do
6: E := arcmax

v∈Z
{B(v)}; //choose tasks with highest

B(v)
7: vmark := arcmax

v∈E
{D(v, v)}; //tasks with longest

distance
8: if (M(vmark) �= 1) then
9: Vm := Vm ∪ {vmark}
10: end if
11: remove all tasks on the paths from v to vmark in Z;
12: end while
13: return Vm

E. Discussions

In this section, we discuss the fulfillment of the recovery la-
tency requirement and the complexity of the proposed algorithm
for different stream topology types.

Theorem 1: Algorithm ComputeFTC computes an FTC for
a stream topology G that guarantees recovery latency R with a
complexity of O(N 2) .

Theorem 2: Algorithm ComputeFTC computes an optimal
FTC for a (line(s) or tree) stream topology G with recovery
latency R.

Note that the function ChooseBackup-DAGTopology() is a
greedy heuristic that updates current task coverage dynamically
and chooses the task that b-covers the most workload in each
round. We leave discussion of the optimality of Algorithm Com-
puteFTC over general DAG topology open. Instead, we give an
exhaust algorithm that computes the optimal FTC for general
DAG topology for comparison. Algorithmexhaust tries all pos-
sible numbers of backups 1 ≤M ≤ |V | for a given G(V,E) and

TABLE I
COMPARING ALGORITHMS

Algorithm Description

Exhaust A exhaust search algorithm
Line ComputeFTC for line(s) topology
Tree ComputeFTC for tree topology
DAG ComputeFTC for general DAG topology
Shared-based A algorithm based on balanced share [9]

TABLE II
STREAM TOPOLOGY TYPES

Type Description

Line(s) Multiple lines of task join at one sink.
Tree Multiple source and one sink.
Sequential
dominated

DAG with long paths (SignalGuru [33])

Parallel
dominated

DAG with many autoscale tasks (TwitterSentiment in
[34])

R so that at each round, it tries all possible backup locations and
chooses the FTC that leads to the smallest overall recovery la-
tency O. It is easy to prove that Algorithmexhaust computes an
optimal FTC for the FTC problem. The computing complexity
of the algorithm is O(M ·N !).

V. EXPERIMENT RESULTS

We conduct several simulation experiments to illustrate 1)
the accuracy of our failure-effect model compared to solutions
computed with algorithmexhaust ; 2) the efficiency of our ap-
proach for different types of queries and the difference in failure
rates; and 3) the scalability of the proposed approach and how
it solves real application topologies.

A. Experimental Settings

In this section, we compare five different approaches, listed in
Table I. Algorithmexhaust performs a full search on all solution
space to compute Opt for the FTC problem as a baseline. We test
our algorithm to show the accuracy of our model compared to
OPT. Moreover, we implement a share-based algorithm modeled
after the resource allocation method in [9]. This algorithm sorts
all candidate tasks according to their optimal resource share and
chooses the one with the largest share as the backup task in each
round. We use this algorithm to measure the efficiency of our
approach.

We choose four types of stream topologies for our exper-
iments, listed in Table II. Sequential line topology and tree
topology are dummy topologies that are common in practice.
Then, we demonstrate how our approach solves two types of real
application topologies. Sequential-dominated topology (Signal-
Guru [33]) illustrates how our approach solves applications
with long paths. Parallel-dominated topology (Twitter Senti-
ment [34]) has large number of nodes and edges caused by
autoscale tasks. It is used to test the scalability of our approach.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: MINIMUM BACKUPS FOR STREAM PROCESSING WITH RECOVERY LATENCY GUARANTEES 9

Fig. 7. Experimental results on the amount of backups and the recovery latencies for line(s) and tree topologies (four different scenarios defined by two different
topologies and two different weight settings). (a) Line topology. (b) Line topology result 1. (c) Line topology result 2. (d) Tree topology. (e) Tree topology
result 1. (f) Tree topology result 2.

Fig. 8. Experimental results on the amount of backups and the recovery latencies for general DAG topologies (four different scenarios defined by two different
topologies and two different weight settings). (a) Sequential-dominated topology. (b) Sequential-dominated result 1. (c) Sequential-dominated topology result 2.
(d) Parallel-dominated topology. (e) Parallel-dominated result 1. (f) Parallel-dominated result 2.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

B. Results

We use exhaust algorithm to compute Opt FTCs for all types
of topologies. These results are used as benchmarks to test the
performance of proposed algorithms. For each topology, we set
up two different reprocessing time scenarios: uniform weight
with a value of 1 and nonuniform weight with a value ranging
from 1 to 10.

1) FT Overheads: As illustrated in Fig. 7, we test both uni-
form and nonuniform scenarios on the line(s) and tree topolo-
gies. In all four tests, AlgorithmF T C uses exactly the same
amount of backups as the exhaust algorithm, which illustrates
the accuracy of both our failure effect model and the pro-
posed approach. The share-based algorithm uses 21%–43%
more backups under different settings.

SignalGuru [33] is an application with paths of nine steps,
as shown in Fig. 8(a). In each step, the task parallelism is dif-
ferent, and therefore, this topology can help demonstrate how
AlgorithmF T C ranks tasks according to their locations in the
topology. As shown in Fig. 8(b) and (c), AlgorithmF T C ’s re-
sults are very close to the optimal solution computed with the
exhaust algorithm. AlgorithmF T C introduces an extra backup
task of 3% on average with a uniform weight scenario and of
10% with a nonuniform scenario.

We use the Twitter Sentiment application [34] as demon-
stration of how our approach performs when solving topologies
with large numbers of nodes and edges, i.e., autoscale scenario.
Fig. 8(d) shows the topology, which contains three autoscale
tasks (hot topics, filter, and sentiment). We tested two cases:
one where the autoscale is set to (50, 20, 20), resulting in 560
edges, and one where the autoscale is set to (30, 30, 30) and
has 1050 edges. Note that the number of tasks in both cases is
kept the same to illustrate the effect of different cases of paral-
lelism. As shown in Figs. 8(e) and (f), our approach works as
well with these topologies as the others. AlgorithmF T C intro-
duces, on average, 4% extra overhead compared to the optimal
results computed by Algorithmexhaust . The share-based ap-
proach suffers from high FT overhead, but when the required
recovery latency is short, none of the listed approaches are able
to compute the FTCs with a small overhead. We get similar re-
sults in the SignaGuru case. This is because the task parallelism
introduces too many parallel tasks, and there is no way to achieve
guaranteed recovery latency except by increasing backup tasks.

2) Execution Time: In this section, we show the execution
time of each algorithm. Note that AlgorithmT ree is only tested
on Line(s) and tree topologies. As illustrated in Table III, all
comparison algorithms except the exhaust algorithm generate
FTCs in a short time. In SigmaGuru and Sentiment, which
involve 55 and 92 nodes, respectively, the exhaust algorithm
finishes in several minutes, which makes it in practical. The
share-based algorithm uses less computational time than our
proposed algorithm because it uses a greedy method based on a
sort function.

C. Application Scenario

Nowadays, many big data applications are facilitated by pub-
lic Cloud service providers, such as Google, Amazon EC2, and

TABLE III
TIME CONSUMED TO COMPUTE FTCS

Exhaust Tree DAG Share Based

Line-u 54 ms 0.5 ms 1.2 ms 10 ms
Line-n 57 ms 0.6 ms 1.5 ms 10 ms
Tree-u 892 ms 0.8 ms 1.6 ms 10 ms
Tree-n 904 ms 0.9 ms 1.8 ms 10 ms
Guru-u 1.16 sec NA 20 ms 8 ms
Guru-u 1.21 sec NA 23 ms 10 ms
Senti-560 12.34 sec NA 287 ms 28 ms
Senti-1050 108.22 sec NA 501 ms 29 ms

Notes: Line-u and Line-n mean uniform and nonuniform scenarios, re-
spectively.

Microsoft Azure. Our work focuses on the FT strategy of the
stream processing system. It can be applied to any stream pro-
cessing system that supports the upstream backup model, and it
can be deployed on any private or public Cloud service.

Given a stream topology G, estimated task reprocess-
ing time T (v), v ∈ V , and recovery latency requirement R,
AlgorithmF T C computes FT configuration FTC(G,R) us-
ing millisecond level time. FTCs can be computed dynamically
in runtime, which makes application to real production environ-
ments possible. With the proposed failure-effect model, one can
evaluate the FTCs of a stream processing system. The proposed
algorithm, AlgorithmF T C , can be used in task allocation, on-
line autoscaling, and load balancing to further improve system
throughput and efficiency.

1) Autoscale adjustment: When stream processing tasks per-
form autoscaling, the stream topology changes, and we
can recompute the FTC to adapt to the new topology.

2) Task allocation: When the system scheduler makes task
allocation decisions for a stream topology, it can use FTCs
to estimate FT overheads and reserve redundant resources
for potential failure recoveries.

3) Load balance: When the resource manager performs pe-
riodic load balancing and task migrations, it can use the
failure-effect model to evaluate current FT plans and to
recompute FTC when necessary.

VI. CONCLUSION

This paper focuses on FT strategy for distributed stream pro-
cessing systems. We proposed a novel quantitative failure effect
model to describe the relationship between the recovery latency
and FTC (the amount and location of backup tasks) of a stream
topology. We introduce the FTC problem based on the failure
effect model and we propose an approach to compute FTC with
guaranteed recovery latency and minimum backups. We prove
that the proposed method can guarantee the recovery latency re-
quirement for all DAG stream topologies. It computes optimal
FTCs for sequential and parallel line(s) topologies and for tree
topologies with a time complexity of (O(N)). For other DAG
topologies, we use a heuristic ranking function to generate con-
figurations, causing fewer than 10% more backups on average
than the optimal solution with a time complexity of (O(N 2)).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: MINIMUM BACKUPS FOR STREAM PROCESSING WITH RECOVERY LATENCY GUARANTEES 11

APPENDIX

Here, we give proofs for the theorems given in the main body
of this paper.

Proof of Lemma 1: According to ChooseBackup-Line(s)
Topology() line 3, a new backup task is chosen from a can-
didate set that contains tasks which satisfy the recovery latency
requirement R. For multiple line(s) topologies, the algorithm
treats each line independently and equally, which proves the
claim. �

Proof of Lemma 2: According to function ChooseBackup-
TreeTopology() line 5, all tasks are guaranteed with a recovery
latency of less than R. �

Proof of Lemma 3: According to function ChooseBackup-
DAGTopology() line 2, all candidate tasks are chosen according
to recovery latency R so that the constraint is satisfied for all
tasks. �

Proof of Theorem 1: According to Lemmas 1–3, Algorithm
ComputeFTC keeps the recovery latency guarantees. It is left to
proof that the time complexity of the algorithm is O(N2).

1) For the line(s) topology, each task in the graph is scanned
once. The complexity is O(N).

2) For the tree topology, each task is scanned once,
but a backup task may be scanned multiple times in
ChooseBackup-TreeTopology() line 8. Repeated scanning
occurs when a backup task is shared by two search sources,
which is at most N − 2 times. The complexity is O(N).

3) For the DAG topology, similar to tree topology, each
task in the graph is scanned once. Extra scans are intro-
duced to compute both F (v) (7) and B(v) (8). They will
cause 2(N − 2) scans in total. Therefore, the complexity
of algorithm ComputeFTC for general DAG topology is
O(N2).

We prove the claim in all three conditions. �
Proof of Theorem 2: Theorem 2 is easy to prove in the case

of line(s) topologies. In tree topologies, each task has only one
adjacent downstream task, e.g., the candidate tasks are lined
up as a search path. A backup task either covers n tasks along
the path so that

∑
T (v) ≤ R or when a backup task chosen by

an earlier search round exists on the path the search stops at
function ChooseBackup-TreeTopology() line 8. This procedure
will not involve setting up extra backup tasks, and therefore, we
prove the claim. �

REFERENCES

[1] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of real-
time stream processing,” ACM SIGMOD Record, vol. 34, no. 4, pp. 42–47,
2005.

[2] A. Arasu et al., “Stream: The stanford stream data manager (demonstra-
tion description),” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2003,
pp. 665–665.

[3] G. Hesse and M. Lorenz, “Conceptual survey on data stream process-
ing systems,” in Proc. IEEE 21st Int. Conf. Parallel Distrib. Syst., 2015,
pp. 797–802.

[4] S. Chandrasekaran et al., “Telegraphcq: Continuous dataflow processing,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2003, pp. 668–668.

[5] T. Akidau et al., “Millwheel: Fault-tolerant stream processing at in-
ternet scale,” Proc. VLDB Endowment, vol. 6, no. 11, pp. 1033–1044,
2013.

[6] A. Toshniwal et al., “Storm@ twitter,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2014, pp. 147–156.

[7] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream
computing platform,” in Proc. IEEE Int. Conf. Data Mining Workshops,
2010, pp. 170–177.

[8] S. Kulkarni et al., “Twitter heron: Stream processing at scale,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2015, pp. 239–250.

[9] R. Eidenbenz and T. Locher, “Task allocation for distributed stream pro-
cessing,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016,
pp. 1–9.

[10] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,
and S. Zdonik, “High-availability algorithms for distributed stream pro-
cessing,” in Proc. 21st Int. Conf. Data Eng., 2005, pp. 779–790.

[11] G. Krempl et al., “Open challenges for data stream mining research,”
ACM SIGKDD Explorations Newslett., vol. 16, no. 1, pp. 1–10, 2014.

[12] L. Xu, L. Lin, S. Zhou, and S.-Y. Hsieh, “The extra connectivity, extra con-
ditional diagnosability, and t/m-diagnosability of arrangement graphs,”
IEEE Trans. Rel., vol. 65, no. 3, pp. 1248–1262, Sep. 2016.

[13] J. Wu, Distributed System Design. Boca Raton, FL, USA: CRC, 1998.
[14] R. Ananthanarayanan et al., “Photon: Fault-tolerant and scalable joining

of continuous data streams,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2013, pp. 577–588.

[15] Z. Qian et al., “Timestream: Reliable stream computation in the cloud,”
in Proc. 8th ACM Eur. Conf. Comput. Syst., 2013, pp. 1–14.

[16] L. Su and Y. Zhou, “Tolerating correlated failures in massively parallel
stream processing engines,” in Proc. IEEE 32nd Int. Conf. Data Eng.,
2016, pp. 517–528.

[17] P. Upadhyaya, Y. Kwon, and M. Balazinska, “A latency and fault-tolerance
optimizer for online parallel query plans,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2011, pp. 241–252.

[18] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stonebraker,
“Fault-tolerance in the borealis distributed stream processing system,”
ACM Trans. Database Syst., vol. 33, no. 1, 2008, Art. no. 3.

[19] T. Heinze, M. Zia, R. Krahn, Z. Jerzak, and C. Fetzer, “An adaptive
replication scheme for elastic data stream processing systems,” in Proc.
9th ACM Int. Conf. Distrib. Event-Based Syst., 2015, pp. 150–161.

[20] J. Wu and K. Huang, “The balanced hypercube: A cube-based system
for fault-tolerant applications,” IEEE Trans. Comput., vol. 46, no. 4,
pp. 484–490, Apr. 1997.

[21] R. Castro Fernandez , M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using oper-
ator state management,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2013, pp. 725–736.

[22] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, 1974.

[23] A. Salama, C. Binnig, T. Kraska, and E. Zamanian, “Cost-based fault-
tolerance for parallel data processing,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2015, pp. 285–297.

[24] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.
Tzoumas, “Apache flink: Stream and batch processing in a single en-
gine,” IEEE Comput. society Tech. Comm. Data Eng., vol. 36, no. 4,
pp. 28–38, 2015.

[25] A. Martin, C. Fetzer, and A. Brito, “Active replication at (almost) no cost,”
in Proc. 30th IEEE Symp. Reliable Distrib. Syst., 2011, pp. 21–30.

[26] G. Aupy, A. Benoit, H. Casanova, and Y. Robert, “Checkpointing strate-
gies for scheduling computational workflows,” Int. J. Netw. Comput.,
vol. 6, no. 1, pp. 2–26, 2016.

[27] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: Operator
scheduling for memory minimization in data stream systems,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2003, pp. 253–264.

[28] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
placement for distributed stream processing applications,” in Proc. 10th
ACM Int. Conf. Distrib. Event-Based Syst., 2016, pp. 69–80.

[29] A. Chatzistergiou and S. D. Viglas, “Fast heuristics for near-optimal task
allocation in data stream processing over clusters,” in Proc. 23rd ACM Int.
Conf. Conf. Inf. Knowl. Manage., 2014, pp. 1579–1588.

[30] Z. Zhang et al., “A hybrid approach to high availability in stream process-
ing systems,” in Proc. IEEE 30th Int. Conf. Distrib. Comput. Syst., 2010,
pp. 138–148.

[31] N. Garg, Apache Kafka. Olton, U.K.: Packt, 2013.
[32] B. Gedik, “Partitioning functions for stateful data parallelism in stream

processing,” VLDB J., vol. 23, no. 4, pp. 517–539, 2014.
[33] E. Koukoumidis, L.-S. Peh, and M. R. Martonosi, “Signalguru: Leveraging

mobile phones for collaborative traffic signal schedule advisory,” in Proc.
9th Int. Conf. Mobile Syst. Appl. Services, 2011, pp. 127–140.

[34] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing with
latency guarantees,” in Proc. IEEE 35th Int. Conf. Distrib. Comput. Syst.,
2015, pp. 399–410.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

Hongliang Li (M’13) received the Ph.D. degree from the College of Computer
Science and Technology (CCST), Jilin University, Changchun, China.

He is currently an Associate Professor with the CCST and a Visiting Scholar
with the Department of Computer and Information Sciences, Temple University,
Philadelphia, PA, USA. His research interests include resource scheduling and
fault tolerance in distributed computing systems. He is working on a China NFS
project on theory & technology of realtime FT for stream processing systems.

Jie Wu (M’90–SM’93–F’09) received his Ph.D. degree from Florida Atlantic
University, Boca Raton, FL, USA. He is the Associate Vice Provost for In-
ternational Affairs with Temple University, Philadelphia, PA, USA, where he
also serves as the Chair and Laura H. Carnell Professor with the Department
of Computer and Information Sciences. Prior to joining Temple University,
he was a Program Director with the National Science Foundation and was a
Distinguished Professor with Florida Atlantic University. His current research
interests include mobile computing and wireless networks, routing protocols,
cloud and green computing, network trust and security, and social network ap-
plications. He regularly publishes in scholarly journals, conference proceedings,
and books.

Dr. Wu serves on several editorial boards, including the IEEE TRANSACTIONS

ON SERVICE COMPUTING and the Journal of Parallel and Distributed Computing.
He was a General Cochair/Chair for the 2006 IEEE International Conference on
Mobile Adhoc and Sensor Systems, IEEE International Parallel and Distributed
Processing Symposium 2008, IEEE International Conference on Distributed
Computing Systems 2013, and ACM International Symposium on Mobile Ad
Hoc Networking and Computing 2014, as well as a Program Cochair for the
IEEE International Conference on Computer Communications 2011 and China
Computer Federation (CCF) China National Computer Congress 2013. He was
an IEEE Computer Society Distinguished Visitor, ACM Distinguished Speaker,
and the Chair for the IEEE Technical Committee on Distributed Processing. He
is a CCF Distinguished Speaker. He received the 2011 CCF Overseas Outstand-
ing Achievement Award.

Zhen Jiang (M’02) received the B.S. degree from Shanghai Jiaotong University,
Shanghai, China, in 1992, the M.S. degree from Nanjing University, Nanjing,
China, in 1998, and the Ph.D. degree from Florida Atlantic University, Boca
Raton, FL, USA, in 2002.

He is currently an Associate Professor with the Computer Science Depart-
ment, West Chester University of Pennsylvania (WCU), West Chester, PA, USA,
the Director of National Security Agency (NSA) certified Information Security
Center at WCU, and an Adjunct Professor with Temple University, Philadelphia,
PA, USA. His research interests include information system development and
wireless communication.

Dr. Jiang received the Best Paper Award for protocols and algorithms in the
7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems in
2010. He is also active in many committees and is a member of the Association
for Computing Machinery, where he is involved in the organization of many
conferences and workshops.

Xiang Li received her master degree from University of Auckland, New
Zealand. She is currently working toward her Ph.D. degree with the College
of Computer Science and Technology (CCST), Jilin University, Changchun,
China.

She is a faculty member with the CCST, Jilin University. Her research inter-
ests include cloud computing and distributed systems.

Xiaohui Wei (M’13) received his Ph.D. degree from the College of Computer
Science and Technology (CCST), Jilin University, Changchun, China. He is a
Professor and the Dean of the College of Computer Science and Technology,
Jilin University, Changchun, China.

He is currently the Director of the High Performance Computing Center,
Jilin University. His current research interests include resource scheduling for
large distributed systems, infrastructure level virtualization, large-scale data
processing systems, and fault-tolerant computing. He has published more than
50 journal and conference papers in the above areas.

