Coalition Formation Game in the Cross-Silo Federated Learning System

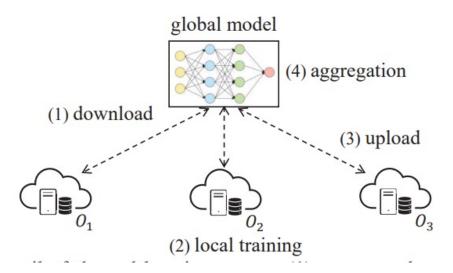
Suhang Jiang and Jie Wu Center for Networked Computing Temple University

IEEE MASS 2022

Roadmap

- 1. Federated Learning
- 2. Coalition Game
- 3. Game Formation
- 4. Properties
- 5. Coalition Algorithm
- 6. Fair Cost Sharing
- 7. Simulation
- 8. Conclusions

1. Federated Learning (FL)


Federated Learning (FL)

- Download global model
- (2) Perform local training
- (3) Upload local updates
- (4) Aggregate local updates

to a new global model (FedAvg)

Cross-silo FL

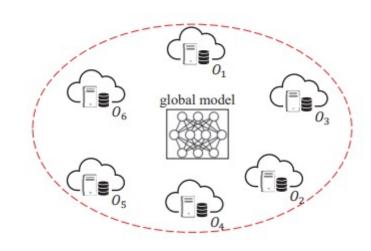
A relatively small number, but reliable, of organizations

2. Coalition Game

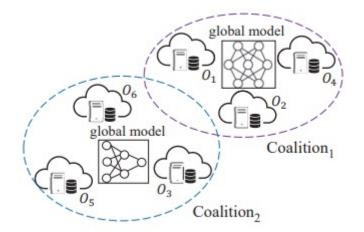
o Utility

Utility = Benefit - Cost

Cooperative Game


Joint actions that groups take and

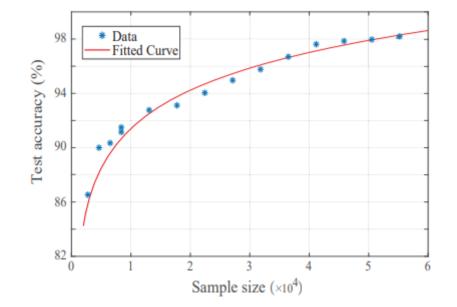
the resulting collective payoffs


Coalition

Stability

- Inspired by
 - Collaborative spectrum sensing
 - Federated MAB (multi-armed bandits)

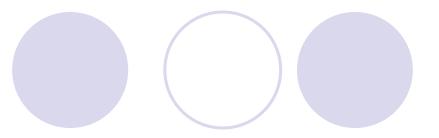
Grand coalition


Small coalition

3. Game Formation

• Benefit of coalition S accuracy vs. data size $l(S) = \theta \log (1 + \lambda \cdot q(S))$

Cost


secure aggregation

$$c(S) = c_{srv}(S) + c_{org}(S) = \alpha |S|^2 + \beta |S|.$$

K. Bonawitz et al, "Practical secure aggregation for privacy-preserving machine learning," CCS 2017

4. Properties

- Utility
 - u(S) = l(S) c(S)= $\theta \log (1 + \lambda \cdot q(S)) - (\alpha |S|^2 + \beta |S|).$
- (O, u) is a coalition game, with O being a set of organizations

Definition 1. A coalition game (O, u) with a transferable utility is said to be superadditive if for any two disjoint coalitions $S_i, S_j \subset O$, $u(S_i \cup S_j) \ge u(S_i) + u(S_j)$.

- Theorem 1. The proposed organization cooperation game (O, u) with cost is, in general, non-superadditive.
- Theorem 2. The grand coalition is not among cooperating organizations.

5. Coalition Algorithm

- Optimal solution
 - NP-complete

- Distributed coalition
 - Merge and split operations

Definition 6. Merge Rule - Merge any set of coalitions $\{S_1, \dots, S_k\}$ where $\sum_{j=1}^k u(S_j) < u(\bigcup_{j=1}^k S_j)$ so that $\{S_1, \dots, S_k\} \rightarrow \bigcup_{j=1}^k S_j$.

Definition 7. Split Rule - Split any set of coalitions $\bigcup_{j=1}^{k} S_j$ where $\sum_{j=1}^{k} u(S_j) > u(\bigcup_{j=1}^{k} S_j)$ so that $\bigcup_{j=1}^{k} S_j \rightarrow \{S_1, \cdots, S_k\}$.

Algorithm: Merge-and-Split

Pareto order

 At least one organization's utility is increased without decreasing other organizations' utilities.

Algorithm 1 Adaptive Coalition Formation: merge-and-split

Initial: The coalition structure of the network is $\mathcal{P} = \{S_1, \dots, S_N\}$, where $S_i = \{o_i\}$, *i.e.*, all organizations are non-cooperative in the beginning.

Output: an updated coalition structure $\mathcal{P} = \{S_1, \dots, S_k\}$ 1: repeat

- 2: for $S_i \in \mathcal{W}$ do
- 3: Randomly connect to another coalition S_j
- 4: Perform Merge Rule
- 5: Perform Split Rule

6: until merge-and-split terminates

7: Return updated \mathcal{P}

Algorithm: Properties

A partition is *stable* if no coalition has an incentive to split or merge.

• Theorem 3. The partition resulting from our proposed coalition formation algorithm is stable.

Complexity and termination of merge and split

W Saad et al, Coalition Formation Games for Collaborative Spectrum Sensing, IEEE VTC 2010

6. Fair Cost Sharing

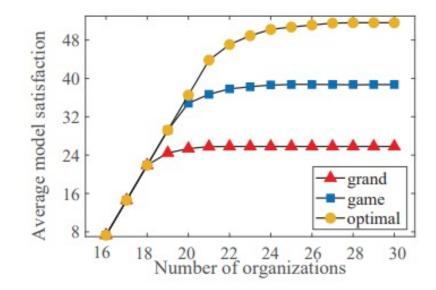
- General rules
 - Individual utility is aligned with its coalition's utility
 - More contributions means less payment
- Strategy-proof
 - Each participant fares the best by being truthful

Individual contribution

- Size-based measurement $a_i = d_i$.
- Accuracy-based measurement $a_i = \theta \log (1 + \lambda d_i).$
- Sharpley-Value-based measurement

$$\phi_i = \sum_{s \subseteq S - \{i\}} \frac{|s|! (|S| - |s| - 1)!}{|S|!} [v (s \cup \{i\}) - v (s)]$$

7. Simulation



- Dataset and Model
 - Data set: MNIST
 - Local: multinomial logistic regression using SGD
 - Global: FedAvg
- Simulation Parameters
 - $\,\circ\,$ Convergence: the loss of two consecutive global rounds $\,\leq\,10^{-5}$
 - Local training: 80 epochs, learning rate of 0.005
 - $(\theta, \lambda, \alpha, \beta): (10, 8 \times 10^{-6}, 0.05, 0.2)$

Simulation: Satisfaction

Three approaches

- Grand: grand coalition
- Game: proposed merge-and-split
- Optimal: central optimal solution

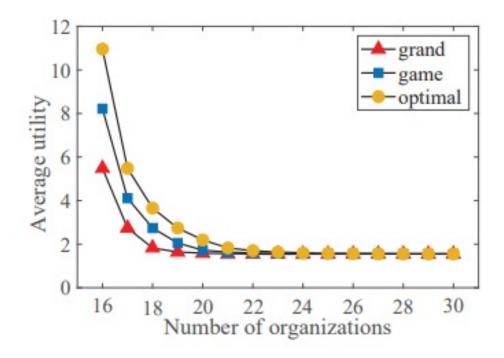
Simulation: Cost Analysis

Strategy	10	20	30	40
optimal	16	32	48	62
game	23	34.5	48.4	64
grand	27	38	50	68.1

(a) Average cost under size-based policy.

Strategy	10	20	30	40
optimal	15.8	30.2	44.3	61
game	17.8	31.3	46.9	63.1
grand	24.6	35.9	48.8	64.7

(b) Average cost under accuracy-based policy.


Strategy	10	20	30	40
optimal	15.1	28.8	41.5	51.8
game	17.7	28.9	42.7	52.8
grand	23.9	34.5	43.1	53.9

(c) Average cost under SV-based policy.

Simulation: Utility

The proposed merge-and-split

Suitable for FL with a moderate number of organizations

8. Conclusions

Cross-silo federated learning

• A relatively small number of participants

Cooperative game

- A utility model based on benefit minus cost
- A stable partition into groups

A distributed solution

Merge-and-split

Future work

- Non-IID data
- Realistic benefit/cost measures

Questions

