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Abstract—In cross-silo federated learning (FL), organizations
cooperatively train a global model with their local data. The
organizations, however, own different datasets and may be
heterogeneous in terms of their expectation on the precision of the
global model. Meanwhile, the cost of secure global model aggrega-
tion, including computation and communication, is proportional
to the square of the number of organizations in the FL system.
In this paper, we consider all organizations in the FL system as
a grand coalition. We introduce a novel concept from coalition
game theory which allows the dynamic formation of coalitions
among organizations. A simple and distributed merge and split
algorithm for coalition formation is constructed. The aim is
to find an ultimate coalition structure that allows cooperating
organizations to maximize their utilities in consideration of the
coalition formation cost. Through this novel game theoretical
framework, the FL system is able to self-organize and form a
structured network composed of disjoint stable coalitions. To
fairly distribute cost in each formed coalition, a cost sharing
mechanism is proposed to align members’ individual utility
with their coalition’s utility. In FL systems, training data has
a significant impact on model performances, i.e., it should lead
to a more precise global model if organizations with greater
data complementarity are grouped. Numerical evaluations are
presented to verify the proposed models.

Index Terms—Coalition game, cost sharing, cross-silo federated
learning, data quality, horizontal training.

I. INTRODUCTION

Introduced in 2017 [1], federated learning [2] has enabled

multiple entities (clients) to collaborate in training a shared

model, under the coordination of a central server. Each client

uses local data samples without actual exchanging or transfer-

ring, and therefore protect data privacy and security. Currently,

federated approaches have moved into the mainstream with

primary research on extremely large scale settings, composed

of millions of mobile and edge devices. Such a cross-device FL

setting consists of an organization as a model requester and a

set of mobile/edge devices as model trainers. The organization

acts as the central server to orchestrate the training process

and the devices are the clients and perform local training.

All clients have no right to make use of the global model

since the organization is the only owner. Cross-device FL

usually involves a huge quantity of clients, each owning a

small amount of data.

In recent years, interest in applying FL to a so-called cross-
silo setting has greatly increased. In this paradigm, there

are a small number of relatively reliable clients, each of

which represents a larger data store - this setting is more

representative of individual companies or organizations (e.g.
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Fig. 1: Cross-silo federated learning system: (1) server sends current global
model to all organizations; (2) each organization trains its model using the
local data; (3) all organizations upload their updated models to server; (4)
server aggregates all local models into a new global model.

financial or medical) with reliable communications and abun-

dant computing resources [3]. Fig. 1 shows a typical cross-silo

federated learning system, consisting of a third party entity

as the central server and a set of organizations as clients.

In this system, the server is responsible for the coordination

of training whereas the organizations perform local training.

The server first distributes a global model to the organizations,

then organizations train the model on locally available data.

All updated models are then sent back to the server, where

they are averaged to produce a new global model. This new

model now acts as the primary model and is again distributed

to the organizations. This process is repeated forever or until

the global model achieves a satisfactory result from the orga-

nization side. Usually, the aggregated global model becomes

marginally better than it already was. All organizations are the

co-owners and can make use of the global model.

In this work, we focus on cross-silo federated learning

systems. As we mentioned before, besides local training,

federated learning involves interaction between the central

server and each client, which is by no means cheap. Costs of

model uploading and downloading are inevitable; meanwhile,

overhead on the global model aggregation cannot be ignored,

especially when secure aggregation [4] is applied. In cross-silo

FL system, although some operations, i.e., communication and

aggregation, are performed by the central server, the induced

costs would be borne by all the participating organizations.

To some extent, all of these organizations have formed a

coalition, where they collaboratively train a machine learning

model with better accuracy, compared to individual training,

and share extra costs caused by their cooperation. However,

it is still a question whether the grand coalition is stable

enough. Is there any chance that some organizations would

rather leave the grand coalition and get benefited by forming
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Fig. 2: Relation between the accuracy of the global model and the trained
data size:f(x) = 3.98log(9.68× 105x− 3.69× 108).

a new group? The answer is affirmative if their utility, i.e., the

difference between the model accuracy and the corresponding

cost, can be increased in this small coalition. Usually, the

model accuracy is positively related to the size of overall

trained data, meaning that, the more organizations a coalition

contains, the better its global model should be. However,

existing works also confirm that the model accuracy and the

data size show a concave down increasing trend, indicating

the principle of diminishing marginal return. The costs caused

by cooperation also increase as the coalition becomes larger,

which at least increase linearly or even in a power growth

pattern (if applying specific secure aggregation mechanisms).

Therefore, when the increase in model accuracy cannot offset

the extra cooperation cost due to the large size of the grand

coalition, a small coalition would be preferred.

We exploit coalition game theory to analyze the complex

interactions among participating organizations. Unlike canoni-

cal coalition games which focus on how to stabilize the grand

coalition through different reward sharing mechanisms, our

work considers a coalition formation game, discussing how to

form an appropriate coalition structure, i.e., how organizations

are grouped into disjoint stable coalitions, where each small

coalition’s utility is better than or at least equal to that of

the grand coalition. We start from a simple setting where

the expected accuracy of a global model is only related to

the size of the trained data. We prove the instability of the

grand coalition and hence devising a simple and distributed

merge-and-split algorithm for forming disjoint coalitions. The

coalition-level cost must be shared in a fair manner to pro-

mote a stable and long-term cooperation among members.

As organizations are grouped based on coalition-level utility,

there is a gap between individual utility and coalition utility,

leading to free-riding members who want to acquire the global

model without contributing local training. To avoid such a

situation, we also design a fair cost sharing mechanism to

align members’ individual utility with the coalition utility. The

major contributions of this paper are as follows:

• We propose a coalition formation game to solve a multi-

organization grouping problem in a cross-silo federated

learning system.

• We show that our proposed game is not superadditive,

thereby the grand coalition is seldom the optimal structure.

• We devise a merge-and-split algorithm to form a structured

network composed of disjoint stable coalitions.

• We design a cost sharing mechanism with desirable proper-

ties, e.g. group-strategyproofness and sharing incentive, to

fairly split the cost in each coalition.

• We perform numerical evaluation based on real-world data

and the results are consistent with all the theoretical results.

II. PRELIMINARY AND SYSTEM MODEL

A. Cross-Silo Federated Learning

In traditional cross-silo FL, all participating organizations,

assuming N in total, aim to cooperatively build a global

machine learning model under the orchestration of a central

server. First, the server sends the current global model wt
G to

all organizations, where t denotes the current round index.

Based on the global model wt
G, each organization oi uses

its local data to update the local model parameters wt
i .

The goal of organization oi in round t is to find optimal

parameters wt
i that minimize the loss function loss(wt

i), i.e.,

wt
i
∗

= argmin loss (wt
i). Then, each organization uploads

its updated local model parameters to the server. Finally, the

server facilitates the computation of the parameter aggregation

and obtains a new global model wt+1
G . (Several aggregation

mechanisms have been proposed for FL [1, 5–7], and here,

we focus on Federated-Averaging (FedAvg) [6], in which,

the central server updates the global model by summing the

weighted models.) We consider that these four steps form

a global update round. In a global round, each organization

experiences many local training iterations, depending on its

training data size. Since the final global model is obtained

through many training rounds, here, we only consider one

round, where all participating organizations want to improve

the updated global model as much as possible. Since we as-

sume that the global model is obtained in a centralized way, the

operation costs from the server side, including communication

and computation incurred by aggregation, will be distributed

among the organizations.

According to the existing works, the accuracy of a machine

learning model mainly depends on the training data size.

The relation between them can be captured by a concavely

increasing function (an example is given in Fig. 2), indicating

a decreasing marginal gain. Starting from a simple setting,

we assume that all training data in each organization has the

same quality and is independently and identically distributed

(IID). Based on this assumption, the more data trained by the

organizations, the better global model they will obtain at the

end of a round. Meanwhile, organizations training more local

data make more contributions to the global model. Thus, the

server side operating cost should be fairly distributed among

organizations based on their individual contributions to the

global model. That is, more contribution means less payment.

B. Secure Aggregation for Federated Learning

The security guarantee offered by FL is that sharing up-

dates does not leak any information about the actual training

instances used by the clients. Unfortunately, it has been shown

that an adversary can invert an individual model update of a

target client in order to leak a large amount of information

about its local data [8–10]. A central server is the most



Mode Computation Communication

Server O(mn2) O(mn+ n2)

Client O(mn+ n2) O(m+ n)

TABLE I: Computation and communication per round of secure aggregation.

Symbol Description
O / S a set of organizations / a coalition(subset) of O

W coalition structure, where W = {S1, · · · , Sk}
N / |S| number of organizations in O / S

oi the i-th organization

di data size of oi
ai contribution of oi in the corresponding coalition

l(S) function measuring the satisfaction level of S
c(S) / q(S) function measuring the cost / data quality of S

TABLE II: Summary of Notations.

vulnerable link, since all local models are directly sent to

the server for aggregation. This also means that, individual

clients’ updates are inspectable by the server. There exist some

works [11–13] aiming to improve data privacy in FedAvg.

They typically prevent access to the local updates using secret

sharing, encryption, and/or reduce information leakage by

applying noise to achieve differential privacy. In this paper,

we assume that secure aggregation [12] is used to protect

client-side privacy. Secure aggregation is a secure multi-party

computation protocol that uses encryption to allow a set of

clients to compute the sum of their private inputs securely,

i.e., only the resulting sum is revealed to the server. Such

a protocol requires at least 4 communication rounds between

each client and the server in each iteration, which causes extra

overhead for the server as well as clients. In practice, this

limits the maximum size of a secure aggregation to hundreds

of clients. Computational and communication complexities of

secure aggregation are listed in Table I, where n is the total

number of local models (i.e., number of clients) and m is the

length of model updates.

C. A Cross-Silo Federated Learning System

This paper focuses on a cross-silo federated learning system.

The model consists of several organizations, aiming to cooper-

ate on model training with their local data. The whole system

is in a universal mobile network with wireless communication

infrastructures. We consider a quasi-static state where no

organizations are joining or leaving. Corresponding notations

are shown in Table II.

We consider a scenario with a set O of N organizations,

indexed by oi. Organizations have their own local data while

seeking to form cooperative groups, i.e., coalitions, for a

better aggregated model. There exists a central orchestration

server, which organizes the training for a coalition S, and

organizations in S share a common global model. To protect

each organization’s privacy on the global level, the coalition

server applies the secure aggregation protocol. Since there

is no limitation on the number of formed coalitions nor a

restriction on the size of each coalition, there exist lots of

different cooperation methods among these N organizations.

Considering an example of 6 organizations, two possible co-

operation methods are provided, i.e., method 1: organizations

global model

(a) Method 1: all organizations coop-
erate as a grand coalition.

global model

global model

Coalition1

Coalition2

(b) Method 2: organizations split into
two small coalitions.

Fig. 3: A cross-silo federated learning system under two cooperation methods.

form a grand coalition to train a global model (Fig. 3(a)),

and method 2: organizations split into 2 small coalitions, each

owning a specific a global model (Fig. 3(b)).

Organizations have different satisfaction levels when facing

different global models. We assume that each organization in

the proposed system applies an identical standard to reflect

its satisfaction. This standard is defined as the estimated

accuracy of the new global model, i.e., a concavely increasing

function over the quality of the data trained by all participating

organizations. Thus, we use a log function to characterize

the relationship between the model accuracy and the training

data. Thus, the satisfaction level on the model generated by a

coalition S can be expressed as

l (S) = θ log (1 + λ · q(S)) , (1)

where q(S) is a function used to measure the data quality

combined from the coalition S. Based on our previous as-

sumption, q(S) is the total amount of training data in S, i.e.,

q(S) =
∑

oi∈S di, where di is the size of oi’s dataset. In

reality, there should be more measurements on the quality of

combined data. More discussions on explanations of q(S) will

be given in Section ??.

Forming a coalition S also incurs cost c(S). In each global

secure aggregation, c(S) consists of two parts, i.e., the cost

csrv(S) caused by the coalition server and the cost corg(S)
from all coalition members. According to Table I, for the coali-

tion server, its costs on both computation and communication

grow quadratically with the number of coalition members,

denoted as |S|. In terms of the organization side, corg(S)
is composed of a quadratic of the computation costs and a

linear scaling of the communication costs, w.r.t. the number

of coalition members. Thus, we simplify the expression of

c(S) in Eq. (2):

c(S) = csrv(S) + corg(S) = α|S|2 + β|S|. (2)

When comparing these two methods in Fig. 3, we could

say that, method 1 should provide a better global model for

these organizations since more data gathered by the grand

coalition, while incurring higher costs as both communication

and computation of secure aggregation grows quadratically

with the number of clients. Instead, method 2 shows another

possibility where each coalition owns a relatively weaker

global model, but their summed cost is less than that of

forming a grand coalition, meaning less cost borne by each

organization. Obviously, since there are many cooperation

methods, it is a non-trivial problem to decide which method

would be adopted by all the organizations, or how these

organizations would reach consensus on a certain method.



It is clear that as the number of organizations per coalition

increases, the global model tends to be more accurate while

the aggregation cost will increase. This is a crucial trade-

off in cross-silo FL that can have a major impact on the

collaboration strategies of each organization. Our objective is

to derive distributed strategies allowing the organizations to

collaborate while accounting for this trade-off.

III. ORGANIZATION COOPERATION: A COALITION

FORMATION GAME

To find a suitable partition that satisfies all the organizations,

it is natural to consider a centralized approach. In this section,

we first formulate this organization cooperation problem from

a centralized view, and we show the reason why such a

formulation is not suitable in our case. Then, we seek for a

distributed solution. Game theory provides a natural paradigm

to model the interactions among the organizations in this FL

system. Thus, we model the organization cooperation problem

as a coalition formation game. Then we prove and discuss its

key properties.

A. Centralized Approach

A centralized approach can be used in order to find the

optimal coalition structure, that allows the organizations to

maximize their benefits from the cross-silo FL. For instance,

we seek a centralized solution that maximizes the average

model satisfaction level obtained by each organization subject

to a cost budget constraint per organization. In a centralized

approach, we assume the existence of a centralized entity in the

system that is able to gather information on the organizations

such as their individual data size di or budget bi. In brief,

the centralized entity must be able to know all the required

parameters for computing Eq. (1) and Eq. (2) in order to find

the optimal structure. Note that, for any organization oi ∈ S,

its individual model satisfaction level is the global model

satisfaction level of coalition S, and its budget is limited by

the minimal budget in coalition S.

Denoting B as the set of all partitions of O, the centralized

approach seeks to solve the following optimization problem:

Problem 1 (OPCENTRAL).

maximize

∑
S∈P |S| · l(S)

N
, (3a)

subject to c(S) ≤ |S| · bS , ∀S ∈ P, (3b)

where P is a partition belonging to B and bS = minoi∈S bi.

Clearly, the centralized optimization problem seeks to find

the optimal partition P∗ ∈ B that maximizes the average

model satisfaction level per organization subject to a budget

constraint per coalition. However, it is shown in [14] that

finding the optimal coalition structure for solving an opti-

mization problem such as in Problem 1 is an NP-complete

problem. This is mainly due to the fact that the number of

possible coalition structures (partitions), given by the Bell

number, grows exponentially with N , i.e., the number of

organization [14]. Moreover, the complexity increases further

due to the fact that the expressions of l(S) and c(S) given

by Eq. (1) and Eq. (2) depend on the optimization parameter

P . For this purpose, deriving a distributed solution with a

low complexity is desirable. The above formulated centralized

approach will be used as a benchmark for the distributed

solution in the simulations, for some reasonably small cross-

silo FL systems.

B. Game Formulation and Properties

For the purpose of deriving a distributed algorithm that can

maximize the model satisfaction level per organization, we

refer to cooperative game theory [15] which provides a set of

analytical tools suitable for such algorithms. For instance, the

proposed organization cooperation problem can be modeled

as a (O, u) coalition game [15] where O is the set of players

(the organizations) and u is the utility function or value of a

coalition. The value u (S) of a coalition S ⊆ O must capture

the trade-off between the model accuracy and the aggregation

cost. For this purpose, u (S) must be an increasing function

of l(S) and a decreasing function of c(S), within coalition S.

A suitable utility function is given as below:

u (S) = l(S)− c(S)

= θ log (1 + λ · q(S))− (
α|S|2 + β|S|) . (4)

Traditionally, coalition game based problems seek to char-

acterize the properties and stability of the grand coalition

of all players since it is generally assumed that the grand

coalition maximizes the utilities of the players. In our case,

although forming the grand coalition improves the global

model accuracy for the organizations; the cost in terms of

aggregation limits this gain. Therefore, for the proposed (O, u)
coalition game, we will prove that the grand coalition cannot

form due to cost.

Definition 1. A coalition game (O, u) with a transferable
utility is said to be superadditive if for any two disjoint
coalitions Si, Sj ⊂ O, u (Si ∪ Sj) ≥ u (Si) + u (Sj).

Theorem 1. The proposed organization cooperation game
(O, u) with cost is, in general, non-superadditive.

Proof. Consider two disjoint coalitions Si, Sj ⊂ O in the

system, their individual utility can be expressed as:

u (Si) = θ log (1 + λqi)−
(
α|Si|2 + β|Si|

)
u (Sj) = θ log (1 + λqj)−

(
α|Sj |2 + β|Sj |

)
where qi =

∑
ok∈Si

dk and qj =
∑

ok∈Sj
dk.

If coalitions Si and Sj union, their training data size should

be combined as
∑

ok∈Si∪Sj
dk, i.e., qi∪j = (qi + qj). Thus,

the unified utility turns into:

u (Si ∪ Sj) = θ log (1 + λqi∪j)−
(
α|Si ∪ Sj |2 + β|Si ∪ Sj |

)
The difference between the unified utility and the sum of

individual utilities of Si and Sj can be found as below:

u (Si ∪ Sj)− [u (Si) + u (Sj)]

= θ log (1 + λqi∪j)− θ log [(1 + λqi) (1 + λqi)]− 2α|Si||Sj |
= θ log

1 + λqi∪j

1 + λqi∪j + λ2qiqj
− 2α|Si||Sj |. (5)



size |S| number sum of utilities
0 1 0

1 N
∑N

i=1 δ
i
1θ log (1 + λdi)

2 C2
N

∑C2
N

i=1 δ
i
2

[
θ log

(
1 + λDi

2

)− (
22α+ 2β

)]
· · · · · · · · ·
N 1 δNθ log

(
1 + λ

∑N
i=1 di

)

TABLE III: Sum of utilities under different sizes of coalitions, where δi|S| is

the weight for the i-th coalition of size |S|.

Since 1+λqi∪j < 1+λqi∪j+λ2qiqj , the result of Eq. (5)< 0
holds. Therefore, u (Si ∪ Sj) < u (Si) + u (Sj); hence the

game is not superadditive.

Suppose that all organizations cooperate as a grand coali-

tion, then the corresponding utility is denoted as u(O). Denote

x = (x1, · · · , xN ) as a payoff vector, where xi is the payoff

that organization oi receives in the grand coalition.

Definition 2. A payoff vector x = (x1, · · · , xN ) is said to
be group rational or efficient if

∑N
i=1 xi = u(O). A payoff

vector x is said to be individually rational if each organization
can obtain the benefit no less than acting alone, i.e., xi ≥
u({oi}), ∀i. An imputation is a payoff vector that is group
rational and individually rational.

Definition 3. An imputation x is said to be unstable through
a coalition S if u(S) >

∑
oi∈S xi, i.e., the organizations have

incentive to form coalition S and reject the proposed x. The
set C of stable imputations is called the core, i.e.,
C =

{
x :

∑
xi = u(O) and

∑
oi∈S

xi ≥ u(S), ∀S ⊂ O
}
.

A non-empty core means that the organizations have an in-

centive to form the grand coalition. Let 2N be the collection of

all coalitions, a weighting scheme assigns to every conceivable

coalition S a weight δ (S) between 0 and 1.

Definition 4. A weighting scheme δ (·) is balanced if it has
the property that for every organization oi,

∑
S∈2N δ (S) = 1.

Lemma 1. A game (O, u) has a non-empty core if and
only if for every balanced weighting scheme δ (·), u(N) ≥∑

S∈2N δ (S)u(S).

Theorem 2. In general, the core of the proposed (O, u)
coalition game is empty.

Proof. Based on Lemma 1, if there exists a balanced weighting

scheme δ (·) that leads to u(N) <
∑

S∈2N δ (S)u(S), then

we can prove that the proposed (O, u) coalition game has an

empty core.

In Table III, we list the sum of utilities under different sizes

of coalitions. Here, we consider a special weight scheme δ,

where δN is x (0 < x < 1), and δi1 = (1 − x)/N for ∀i ∈
[1, N ]. In this case, we can obtain the following result:

u (N)−
∑

S∈2N
δ (S)u(S)

= (1− x)u (N)− 1− x

N

∑N

i=1
u (oi)

=
1− x

N
θ

[
N log (1 + λDN )−

∑N

i=1
log (1 + λdi)

]

− (1− x)
(
αN2 + βN

)
=

1− x

N
θ

[∑N

i=1
log

1 + λDN

1 + λdi

]
− (1− x)

(
αN2 + βN

)

≤ 1− x

N
θ

[
N log

1 + λDN

1 + λdmin

]
− (1− x)

(
αN2 + βN

)

< (1− x)

[
θ log

DN

dmin
− (

αN2 + βN
)]

. (6)

The data size of each organization in our proposed system

should not differ from each other too much, as all of them have

sufficient storage and computation. Therefore, in generally,

Eq. (6) < 0 holds. Then, we can say Theorem 2 is proven.

As a result of the non-superadditivity of the game and

the emptiness of the core, the grand coalition does not form

among cooperating organizations. Instead, independent dis-

joint coalitions will form in the system. Therefore, we seek a

novel algorithm for coalition formation that accounts for the

properties of the organization cooperation game with cost.

IV. DISTRIBUTED COALITION FORMATION ALGORITHM

In this section, we propose a distributed coalition formation

algorithm and we discuss its main properties.

A. Coalition Formation Concepts

1) Orders: Various criteria (referred to as orders) can be

used as comparison relations between partitions, among which,

coalition value orders and individual value orders are the

most widely-used. Given two partitions W and P over the

same organization set, where W = {S1, · · · , Sl} and P =
{S′

1, · · · , S′
k}, coalition value orders compare the value of two

partitions, such as the utilitarian order, in which W �P implies∑l
i=1 u (Si) >

∑k
j=1 u

(
S′
j

)
. In contrast, the individual value

orders compare the individual payoff of each organization,

such as the Pareto order. Assuming that the payoff vector

in these two partitions are denoted by x and x′, which can

be written as W � P ⇔ {xi ≥ x′
i, ∀oi ∈ W,P} by Pareto

order if the partition W is better than the partition P . In other

words, W is preferred to P if at least one organization’s utility

is increased without decreasing other organizations’ utilities.

Obviously, our proposed system applies utilitarian order.

2) Stability Notions: The result of the proposed algorithm

in Algorithm 1 is a partition composed of disjoint independent

coalitions of organizations. The stability of this resulting

structure can be investigated using the concept of a defection

function D [16].

Definition 5. A defection function D is a function which
associates with each partition P = {S1, · · · , Sk}(each Si is
a coalition) of the player set O, a group of collections in O.
A partition P of O is D-stable if no group of organizations is
interested in leaving P when the players who leave can only
form the collections allowed by D.

There exist two important defection functions: Dhp (P)
(denoted Dhp) and Dc (P) (denoted Dc). Dhp associates each

partition P of O with the group of all partitions of O that

the players can form through the merge-and-split operation



applied to P . This function allows any group of players to

leave the partition P of O through merge-and-split operations

to create another partition in O. Dc associates each partition

P of O with the family of all collections in O. This function

allows any group of players to leave the partition P of O
through any operation and create an arbitrary collection in

O. Two forms of stability stem from these definitions: Dhp

stability and a stronger Dc stability. A partition P is Dhp-

stable, if no players in P are interested in leaving P through

merge-and-split to form other partitions in O; while a partition

P is Dc-stable, if no players in P are interested in leaving P
through any operation (not necessary merge or split) to form

other collections in O. Characterizing any type of D-stability

for a partition depends on various properties of its coalitions.

For instance, a partition P is Dhp-stable if, for the partition

P , no coalition has an incentive to split or merge.

Briefly, a Dhp-stable partition can be thought of as a state

of equilibrium where no coalitions have an incentive to pursue

coalition formation through merge or split. A stronger form of

stability can be sought using strict Dc-stability. The appeal of

a strictly Dc-stable partition is two fold: (1) it is the unique

outcome of any arbitrary iteration of merge and split operations

done on any partition of O; (2) it is a partition that maximizes

the social welfare, which is the sum of the utilities of all

coalitions in a partition. However, the existence of such a

partition is not guaranteed. With regards to Dc-stability, the

work in [16–18] proved that a partition P = {S1, · · · , Sk} of

the whole space O is strictly Dc-stable only if it can fulfill

two necessary and sufficient conditions:

• ∀z ∈ [1, k] and each pair of disjoint coalitions si and sj such

that si ∪ sj ⊂ Sz , we have u (si ∪ sj) > u (si) + u (sj).
• For the partition P = {S1, · · · , Sk}, a coalition G ⊂ O

formed of players belonging to different Si ∈ P is P-

incompatible, that is, ∀x ∈ [1, k], we have G 
⊂ Si. Strict

Dc-stability requires that for all P-incompatible coalitions

G,
∑k

j=1 u (Si ∩G) > u (G).

Therefore, in the case where a partition P of O satisfying the

above two conditions exists; the proposed algorithm converges

to this optimal strictly Dc-stable partition since it constitutes a

unique outcome of any arbitrary iteration of merge and split.

However, if no such partition exists, the proposed algorithm

yields a final network partition that is Dhp-stable.

B. Coalition Formation Algorithm

To ensure autonomous coalition formation, we propose a

distributed algorithm based on two simple rules [16], denoted

as merge and split, that allow to modify a partition P of the

organizations set O.

Definition 6. Merge Rule - Merge any set of coalitions
{S1, · · · , Sk} where

∑k
j=1 u (Sj) < u

(∪k
j=1Sj

)
so that

{S1, · · · , Sk} → ∪k
j=1Sj .

Definition 7. Split Rule - Split any set of coalitions ∪k
j=1Sj

where
∑k

j=1 u (Sj) > u
(∪k

j=1Sj

)
so that ∪k

j=1Sj →
{S1, · · · , Sk}.

Algorithm 1 Adaptive Coalition Formation: merge-and-split

Initial: The coalition structure of the network is P =
{S1, · · · , SN}, where Si = {oi}, i.e., all organizations

are non-cooperative in the beginning.

Output: an updated coalition structure P = {S1, · · · , Sk}
1: repeat
2: for Si ∈ W do
3: Randomly connect to another coalition Sj

4: Perform Merge Rule

5: Perform Split Rule

6: until merge-and-split terminates

7: Return updated P

Based on the merge-and-split rules and the utilitarian order we

discussed above, the organizations will form a new coalition

if split-and-merge operations improve the utility; otherwise,

they keep the original coalition. That is, a group of coalitions

decides to merge if it is able to improve its total utility through

the merge; while a coalition splits into smaller coalitions if is

able to improve the total utility.

A coalition formation algorithm based on merge and split

can be formulated for our proposed FL system. Each stage of

our coalition formation algorithm will run in two consecutive

phases, as shown in Algorithm 1: adaptive coalition formation,

and then FL training. During the coalition formation phase, the

organizations form coalitions through an iteration of arbitrary

merge and split rules repeated until termination. Following

the self organization of the system into coalitions, cooperation

takes place with each coalition training its own global model.

Subsequently, the training phase may occur several times prior

to the repetition of the coalition formation phase. It is proven

in that any iteration of successive arbitrary merge and split

operations terminates.

Theorem 3. Every partition resulting from our proposed
coalition formation algorithm is Dhp-stable.

Proof. A partition P resulting from the proposed merge and

split algorithm can no longer be subject to any additional

merge or split operation as successive iteration of these oper-

ations terminate [18]. Therefore, the organizations in the final

partition P cannot leave this partition through merge and split

and the partition P is immediately Dhp-stable.

V. FAIR COST SHARING

The proposed algorithm will yield several coalitions. More-

over, each coalition has its own cost, mainly from secure

aggregation. It is necessary to find a way to distribute the

cost among all members in the same coalition. Since secure

aggregation involves the central server and all members in

the coalition, and consumes resources of communication and

computation, the simplest sharing method is to divide the cost

equally among members. In other words, for organization oi
that belongs to coalition S, its individual utility is:

ui = l(S)− c(S)/|S| − Clt
i = l(S)− (α|S|+ β) , (7)



where Clt
i is oi’s local training cost when it belongs to S.

As we mentioned before, a major purpose of our proposed

coalition formation algorithm is to seek coalition-wide high

efficiency in terms of the model accuracy as well as cost.

As self-interested and autonomous entities, organizations may

behave strategically to maximize their own utility, thereby

harming the efficiency. Such an equal division indicates a

possibility of organizations being free-riders after joining the

coalition, since local training is cost-consuming. For cross-

silo FL, the computational and communication resources are

non-excludable in the sense that even if an organization does

not perform any local training, other organizations cannot

exclude that organization from using the trained global model.

Thus, we want our cost sharing mechanism to be incentive

compatible, i.e., it is in an organization’s best interest to

perform its local training rather than being free-riders. Also,

it should provide an incentive for organizations to participate

in the coalition without coercion, i.e., it is fair and maintains

the stability of a given coalition formation result.

A. Proportional Fairness

It is reasonable to distribute the coalition-wide cost based

on each member’s contribution to the coalition model and

resource consumption caused by secure aggregation. In fact,

the resource consumption of each member performing secure

aggregation can be viewed as identical. Similarly, the central

server’s cost also accumulates equally from communicating

and computing with each member. All members’ consumption

can be treated as equal. Here we focus on individual contribu-

tion, denoted ai. The corresponding organization-side cost will

be shared using the function: c(S)ai/
∑

oj∈S aj . When the

coalition cost is distributed based on individual contribution,

which reflects the efforts of local training, each organization’s

individual utility is aligned with its coalition’s utility. Such

alignment motivates organizations to do the local training as

they promised before coalition formation starts, which can

effectively avoid free riders.

There exist two common ways to measure an organization’s

individual contribution. One is using the size of its trained data,

and the other is using the organization’s local model accuracy.

In terms of size-based measurement, ai can be expressed using

ai = di. If using accuracy-based measurement, ai can be

expressed using ai = θ log (1 + λdi). Another measurement,

which is widely used in canonical coalition games to maintain

the stability of an existing coalition, is Shapely Value. It is

a unique mapping φ from the coalition utility to individual

contribution. For a formed coalition S, φi, shown in Eq. (8).

is the payoff given to organization oi by the Shapley value φ.

φi =
∑

s⊆S−{i}

|s|! (|S| − |s| − 1)!

|S|! [v (s ∪ {i})− v (s)] (8)

B. Theoretical Analysis

We present theoretical analysis to demonstrate that our cost

sharing mechanism achieves desirable properties. For group-

strategyproofness, we should demonstrate that each organiza-

tion will honestly disclose his real local data size, even if they

(a) Utility of different strategies.
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Fig. 4: Impact of organization number in HFL.

are permitted to collude. If a organization’s dominant strategy

is to truthfully tell the size of its local dataset, then truth-

revealing is its dominant strategy.
The cost sharing scheme applied by each coalition S is a

function, denoted as ξ, which distributes the total coalition cost

c(S) to its members, i.e., ξ takes two arguments, a subset of

members Q and an organization oi, and returns a nonnegative

real number satisfying the following: (1) if oi 
∈ Q then

ξ(Q, oi) = 0, and (2)
∑

oi∈Q ξ(Q, oi) = C(Q). As is proven

in [19], if ξj is cross-monotone, then the mechanism specified

above is group-strategyproof. Thus, we need to prove ξj is

cross-monotone. A cost sharing method can be said as cross-

monotone if for Q ⊆ R, ξj(Q, oi) ≥ ξj(R, oi) for every

oi ∈ Q.

Lemma 2. ξ(S, oi) = c(S)ai/
∑

oj∈S aj is cross-monotone.

Proof. Any oi ∈ R\G refers to a organization not participating

in the FL performed among all organizations in the set of

R , thereby they are charged zero cost share. Meanwhile,

foralloi ∈ Q ∩ R, ξ(Q, oi) = ξ(R, oi). Thus, ξ is a special

cross-monotone cost sharing mechanism.

Theorem 4. Our cost sharing mechanism satisfies group-
strategyproofness and sharing incentive for all organizations.

Proof. The property of group-strategyproofness can be proven

using Lemma 2. To show sharing incentive, we should reveal

that for any organization, leaving his current assigned coalition

would not bring it more benefits. Since our coalition formation

algorithm is Dhp-stable, no one has incentive to leave.

VI. EVALUATION

Our evaluation will focus on two parts. The first part is

to show the advantage of our proposed coalition formation

algorithm by comparing with some other coalitional strategies.

The second part will analyze the cost sharing mechanism

under different definitions of individual contribution. A brief

introduction on the experiment settings is given below.
1) Dataset and Model: We divide MNIST training samples

as organizations’ local datasets. We will consider two cases,

i.e., equal division and random division. Each organization

trains its own multinomial logistic regression model using the

Stochastic Gradient Descent (SGD) approach and a coalition-

wide global model is obtained by using using FedAvg.
2) Simulation Parameters: When performing FL, the global

model is considered as converged when the loss between two

consecutive global rounds is less than 10−5. In a global round,

an organization will run local training with 80 epochs with a

learning rate of 0.005.



A. Coalition Formation

In this section, we will conduct two experiments under the

total number of organizations, i.e., N , changes. In the first

experiment, we set N = 8, and we will compare our proposed

split-and-merge partition strategy with the optimal partition

using the centralized approach (Section III.A). And in the

second experiment, N varies in the range of [15, 30], and we

only compare our proposed split-and-merge partition strategy

with the grand-coalition strategy due to the complexity of

the centralized approach. When comparing different partition

strategies, we will use (1) the utility of all organizations, (2)

average model satisfaction level over all formed coalitions, and

(3) average model accuracy over all formed coalitions if FL

is really performed, to measure their performances.

In the first experiment where N = 8 and (θ, λ, α, β) is

set as
(
10, 8× 10−6, 0.05, 0.2

)
, we equally distribute MNIST

training data so that each organization holds a dataset of

7500 samples. The centralized optimal strategy gives a grand

coalition structure of Wc = {{o1, o2, o3, o4, o5, o6, o7, o8}}
if there is no limitation on each organization’s budget. In

this case, the average model satisfaction level is 14.8 and

the total cost is 4.8. However, our split-and-merge partition

strategy can yield a solution of 2 coalitions as Wd =
{{o1, o2, o3, o6} , {o4, o5, o7, o8}} or a solution of 4 coali-

tions W ′
d = {{o1, o2} , {o3, o6} , {o4, o8} , {o5, o7}}. In the 2-

coalition structure, each coalition’s utility is 10.8, given the

model satisfaction level of 12.4 and the coalition-wide cost

of 1.6. In the 4-coalition structure, each coalition’s utility

is 10.8 as well, while the model satisfaction level is 11.2
and the coalition-wide cost of 0.4. Obviously, the centralized

solution targets on a high model satisfaction level while the

our distributed solution takes the cost as an important factor

for the coalition formation. We further conduct FL under these

three structures to see the real model accuracy and convergence

time. The average model accuracy resulted from Wc, Wd and

W ′
d is 99.31, 98.73, and 98.14, respectively. Obviously, those

results are aligned with our model satisfaction level. We notice

that, for a structure with multiple coalitions, the convergence

time of each coalition is close, indicating that little concern

on the fairness of waiting time among different coalitions.

Next, we show the average utility and the average model

satisfaction level in Fig 4. The grand-coalition strategy al-

ways leads to a better model satisfaction level while the

cost for communication is a big concern with the increasing

N . Obviously, our split-and-merge strategy can achieve a

reasonable balance between the model accuracy and the total

communication cost.

B. Cost Sharing

In Table IV, we show the impact caused by different defi-

nitions on the individual contribution. Obviously, the increase

of N ’s value will lead to higher average cost as the secure

aggregation always increases increase quadratically as the size

of a coalitions and more organizations indicate larger sizes

of formed coalitions. Even with different cost sharing mech-

anism, we can still observe the impacts caused by different

Strategy
N 10 20 30 40

optimal 16 32 48 62

game 23 34.5 48.4 64

grand 27 38 50 68.1

(a) Average cost under size-based policy.

Strategy
N 10 20 30 40

optimal 15.8 30.2 44.3 61

game 17.8 31.3 46.9 63.1

grand 24.6 35.9 48.8 64.7

(b) Average cost under accuracy-based policy.

Strategy
N 10 20 30 40

optimal 15.1 28.8 41.5 51.8

game 17.7 28.9 42.7 52.8

grand 23.9 34.5 43.1 53.9

(c) Average cost under SV-based policy.

TABLE IV: Impact of different definitions on the individual contribution.

coalition formation strategies. Note that, there is no specific

way to measure which definition is better. All of these three

definitions can be applied as long as the organizations in the

system reach an agreement.

VII. RELATED WORK

1) Federated Learning: As there is more and more attention

on privacy, federated learning has become one of the essential

concepts in modern machine learning. The salient feature of

FL enables its widespread applications in both cross-device

and cross-silo settings. In cross-device FL, more clients are

enthralled to contribute their resources to improve their user

experience. For example, Google applies FL to its products

Gboard to improve the performance [20]. Similarly, Apple

employs FL to QuickType. Besides that, FL also demonstrates

its potential to solve the dilemma problem of isolated data
island faced by companies/organizations who hesitate to share

their vast volume of data samples for business concerns and

privacy regulations [21].

2) Coalition Game Theory: Unlike noncooperative game

theory that studies competitive scenarios, cooperative game

theory provides analytical tools to study the behavior of

rational players when they cooperate. As a main branch of

cooperative games, coalition games describe the formation of

cooperating groups of players, that can strengthen the players’

positions in a game [15]. According to [22], coalition games

can be grouped into three categories: canonical coalition

games, coalition formation games, and coalition graph games.

In canonical games [23], the grand coalition composed of

all users should be an optimal structure, and major topics in

this field focus on how to stabilize the grand coalition [24].

Canonical games implicitly assume that forming a coalition is

always beneficial, while formation game [25? , 26] admits

the presence of a cost for forming coalitions, thereby the

coalition structure that forms depends on gains and costs

from cooperation. In a graph game [27], there exists a graph

representing the connectivity of the players among each other,

i.e., which player communicates with which one inside each



and every coalition. However, in canonical and formation

games, players are assumed to be fully connected.

3) Fair Cost-sharing Mechanism: There exist a number

of fair cost-sharing mechanisms [28] for coalition formation

games, e.g. equal-split, proportional-split, and egalitarian-split

solutions. These mechanisms model practical cost-sharing

applications with desirable properties, such as the existence

of a stable coalition structure with a small strong price-of-

anarchy (SPoA) [29] to approximate the social optimum. [30]

devises practically cost-sharing mechanisms for decentralized

coalition formation that can lead to desirable stable coalition

structures. The challenge of our problem is the gap between

the coalition utility and its members’ individual utility.

VIII. CONCLUSION

In this paper, we propose a coalition formation game to

solve a multi-organization grouping problem in a cross-silo

federated learning system. We show that our proposed game

is not superadditive, thereby the grand coalition is seldom the

optimal structure. A simple and distributed merge and split

algorithm for coalition formation is constructed. The aim is

to find an ultimate coalition structure that allows cooperating

organizations to maximize their utilities while also accounting

for the cost of coalition formation. To fairly distribute cost in

each formed coalition, a cost sharing mechanism is proposed

to align members’ individual utility with their coalition’s

utility. The experimental results show that our scheme is

efficient in terms of cost reduction for both the group as a

whole and individuals.
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