
Efficient Topology Discovery and Routing in Thick
Wireless Linear Sensor Networks

Imad Jawhar†, Sheng Zhang‡, Jie Wu§, Nader Mohamed♦, and Mohammad M. Masud♯
†Midcomp Research Center, Saida, Lebanon

‡State Key Laboratory for Novel Software Technology, Nanjing University, China
§Department of Computer and Information Sciences, Temple University, USA

♦Middleware Technologies Labs, Isa Town, Bahrain
♯College of Information Technology, UAE University, Alain,UAE

Emails: imad@midcomp.net, sheng@nju.edu.cn, jiewu@temple.edu, nader@middleware-tech.net, m.masud@uaeu.ac.ae

Abstract—Wireless devices such as sensors have increasingly
more processing, storage, and networking capabilities, making
wireless sensor networks (WSNs) get lots of attentions in recent
years. In addition, the cost of sensors is constantly decreasing
making it possible to use large quantities of these sensors in a
wide variety of important applications in environmental, military,
commercial, health care, and other fields. In order to monitor
certain types of infrastructures, many of these applications in-
volve lining up the sensors in a linear form, making a specialclass
of these networks which are defined as Linear Sensor Networks
(LSNs). In this paper, we take advantage of the linearity of the
network to design two graph-search-based topology discovery
algorithms for LSNs, namely, LNBN and L2BN. LNBN focuses
on minimizing the number of messages used to construct the
backbone, while L2BN targets to minimizing the average number
of communication hops. The proposed algorithms have several
good properties. First, they allow for significant improvement in
the scalability of the communication process. Second, the linearity
of the structure and the discovered backbone can enhance the
routing reliability by jumping over failed nodes by increasing the
range. Lastly, they do not require sensor nodes to have location
detection capabilities such as GPS, which would otherwise lead
to higher costs of sensor nodes.

Index Terms—Wireless linear sensor networks, backbone dis-
covery, routing.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) have received a lot of at-
tention due to constant advancements in the field of electronics
and wireless communication leading to the design of low cost,
small, and capable sensing devices with increasingly higher
processing, storage, sensing and communication capabilities.
In addition, WSNs have a great potential for use in a large
amount of existing and future applications in numerous areas
such as environmental, civil, health care, military, monitoring,
and infrastructure surveillance. In the latter category, aconsid-
erable number of the infrastructures that are monitored have a
linear structure which extends over relatively long distances.
This causes the wireless sensors to be aligned in a linear
topology. New frameworks and protocols are needed to take
better advantage of the linearity of the network structure in
order to increase routing efficiency, enhance reliability and
security, and improve location management [1].

This work was supported in part by UAEU - UPAR Grant No.: 31T059-
UPAR (1) 2014 under Grant Code G00001655.

We observed that, LSNs are thick in many scenarios. For
example, an LSN can have the responsibility of monitoring
international borders between countries [2] and detect illicit
activities. Such activities can involve border crossings by
smugglers, military crossings, etc. The inexpensive sensors
can be deployed by throwing them from an airplane or an
unmanned aerial vehicle (UAV). The dropped sensors end up
in a semi-random geographic form and could follow a linear
structure. The sink nodes can also be deployed at various
locations and are separated by some specified average distance.
The sink nodes could be thrown from a low-flying airplane,
placing them at locations which are separated by approxi-
mately the same average distance, or they can be installed [3]
in a precise fashion by the network personnel if the terrain
is easily accessible. Applications for linear sensor networks
include but are not limited to the following: above-ground
oil, gas, and water pipeline monitoring; underwater oil, gas,
and water pipeline monitoring; railroad/subway monitoring;
terrestrial border monitoring; sea-coast monitoring; andriver
monitoring.

In this paper, we introduce two topology discovery algo-
rithms, LNBN and L2BN, for thick LSNs, where the sensor
nodes are deployed between two parallel lines that can stretch
for a long distance (e.g. tens or hundreds of kilometers).
LNBN and L2BN have different objectives: LNBN concen-
trates on minimizing the number of backbone construction
messages [4], while L2BN focuses on minimizing the average
number of communication hops. As a result of the proposed
topology discovery algorithms, a small percentage of the de-
ployed sensor nodes are selected to form a backbone network
along the linear topology, which can be used to efficiently
route sensing data along the linear network to the sink or
sinks located at the end of the network or network segment.
The performance of the proposed algorithms is evaluated by
extensive simulations.

The rest of the paper is organized as follows. Section II
discuss related work. Section III presents LNBN. Section IV
presents L2BN. Section V provides simulation results, and
section VI concludes the paper.

Fig. 1: Illustration of theLD message propagation from the initiator node to
the sink in the Linear Backbone Discovery (LBD) algorithm.

II. RELATED WORK

One-dimensional (1-D) ad hoc networks have been studied
by various researchers. Diggavi et. al. studied the character-
istics of wireless capacity with 1-D mobility [5]. Ghasemi et
al. provided an approximation formula for the connectivity
probability of 1-D ad hoc wireless networks [6]. Miorandi et
al. analyzed the connectivity issue in 1-D ad hoc networks
using a queuing theory approach [7].

On the other hand, many researchers have investigated
topology control techniques in wireless ad hoc networks.
In [8], Santi et al. present a comprehensive survey. In [9],
Ramanathan et al. study the optimization problem of creating a
desired topology by adjusting the transmit power of the nodes.
In another paper [10], the authors study power assignments
to maintain fault tolerance in wireless devices and present
algorithms which can be used to minimize power while main-
taining k-edge connectivity with guaranteed approximation
factors. In [11], a topology discovery algorithm for WSNs
is presented. The algorithm determines a set of nodes which
can act as cluster heads in the network. In [3], Wang presents
an overview of the different types of topology algorithms for
multidimensional WSNs that have been proposed in research.

These algorithms are primarily designed for multi-
dimensional WSNs. They do not take advantage of the pre-
dictable topology of a thick LSN in order to optimize their
performance. Different from them, the algorithms presented
in this paper are designed to take advantage of the linearity
of the network in order to reduce topology discovery control
overhead, and increase communication efficiency.

III. T OPOLOGYDISCOVERY ALGORITHM: LNBN

LNBN consists of two phases: linear backbone discovery
(LBN) and new backbone node declaration. LNBN tries to
construct a backbone for a thick WSN and minimizes the
number of messages used.

A. Linear Backbone Discovery (LBD) Algorithm

The LBD algorithms is shown in Algorithms 1, 2, 3, and 4.
It is also illustrated in Figure 1. It works in the following
manner. As indicated in Algorithm 1, the designated first
node on the primary edge of the LSN starts the discovery
process by initializing its discovery variables and broadcasting
the Linear Discovery (LD) messageLD(messageID, myID,

Algorithm 1 Backbone Discovery - Broadcasting theLD
message from the 1st node at the primary edge

myTempParent = myConfParent = φ
if (this is the first node at the primary edge)then

myLc = 0, PATH = myID, messageLc = 1

SendLD(messageID, myID, messageLc, PATH) to all
neighbors

else
myLc = ∞

end if

Algorithm 2 Backbone Discovery - Algorithm at an interme-
diate nodey when receiving anLD message fromx

When nodey receives theLD(messageID, x, messageLc)
from nodex it does the following:
if (messageLc < myLc) then

myTempPrarent = x, myLc = messageLc
messageLc = messsageLc+1, PATH = PATH | myID
BroadcastLD(messageID, myID, messageLc , PATH)

else
Drop LD message

end if

messageLc, PATH) to all of its neighbors. The message
contains the following parameters:messageID, the ID or the
discovery message to prevent looping;myID, the ID of the
sending node;messageLc, the linear discovery counter, which
holds the count of nodes in the discovered path from the initial
primary edge node that initiated the discovery process; and
PATH , an ordered list of nodes that are contained in the
discovered path.

Algorithm 2 describes the actions executed by an interme-
diate nodey when it receives an LD message from node
x. First nodey checks to see if the linear counter in the
messagemessageLc is better (i.e. smaller) than its own linear
countermyLc. If that is the case, then it changes its temporary
parent tox, and updates itsmyLc counter with that, which
is in the message. It then increments the linear counter in
the message by one, adds its ownID to the PATH and
broadcasts the updated LD message to all of its neighbors.
However, if messageLc is not smaller thanmyLc, then it
drops the message. Because it already has a parent node with
a better linear count with a smaller number of hops from the
source, which contributes with a lower number of hops in the
backbone.

Algorithm 3 describes the actions taken by the sink when
it receives an LD from a nodex. Namely, it saves theID
of x as its backward neighbor as well as the length of the
discovered backbone in number of hops that is contained
in the messageLc. It then unicasts a sink found message,
SF (messageID, source = myID, destination = x, BBlc,
PATH) back to the discovery initiating node through the
nodes in the discovered backbone.

Algorithm 4 describes the steps taken by an intermediate
node y when it receives anSF (messageID, source =
myID, destination = x, BBlc, PATH) message from a

Algorithm 3 Backbone Discovery - Algorithm at the sink
when receiving anLD message from nodex

When the sink receives theLD(messageID, x, messageLc,
PATH) message from nodex it does the following:
myBacwadNeigh=x, BBLc = messageLc
SendSF (messageID, source = myID, destination = x,
BBlc, PATH)

Algorithm 4 Backbone Discovery - Algorithm at an interme-
diate nodey when receiving aSF message from nodex

iAmPartOfBackbone = TRUE
Save the full or local part of the discovered backbone inPATH
in the routing table according to the adopted caching strategy.
myBackwardDirNeigh = myTempParent
myForwardDirNeigh = x
myDistFromSource = messageLc
myDistFromSink = messageLc - myLC
SendSF (messageID, source = myID, destination = x,
messageLc, PATH)

nodex. First, y sets itsiAmPartOfBackbone variable to
TRUE. Then nodey fully or partially caches the discovered
backbone depending on the strategy that is used. A full caching
of the backbone allows the node to have the full list of the
nodes in the backbone and consequently nodey has more
flexibility in routing packets. However, this comes at the cost
of increased memory usage. On the other hand, nodey can
partially cache the local part of the backbone such ask
nodes in each direction, which allows it some flexibility in
routing packets and reaction to neighboring node failures while
reducing its memory usage. Nodey then sets its forward and
backward direction neighbors, as well as the distance from
the source, and distance from the sink in number of hops.
Afterwards, nodey forwards theSF message to its backward
neighbor. This propagation of theSF message continues along
the nodes in the discovered backbone till it reaches the source
node, thereby completing the backbone discovery process.

At the end of the backbone discovery process, we will have
two types of nodes:Backbone Nodes (BNs), which are a part
of the backbone, andNon-backbone Nodes (NBs), which did
not end up being a part of the backbone. They are used to
perform normal sensing operations.

B. The New BN Declaration (NBD) Broadcast algorithm

At the end of the backbone discovery process, the newly
discoveredBN nodes will broadcast a a NewBN Declaration
(NBD) message to inform all of the nodes withinρ hops
from itself that it is a part of the backbone. Algorithm 5 is
used by theBN node to initiate the broadcast process of the
NBD message. In theNBD message, theBN node includes
the following parameters:messageID, which contains the
messageID to prevent looping;sourceBNID, which is
the ID of the sending BN node;myID, which is theID
of the node forwarding the BND message and is initially
equal to thesourceBNID; BNDringSize, which is the
size of the broadcast ring in number of hops and is set to

Algorithm 5 NBD Initiation - Algorithm initiated by a newly
declared BN node

sourceBNID = myID, NBDringSize = ρ
numOfHops = 0, PATH TO BN = myID
Broadcast NBD (messageID, sourceBNID, myID,
NBDringSize, numOfHops, PATH TO BN)

Fig. 2: Illustration of theNBD message propagation in the nearest BN node
discovery algorithm.

ρ; numOfHops, which contains the number of hops that this
message has traversed so far (it starts at 0 and is incremented
as theBND message propagates through the nodes); and
PATH to BN , which is the path to theBN node that is
discovered so far. As the BND message is propagated, each
intermediate node concatenates its ownID to the end of the
PATH to BN it received in from the previous node.

Algorithm 6 describes the steps taken by an intermediate
nodey when it receive theNBD message from another node
x. Namely, when theNBD message reaches a node, it does
the following. It caches the path,PATH TO BN , to the
newly discoveredBN node. Nodey now can use this path to
send messages to theBN node in order to transmit them to
the sink through the backbone. It then increments the number
of hops. If the new number of hops in the message is still
less than or equal to theringSize, then it adds its own
ID to PATH TO BN , and broadcasts the message to its
neighbors. Otherwise, it drops the message. Figure 2 provides
an illustration of theNBD message propagation. As theSF
message propagates back from the sink, each of the newly
discoveredBN nodes broadcasts anNBD message, which
is initiated and propagated according to Algorithms 5 and
6 respectively. The figure shows theBN nodes, which are
nodesA, B, C, I, K, L, andM . These nodes constitute the
discovered backbone. It also shows theNB nodes, which were
not designated as part of the backbone. Each of theNB nodes
is shown with the corresponding distance (in number of hops)
from the nearestBN node. The dashed lines show the path
of each of theNB nodes to the nearestBN node according
the the described algorithms. These paths are discovered after
the broadcast and propagation of theNBD messages from
theBN nodes.

Algorithm 6 NBD Propagation - Algorithm at an intermediate
nodey when receiving aNBD message from nodex.

When nodey receives anNBD (messageID, sourceBNID,
myID, BNDringSize, numOfHops, PATH TO BN)
from a nodex.
savePATH TO BN in the routing table as a path to the
sourBNID node, which is now a part of the backbone
numOfHops = numOfHops + 1
if (numOfHops ≤ ringSize) then

PATH TO BN = PATH TO BN | myID
Broadcast NBD (messageID, sourceBNID, myID,
BNDringSize, numOfHops, PATH TO BN) message
to all neighbors

else
Drop NBD message

end if

IV. TOPOLOGYDISCOVERY ALGORITHM: L2BN

In the last section, we have proposed a distributed backbone
discovery algorithm based on the shortest path between the
discovery initiator node and the sink. This path is then used
as the backbone path and the other non-backbone nodes send
messages to the sink via the backbone path. Before introducing
L2BN, let us examine some design alternatives.

When designing such kind of backbone discovery algo-
rithms, we are often interested in two metrics: the number of
messages generated for constructing the backbone (the number
of construction messages for short), and the average number
of hops for each sensor node to send messages to the sink (the
average number of communication hops for short).

Here is another strategy: let every sensor node other than the
sink send LD messages to the sink, i.e., each sensor node finds
its shortest path to the sink. Of course, this strategy achieves
the smallest average number of communication hops, however,
it may incur unaffordable flooding message overhead.

In fact, LNBN and the above strategy represent two ex-
tremes in the design space: LNBN targets to minimize the
number of construction messages while does not explicitly
minimize the average number of communication hops, and
SBN does in the reverse way.

Inspired by this observation, we thereby propose an algo-
rithm that carefully balances this two design extremes. The
basic idea is to construct two paths from the initiator to the
sink (in contrast to selecting the shortest path in the LNBN
algorithm). Although we may use more construction messages
than LNBN, the average number of communication hops must
decrease. We call this strategy L2BN. L2BN requires four
anchor nodes: I, the discovery initiator, S, the sink, and two
others. Suppose we can denote the thick WSN by a rectangle
with lengthL and thicknessT , and the top-left corner by (0,0).
Then, the other two anchor nodes U and V can be represented
by (L/2, T/4) and (L/2, 3T/4), respectively. We note that,
most WSNs have anchor nodes for the localization purpose;
besides, deploying anchor nodes is not hard and their positions
can be flexibly adjusted for future unforeseen use.

The details of L2BN are shown in Alg. 7. First, we employ

Algorithm 7 L2BN

Require: I, S, A1, A2
1: use LBN to find the shortest path I-U between I and U
2: use LBN to find the shortest path U-S between A1 and S
3: use LBN to find the shortest path I-V between I and V
4: use LBN to find the shortest path V-S between V and S
5: catenate I-U and U-S
6: catenate I-V and V-S
7: use NBN for the other nodes to find their shortest paths

to the constructed two backbone paths

LBN that relies on LD and SF messages to find the shortest
paths from I to U, from U to S, from I to V, and from V
to S. Then, we catenate I-U and U-S to generate one path,
and catenate I-V and V-S to generate another one. Note that,
these two paths are not necessarily node-disjoint. Lastly,we
use NBN to declare these new backbone nodes and ensure the
other non-backbone nodes to find their shortest paths to the
two backbone paths.

It is worth noting that, L2BN is highly flexible: depending
on the density of sensor nodes, the ratio of thick WSN height
to width, and the relative importance of communication delay,
we can adjust the number of anchor nodes to generate the
backbone paths.

V. PERFORMANCEEVALUATION

A. Simulation Setup

The thick linear sensor network is generated according
to the model stated in Sections I and II. A thick LSN is
modeled as a rectangle in our simulations. Key parameters
in the simulations include the thickness (i.e. the width) ofthe
thick LSN, the length of the thick LSN, the number of sensor
nodes, the communication range of a sensor node, and the
size of the broadcast ringρ. In our simulation, the default
values of these input parameters are set as follows: the width
W is 500 meters, the lengthL is 10000 meters, the number
N of sensor nodes is 1000, the communication rangeRange
of each sensor node is 100 meters, the default ring sizeρ is

W
2Range

− 1, which is equal to 2.
In all simulations, the position of each sensor node is

uniformly generated within the 2-dimensional rectangle that
represents the thick LSN. Two sensor nodes can communicate
if and only if the distance between them is not larger than the
communication range. The node that initiates the backbone
discovery is the leftmost node within the 2-D rectangle;
similarly, the sink is the rightmost node within the thick LSN.

The performance metrics used in our evaluations are the
time for backbone discovery, the number ofLD andSF mes-
sages used in the backbone discovery process, and the number
of new backbone node declaration (NBD) messages. Our
simulation seeks to investigate the impacts of these parameters.
Thus, we ran experiments with one varying parameter while
keeping the others to their default values. Each experiment
run lasts for sufficiently long time, so as to better reflect the
performance of the proposed algorithm.

 20

 40

 60

 80

 100

 120

 140

 160

 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

e
 f

o
r

b
a
c
k
b
o
n
e
 d

is
c
o
v
e
ry

Number of sensor nodes

Range=100
Range=200
Range=300

(a) Time of Discovery

50

100

150

200

250

300

 1000 2000 3000 4000 5000 6000 7000 8000 9000N
o
.

o
f

L
D

 a
n
d
 S

F
 m

e
s
s
a
g
e
s
 (

x
1
0

4
)

Number of sensor nodes

Range=100
Range=200
Range=300

(b) Number of LD+SF messages

50

100

150

200

250

 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
o
.

o
f

N
B

D
 m

e
s
s
a
g
e
s
 (

x
1
0

4
)

Number of sensor nodes

Range=100
Range=200
Range=300

(c) Number of NBD messages

Fig. 3: LNBN on large instances

 0

 50

 100

 150

 200

 250

 300

 1000 1500 2000 2500 3000

T
im

e
 f

o
r

b
a
c
k
b
o
n
e
 d

is
c
o
v
e
ry

Number of sensor nodes

 LNBN
 L2BN

(a) Time of Discovery

2

6

10

14

18

 1000 1500 2000 2500 3000N
o
.

o
f

L
D

 a
n
d
 S

F
 m

e
s
s
a
g
e
s
 (

x
1
0

4
)

Number of sensor nodes

 LNBN
 L2BN

(b) Number of LD+SF messages

4

8

12

16

20

24

 1000 1500 2000 2500 3000

N
o
.

o
f

N
B

D
 m

e
s
s
a
g
e
s
 (

x
1
0

3
)

Number of sensor nodes

 LNBN
 L2BN

(c) Number of NBD messages

Fig. 4: Comparison results of LNBN and L2BN under varying number of sensor nodes while fixing the communication range at 100

B. Simulation Results

1) LNBN on Large Networks:Fig. 3 presents how LNBN
performs on large networks. We see in Fig. 3(a) that, when
the number of sensor nodes (i.e.,N) increases, the time
of backbone discovery decreases, and its decreasing speed
also decreases. This is due to the relatively large number of
sensor nodes: more sensor nodes will not help improve the
connectivity of the network. In Figs. 3(b) and (c), we see
that, the number of LD+SF and NBD messages increases
as the number of sensor nodes increases; increasingly, the
increasing speed also increases. This is due to the fact that,
these messages are spread in a broadcast way, and the number
of message thereby increases with a speed that is proportional
to the square of the number of sensor nodes.

2) Comparison Results of LNBN and L2BN:We are in-
terested in comparing LNBN and L2BN. Fig. 4 shows the
comparison results between LNBN and L2BN, in which the
communication range is set to 100. In Fig. 4(a), we see that,
the time of backbone discovery in L2BN is nearly twice as that
in LNBN. This is because, we need to construct two paths in a
distributed way—using messages—in L2BN. In Fig. 4(b), we
find that, the number of LD+SF messages in L2BN is roughly
four times as that in LNBN. This is reasonable, since L2BN
uses LBN four times to find the corresponding backbone paths,
and in each time, although LBN is used to find a “shorter”
path, it performs the same operations as for a “longer” path.
In this sense, the number of messages it may produce is four
times as many as those in LNBN.

In Fig. 4(c), the number of NBD messages in L2BN is
almost the same as that in LNBN. This is reasonable, since
there are two backbone paths in L2BN that may produce more
NBD messages, but these two paths can also cover the other
sensor nodes in a shorter distance.

We also fix the number of sensor nodes at 1000, and see
how LNBN and L2BN perform under varying communication
range. Fig. 5(a) shows the comparison results. It is reasonable
to see that, the time of backbone discovery decreases as the
communication range increases. We also find that, the numbers
of NBD messages in two algorithm are almost the same,
while the number of LD+SF messages vary a lot. When the
communication range increases, the number of pairs of sensor
nodes that can communicate increases, therefore, the number
of messages increases as well.

3) Visualization Example:We also provide in Fig. 6 two
visualization examples of running LNBN and L2BN on the
same underlying WSN. In this set of figures, we set the
number of sensor nodes to be 300, the communication range
to be 200, the width and the length of the thick WSN to be
500 and 2500, respectively. The positions of sensor nodes are
randomly generated within the area. We see that, L2BN finds
two backbone paths, making it cover the other non-backbone
nodes in a “shorter” distance, and it is reasonable to conclude
that, the average number of communication hops in L2BN is
much smaller than that in LNBN, as we will shortly see in
the next subsection.

4) L2BN Benefit:One main purpose of backbone construc-
tion is to facilitate delivering normal data packets. We define
the number of communication hops of a sensor nodeX as
the sum of the number of hops of the shortest path fromX
to any node, sayY , in the backbone path and the number of
hops fromY to the sink. This metric is very important, as
it determines the delay of delivering normal data packets and
the number of message forwardings.

It is important to note that, the average number of communi-
cation hops in L2BN is much smaller than that in LNBN. But
how much? Fig. 7 shows the gap, where the communication

 0

 50

 100

 150

 200

 250

 300

 100 120 140 160 180 200 220

T
im

e
 f

o
r

b
a
c
k
b
o
n
e
 d

is
c
o
v
e
ry

Communication range

 LNBN
 L2BN

(a) Time of Discovery

2

4

6

8

10

 100 120 140 160 180 200 220N
o
.

o
f

L
D

 a
n
d
 S

F
 m

e
s
s
a
g
e
s
 (

x
1
0

4
)

Communication range

 LNBN
 L2BN

(b) Number of LD+SF messages

4

8

12

16

20

 100 120 140 160 180 200 220

N
o
.

o
f

N
B

D
 m

e
s
s
a
g
e
s
 (

x
1
0

3
)

Communication range

 LNBN
 L2BN

(c) Number of NBD messages

Fig. 5: Comparison results of LNBN and L2BN under varying communication range while fixing the number of sensor nodes at 1000

(a) LNBN (b) L2BN

Fig. 6: Illustration of the backbone path whereW = 500, L = 2500, N = 300, andRange = 200.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1000 1500 2000 2500 3000

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
c
o

m
m

u
n

ic
a

ti
o

n
 h

o
p

s

Number of sensor nodes

 LNBN
 L2BN

Fig. 7: Average number of communication hops

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o

ta
l
n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

 f
o

rw
a

rd
in

g
s

Number of normal data messages

 LNBN
 L2BN

Fig. 8: Total number of message forwardings.

range is set to 100. We see that, the average number of
communication hops in LNBN is roughly 15, which is about
twice as many as that in L2BN, which is around 6.

The benefit of shorter communication path of L2BN will
be more evident when we look at Fig. 8. We fix the number
of sensor nodes at 1000, and the communication range at
100. The x-coordinate represents the number of normal data
packets send; the y-coordinate represents the total numberof
message forwardings. We see that, when the number of normal
data messages exceeds 2,000, the total number of message
forwardings in L2BN becomes less than that in LNBN. We
note that, considering the number of sensor nodes in the WSN
of interest of interest to be 1,000, the number of normal data
messages can easily exceed 2,000.

VI. CONCLUSIONS ANDFUTURE RESEARCH

In this paper, we present two graph-search-based algorithms
for backbone discovery in thick LSNs. The resulting backbone
can be used for efficient data routing. The proposed algo-
rithms have several good properties, namely, good scalability,
increased reliability and fault tolerant. Our future work will
focus on utilizing the linearity structure to allow the routing
protocol to overcome node failures by jumping over failed
nodes.

REFERENCES

[1] I. Jawhar, N. Mohamed, and D. P. Agrawal, “Linear wireless sensor
networks: Classification and applications,”Elsevier Journal of Network
and Computer Applications, vol. 34, pp. 1671–1682, 2011.

[2] A. D’Costa, V. Ramachandran, and A. M. Sayeed, “Distributed clas-
sification of gaussian space-time sources in wireless sensor networks,”
IEEE Journal on Selected Areas in Communications, vol. 22, pp. 1026–
1036, August 2004.

[3] Y. Wang, “Topology control for wireless sensor networks,” Wireless
Sensor Networks and Applications, Springer, pp. 113–140, 2008.

[4] I. Jawhar, J. Wu, N. Mohamed, and S. Zhang, “An efficient graph search
algorithm for backbone discovery in wireless linear sensornetworks,”
in Proc. of MiSeNet 2015, pp. 604–609, Oct 2015.

[5] S. Diggavi, M. Grossglauser, and D. Tse, “Even one-demensional
mobility increases adhoc wireless capacity,”IEEE Transactions on
Information Theory, vol. 51, November 2005.

[6] A. Ghasemi and S. Nader-Esfahani, “Supporting aggregate queries
over ad-hoc sensor networks,”IEEE Communications Letters, vol. 10,
pp. 251–253, April 2006.

[7] D. Miorandi and E. Altman, “Connectivity in one-dimensional ad hoc
networks: a queuing theoretical approach,”Wireless Networks, vol. 12,
pp. 573–587, September 2006.

[8] P. Santi, “Topology control in wireless ad hoc and sensornetworks,”
ACM Computing Surveys, vol. 37, pp. 164–194, March 2005.

[9] R. Ramanathan and R. Rosales-Hain, “Topology control ofmultihop
wireless networks using transmit power adjustment,”In Proc. of IEEE
Infocom 2000, pp. 404–413, March 2000.

[10] M. Hajiaghayi, N. Immorlica, and V. Mirrokni, “Power optimization
in fault-tolerant topology control algorithms for wireless multi-hop
networks,” in Proc. of ACM MobiCom 2003, September 2003.

[11] B. N. B. Deb, S. Bhatnagar, “A topology discovery algorithm for
sensor networks with applications to network management,”IEEE CAS
workshop, September 2002.

