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Abstract—With the development of communications, network-
ing, and information technology, Crowdsensed Data Trading
(CDT) becomes a novel data trading paradigm. In CDT, the
data requesters publish crowdsensing tasks with specific data
requirements, and then workers complete these tasks, upload the
data and obtain corresponding rewards. To efficiently deal with
data trading, most of the existing CDT systems assume a trusted
centralized platform. However, we argue that the platform may
collude with workers or requesters to trick others for achieving
more benefits. For example, according to the workers’ uploaded
data, the platform can modify the reward functions by colluding
with the requester. Similarly, the platform might collude with
workers to let them know the reward function, then workers
could forge data. Meanwhile, requesters and workers may also
be malicious. For example, requesters may post tasks but fail to
pay and workers can upload wrong data to mislead the system.
To solve the above problems, we combine the Crowdsensed
Data Trading system with intelligent Blockchain (CDT-B), which
contains a smart contract called CDToken. As a credible third-
party, the CDToken is used to record the requesters’ reward
function and workers’ data uploading function to avoid targeted
trick. At the same time, we not only design a Data Uploading
and Preprocessing (DUP) mechanism in CDToken to collect
and process the workers’ sensed data, but also propose a
Grouping Truth Discovery (GTD) to evaluate their data quality
for determining the payments. Moreover, to hold a large number
of requesters and workers in CDT-B, we propose a Layered
Sharding blockchain based on Membership Degree (LSMD) to
solve the blockchain inefficiency problem. Finally, we deploy
CDToken to an experimental environment based on Ethereum
and demonstrate its efficient performance and practicability.

Index Terms—Intelligent blockchain, crowdsensed data trad-
ing, truth discovery, sharding

I. INTRODUCTION

W ITH the rapid development of future communications,
networking, and information technology, people’s de-

mand for data is increasing. In recent years, many data
trading systems have emerged, such as Qlik, CitizenMe, and
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Fig. 1. Crowdsensed data trading system: combining intelligent blockchain
with future networking and communications

DataExchange [1]. Data requesters can search and purchase
the data that they need in the system. However, most data
providers are research institutions or companies in reality, and
they may not share data due to privacy or profit. If the data
requesters collect the data by themselves, it will incur a large
cost. Luckily, crowdsensing [2], [3] has been proposed as
a new perception paradigm by leveraging workers’ mobility
and diverse sensing devices to collect data. Moreover, crowd-
sensing can be naturally combined with data trading, called
Crowdsensed Data Trading (CDT), where data requesters can
publish some sensing tasks with specific data requirements
and workers can use their mobile devices to sense and share
data for achieving rewards [4], [5]. As can be seen, with the
future communications and networking, CDT will replace the
existing data collection method and become a low-cost, high-
efficiency data trading paradigm.

Generally, a CDT [6] system includes a platform, data
requesters, and workers. As shown in Fig. 1, the requester
first publishes a task with sensed locations and the reward
function to the platform. Then workers interested in the task
move to the task location to complete the task and upload
sensed data. Next, the platform pays workers a certain reward.
Finally, the platform transmits the data to the requester. There
have been several works to design CDT systems. Some of them
[7], [8], [9], [10], [11] study the worker selection mechanism
in CDT, where the platform selects a worker group based on
the worker’s historical information. Also, some works [12],
[13], [14], [15] design the payment mechanism in CDT, in
which the platform will calculate the quality of workers’ data
to pay rewards.

Most existing CDT systems assume a trusted centralized
platform. However, we argue that the platform may be un-
trusted and that it can collude with workers or requesters
to trick others for achieving more benefits. For example, the
platform may collude with the requester to change its reward
function according to the workers’ uploaded data. Similarly,
platforms might collude with workers to let them know the
reward function, then workers could forge data. Moreover,
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requesters and workers can also be malicious. For instance,
requesters may post tasks but fail to pay and workers can
upload wrong data to mislead the system. The malicious
workers may also register multiple accounts to complete tasks,
causing unfair payment and low accuracy of sensed data.
Therefore, how to deal with untrusted centralized platforms
and the influence of malicious workers and requesters in the
CDT system is our first challenge.

Fortunately, blockchain [16] can achieve decentralization,
and smart contracts [17] can be regarded as a trusted platform
in CDT systems. Blockchain has the nature of anonymity,
tamper resistance, and transparency. Nodes on the blockchain
can directly trade without relying on a third-party platform.
There exist some special complex programs deployed on the
blockchain, called smart contracts, which can automatically
execute operations according to trading conditions and en-
force the participants to fulfill their obligations. Due to the
immutability of smart contracts, malicious requesters cannot
refuse the payment and the data trading process is more
trustworthy. After the requester publishes tasks, the related
smart contracts cannot be modified and the workers cannot
see the entire smart contract. To deal with the influence of
malicious workers, we design the DUP mechanism to group
malicious workers and propose the GTD algorithm to weaken
the influence of malicious workers’ data on the estimated truth.

Although some works [18], [19], [20], [21], [22], [23] use
blockchain technology to achieve the decentralization of the
CDT systems, due to a large number of requesters and workers
in CDT systems, the low efficiency of the blockchain reduces
the performance of the system. For example, the Bitcoin
blockchain system can only process about 7 transactions per
second [23]. The main reason is that every node needs to verify
and store all transactions. However, as far as we know, the
existing works mostly ignore the low efficiency caused by the
blockchain, which seriously affects the transaction throughput
and system performance of the CDT system. So this is the
second challenge we need to deal with.

To achieve high efficiency, sharding [24], [25], [26], [27],
[28] is the most promising solution to blockchain scalability.
Most existing sharding schemes are considered as complete
sharding, where the shards are completely isolated, and each
node belongs to only one shard. However, according to rel-
evant research statistics, more than 96% of transactions in
the sharding system are cross-shard [26]. Moreover, most
of the current complete sharding is random sharding, which
will increase the ratio of cross-shard transactions. Therefore,
inspired by Pyramid [29], we propose a layered sharding
method based on nodes’ history information, where nodes can
belong to multiple shards.

To sum up, we combine the Crowdsensed Data Trading
system with intelligent Blockchain (CDT-B), which includes
a smart contract called CDToken that can be regarded as a
credible third party. We first utilize the CDToken to record
the requesters’ reward function and workers’ data uploading
function to avoid making the targeted trick. At the same
time, we not only design a Data Uploading and Preprocessing
(DUP) mechanism in CDToken to collect and process the
workers’ sensed data, but also propose a Grouping Truth

Discovery (GTD) to evaluate their data quality for determining
the payments. Moreover, considering that there exist a large
number of requesters and workers in a CDT-B system, we
propose a Layered Sharding blockchain based on Membership
Degree (LSMD) to solve the inefficiency problem caused by
the blockchain. As far as we know, this is the first work that
combines sharding blockchain and CDT system.

The main contributions of this paper are listed below:
• We propose a decentralization CDT-B system with a

smart contract CDToken, where the blockchain achieves
trustworthy data trading and CDToken avoids platform
collusion and malicious requesters.

• We design DUP mechanism, GTD algorithm, and pay-
ment mechanism in CDToken. DUP mechanism contains
a data uploading mechanism and data preprocessing al-
gorithms, which can handle the influence of malicious
workers. GTD algorithm can evaluate the truth of the data
and the payment mechanism pays workers according to
the quality.

• Due to the low efficiency of the blockchain, we propose
LSMD, a novel layered sharding blockchain. Through
nodes’ historical information, nodes are allocated accord-
ing to their membership degree for different shards.

• We implement a CDT-B prototype and deploy CDToken
to an experimental environment based on Ethereum, and
conduct extensive simulations to prove the remarkable
performance and practicality of CDToken.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. The system model and problem
formulation are proposed in Section III. The details of CDT-B
are shown in Section IV. Simulation results are presented in
Section V. Lastly, the conclusion is summarized in Section VI.

II. RELATED WORK

Crowdsensed Data Trading. CDT is a novel form of data
trading, which allows requesters to hire workers to collect data
and obtain suitable rewards. CDT systems are designed to deal
with the difficult problem of data acquisition, but this also
brings a series of challenges. CMAB-HS [7] is proposed to
tackle the problem of quality unknown seller selection and
incentive strategy design. DPDT [8] is proposed to preserve the
identity privacy of consumers and the task privacy of workers.
With the development of CDT system, more researchers have
also noticed this field and proposed a series of works.

To efficiently deal with data trading, many existing works
study the worker selection mechanism in CDT. Sun et al.
[9] propose a trustworthy and cost-effective cell selection
(TCECS) framework that takes cell heterogeneity and ma-
licious participants into consideration simultaneously. Wang
et al. [10] proposes a novel multi-task allocation framework
named MTasker. Cheng et al. [11] design an effective grid-
based forecasting method to estimate the spatial distribution
of workers/tasks in the future and then use the predictions
to assign workers to tasks. Moreover, some works propose
the payment mechanism in CDT, in which the platform will
calculate the quality of workers’ data to pay rewards. Song
et al. [12] introduce perceived quality into the design of the
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incentive mechanism. Duan et al. [13] design a distributed auc-
tion framework and propose two distributed auction schemes,
CPAS, and TPAS, to achieve budget balance and high compu-
tational efficiency. Meanwhile, to resolve the conflicts between
multiple data sources of heterogeneous data types, Li et al. [14]
use an optimization framework to model this problem. Cai et
al. [15] propose a novel framework for efficient data trading in
IoT systems throughout the data collection and data processing
phases. Although these works make the CDT system more
robust, they all rely on a hypothetical trusted third-party
platform. However, the platform may collude with workers or
requesters to trick others for achieving more benefits in reality.
So our CDT-B system intends to use blockchain to achieve
the decentralization of the CDT system, we also consider
malicious users in the system and the problems caused by
the low efficiency of the blockchain.

Blockchain in CDT. As an emerging distributed ledger
technology, blockchain has been widely studied and applied
to CDT systems. Blockchain can be regarded as a platform
in CDT that achieves decentralization. For example, An et
al. [18] design a crowdsensing quality control model based
on a two-consensus blockchain. Zheng et al. [19] design
a blockchain-based decentralized data trading platform, on
which data providers can better control data trading. But they
do not consider the impact of malicious users on the system.
Dai et al. [20] and Cai et al. [21] allow the requester to
purchase a statistical result calculated by some blockchain
nodes, which protect data privacy by SGX and additive secret
sharing, respectively. But they do not apply to our scenario,
where truth discovery needs to be calculated on the raw data
and then the system pays workers based on their data quality. A
blockchain-based crowdsensed data trading system is proposed
in [22]. The workers send the sensed data to consumers for
truth discovery and truthful rating and the data is encrypted
to ensure data security during the truth discovery process. But
in our paper, truth discovery is done by CDToken to avoid
untruthful consumers’ rating and the high computing cost of
encryption. Moreover, the existing works do not take into
account the impact of blockchain’s low efficiency problem on
CDT systems, which is an important contribution of our paper.

Truth discovery. Truth discovery is widely used in data qual-
ity assessment. Yin et al. [30] first define the truth discovery
problem and propose the truthfinder algorithm that utilizes
the interdependency between website trustworthiness and fact
confidence to find trustable websites and facts. Li et al. [31]
propose a framework that different types of distance functions
can be plugged into capturing the characteristics of different
data types, and the estimation of source reliability is jointly
performed across all the data types together. In this paper,
we implement GTD in CDToken, where the data uploaded by
malicious workers is regarded as a group.

Efficiency solution in blockchain. The main reason for
blockchain inefficiency is that every node needs to verify
and store alltransactions. Sharding [28] is the most promising
blockchain scaling solution to achieve high performance. The
core idea of sharding is to divide and conquer, which divides
all nodes into different groups, and each group is a shard.
The tasks are then grouped and assigned to different shards

TABLE I
MAIN NOTATIONS

Notation Meaning
ui, tj the i-th worker, the j-th task
n,m the number of tasks and the number of workers
T, Ti the set of tasks and the set of tasks that wi deals with
U,Uj the set of workers and the set of workers who execute tj

tfir, tsec the time limits for data uploading
Di, EDi the data and the encrypted data of ui

dji the data of worker ui for task tj
Ai,j the number of tasks either ui or uj has done alone
Bi,j the number of tasks both ui and uj have done
Si,j the similarity between ui and uj
G, gi the preprocessed data and the i-th group of workers

d̂kj , ŵk the result of gk for task tj and the weight of gk
wi, d

∗
j the weight of ui and the truth of tj

λij , r
i
j the data quality and reward of ui for tj

for parallel processing, thereby improving the performance
of the overall blockchain. ELASTICO [24] is the first open
and decentralized sharding-based blockchain system, where
each shard is responsible for verifying the PBFT-based con-
sensus of a set of transactions and files. Omniledger [25]
is the first sharding-based blockchain system to achieve full
sharding. The system adopts a client-driven mechanism to
upload cross-shard transactions. RapidChain [26] proposes a
transfer mechanism in the unspent transaction output-based
system. For each cross-shard transaction, the mechanism first
transfers all involved UTXOs to the same shard by sub-
transactions. Monoxide [27] proposes a relay mechanism in
the account/balance-based system. Each cross-shard transac-
tion is split into several sub-transactions including internal
transactions and relay transactions. Pyramid [29] allows nodes
to belong to multiple shards, which reduces the proportion of
cross-shard transactions. Although there are many works on
sharding at present, they do not consider CDT and cannot be
directly applied to this work.

III. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Model

We first discuss the system model of CDT-B and the main
notations are listed in Table I. In the data trading scenario,
the data requester hopes to obtain data from the Points of
Interest (PoIs) within a certain period. The requester can
collect data himself or deploy some fixed sensors, which is
not a low-cost method for the requester to ask for high-quality
collected data. Therefore, the requester intends to hire a group
of workers to complete the task of collecting data and pay
them corresponding rewards. Due to the influence of malicious
workers and malicious platform, we combine the crowdsensed
data trading system with intelligent blockchain.

As shown in Fig. 2, the node that wants to publish the
task becomes a requester and then it publish a task with data
requirements to the blockchain to form a smart contract, i.e.,
CDToken, including the content, requirements, budget of the
task, and so on. CDToken processes the collected data and
then calculates the estimated truth of the task. Meanwhile, the
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Fig. 2. The model of CDT-B

data quality of each worker is calculated through the truth of
the task. Finally, according to the data quality of each worker,
the corresponding reward is paid to the worker.

B. Problem Formulation

We consider a CDT-B system consisting of a crowd of n
workers U = {u1, u2, u3, . . . , un}. The requester publishes
a sensing tasks set T = {t1, t2, . . . , tm}. Each task is to
sense a specific object or event in an appointed area. Then
a worker ui performs a set of sensing tasks and uploads the
data Di = {(dji , t

j
i ) | tj ∈ Ti}, where dji is the sensing data

for task tj in the form of numerical values, e.g., cellular signal
strength [32], noise level measurements [33], and Wi-Fi signal
strength [34], and tji is the corresponding timestamp. Then
worker ui uploads Di to the blockchain. Once the task is
completed and the sensing data D = {Di} from all workers
has been collected, the CDToken on blockchain calculates an
aggregated result d∗j for each task j as an estimate for the truth,
which is unknown to either the requester or the workers.

The digital signature can be used to verify identity infor-
mation and avoid denial, and hash digest is used to protect
information from tampering. The requester broadcasts the task
information at the start of the task, and the main content is
Task = {Con, Time, Req, Rule, Baq, B, tf , ts, Deposit},
where Con stands for the specific content of the task, Time
for the time limit of the task, Req for the credit requirements
of workers, Rule for the evaluation of data quality, Baq for
the basic requirements of the task data, such as data type, data
length, etc., Bud for the budget of the task. tf and ts are the
time limit for data uploading. When the requester publishes the
task, it sends the budget of the task in advance. This avoids
the requestor’s malicious exit during the task. Workers who
want to complete the task need to pay Deposit first to avoid
the malicious exit during the task.

After the worker ui completes the task set Ti, they upload
the data Di to CDToken. CDToken preprocesses the data
uploaded by workers through DUP, i.e., Data Uploading and
Preprocessing, and then obtains the estimated truth through
GTD, i.e., Grouping Truth Discovery. Next, CDToken gets
the data quality of each worker based on the truth and pays
the workers rewards based on their data quality. Finally, the
data will be sent to the requester. Due to the low efficiency of
the blockchain, we also design a layered sharding blockchain
based on membership degree. The nodes of different shards
can process transactions in parallel.

IV. DETAILS IN CDT-B SYSTEM
In our CDT-B system, there is no guarantee that workers

and requesters are trustworthy. Moreover, workers may not
follow the rules of the tasks. For example, workers maliciously
withdraw from the task early, or workers can be paid to peek
at data uploaded by other workers and upload corresponding
data. This results in an inaccurately estimated truth. It also
has a side effect on worker incentives. Therefore, we propose
DUP including a two-step data uploading mechanism to make
the whole data uploading process trustworthy and the data pre-
processing algorithm based on Task Set Similarity Calculating
(TS-SC) and Accounts Trajectory Similarity Calculation (AT-
SC). Moreover, the GTD algorithm and the reward payment
algorithm are proposed. Finally, we propose LSMD to solve
the low efficiency of blockchain where nodes are assigned to
different shards according to membership degree.

A. Data Uploading and Preprocessing
In the data uploading stage, each worker uploads his data

to CDToken. Due to the transparency of blockchain, the
data uploaded by each worker is publicly visible. To prevent
unfairness caused by data leakage, we split the data uploading
into two steps.

Step 1: upload encrypted data. The first step is to upload
the encrypted data. Worker ui first calculates an encrypted
data EDi by using the SHA256 Algorithm in Secure Hash
Algorithm 2 [35]. SHA256 takes his data Di and a random
number noncei as input, i.e., EDi = SHA256(Di, noncei).
Then the worker ui sends the encrypted data EDi to CDToken.
CDToken uses a function f − upload() to verify that the
current time is less than the preset upload time of the task,
i.e., now < tf . It also checks whether deposits provided
by workers meet requirements, i.e.,msg.value > Deposit.
Finally, f−upload() stores the encrypted data and the deposits
against the worker’s accounts.

Step 2: upload real data. The second step is to upload
unencrypted data, and then verify through the encrypted data.
First, the worker ui sends Di and random numbers noncei to
CDToken. Then s−upload() first checks whether the current
time meets the requirements of the task, i.e., tf < now < ts.
Then s− upload() checks the consistency of the current data
and the encrypted data, i.e., SHA256(Di, noncei) = EDi.
If worker ui passes the time check and consistency check,
s − upload() will record his data. Otherwise, worker ui is
dishonest and his Deposit will be deducted.
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TABLE II
EXAMPLE SHOWING MALICIOUS WORKERS

Worker Task1 Task2 Task3 Task4
1 9.4 5 7.4 3.51
2 9.8 5 7.8 3.2
3 9.5 7 7.8 3.36
4’ 20 20 20 20
4” 20 20 20 20
4”’ 20 20 20 20

TD without malicious workers 9.65 5.74 7.78 3.36
TD with malicious workers 11.49 10.09 10.64 9.72

TABLE III
EXAMPLE SHOWSING IN CROWDSENSING

Worker Task1 Task2 Task3 Task4
1 10:16:15 10:24:17 10:31:19 10:11:16
2 x 10:26:24 10:34:24 x
3 10:18:34 10:23:41 x 10:13:44
4’ 10:23:36 x 10:21:35 10:24:34
4” 10:24:37 x 10:23:18 10:24:19
4”’ 10:26:22 x 10:25:23 10:25:28

In practice, the quality of sensing data from different
workers is varying and unknown. Therefore, the truth discov-
ery algorithm [36], [37] is used to aggregate data, calculate
workers’ weights and jointly estimate the truth. Then, the data
quality of workers is calculated through the truth. However,
due to the anonymity of the blockchain, workers have no iden-
tity information. Thus, some malicious workers may register
multiple nodes to complete the task. Some workers will also
suffer and lose motivation to complete tasks. This may even
mislead the system.

First, we provide an example shown in Table II to demon-
strate that the existing truth discovery algorithms are vulner-
able to malicious workers. Consider a CDT-B system with 4
tasks and 4 workers, one of whom is a malicious worker. Each
task measures the temperature at a given location, and each
account can upload at most one data for a task. Finally, the
system aggregates the worker’s data into the temperature at
that task location. Suppose Workers 4 is a malicious worker
who uses 3 accounts to upload fake data (20), in order to
mislead the aggregation results of the system. We used CRH
[31], a widely used truth discovery algorithm, to aggregate the
uploaded data both with and without the malicious worker.
According to the result, we can see that the data uploaded by
a malicious worker has a significant impact on the aggregated
results of the tasks. Therefore, it shows that the existing
truth discovery algorithms are susceptible to influence when
workers are unreliable.

To deal with the influence of malicious workers, the core
idea is to identify malicious workers. Since a malicious worker
may register multiple accounts to mislead the system, we use
accounts instead of workers for the sake of illustration. We
find two characteristics of malicious workers:

• First of all, a malicious worker might want to manipulate
the aggregated results of multiple task data, so they
should upload data for each task using different accounts,
such as the example in Table II. Therefore, the data
uploaded by accounts with high task sets similarity is

(a) Bi,j (b) Ai,j

(c) Si,j
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task, i.e., tfir < now < tsec. Then seccommit() checks
the consistency of the current data and the encrypted data,
i.e., SHA256(Di, noncei) = EDi. If worker wi passes the
time check and consistency check, seccommit() will record
his data. Otherwise, worker wi is dishonest and his Deposit
will be deducted.

In practice, the quality of sensing data from different
workers is different. In addition, the data quality of the
worker is unknown. Therefore, truth discovery algorithm [31]
is usually used to aggregate data, calculate workers’ weights
and jointly estimate truth. However, due to the anonymity of
the blockchain, workers have no identity information. So some
malicious workers may register multiple nodes to complete the
task. This will cause unfairness and even mislead the system.

First, we use an example shown in Table II to demonstrate
that the existing truth discovery algorithms are vulnerable to
malicious workers (MW). Consider a CTB system with 4
tasks and 4 workers, one of whom is a malicious worker.
Each task is to measure the temperature at a given location.
Each account is allowed to submit at most one data for
one task. For each task, the system aggregates the workers’
data as the temperature of the task location. Suppose Worker
4 is a malicious worker whose purpose is to mislead the
aggregation results of the system. He will use 3 accounts to
commit fabricated data (20). We used CRH [32], a widely
used truth discovery algorithm, to aggregate the committed
data both with and without the malicious worker. According
to the results, we can see that the data committed by malicious
worker has a significant impact on the aggregated results of
the tasks. Therefore, it shows that the existing truth discovery
algorithms are susceptible to influence when workers are
unreliable.

The core idea of this part is to identify malicious workers.
Since a malicious worker may sign up for multiple accounts
to mislead the system, let’s use accounts instead of workers
for the sake of illustration. We found two characteristics of
malicious workers. First of all, a malicious worker might want

(a) Bi,j (b) Ai,j

(c) Si,j

4'

4" 4"'

27

27

27

(d) Si,j > 10

Fig. 3. Example of TSSC

to manipulate the aggregated results of multiple task data, so
they should submit data for each task using different accounts,
such as the example in table II. Therefore, the data submitted
by accounts with high task sets similarity is likely to come
from malicious workers. And the trajectory of a malicious
worker’s accounts should have a similar pattern. So the data
submitted by accounts with high trajectory similarity is likely
to come from malicious attackers.

For the above two characteristics, we group accounts that
are likely to come from malicious workers and give their
data a lower weight in GTD. Please note that we do not
delete the data of these potential malicious accounts because
of the possibility of misidentification. Next we introduce two
grouping algorithms.

Task Set Similarity Calculating (TSSC). Due to that the
set of tasks completed by malicious accounts should have
a high degree of similarity. Inspired by [33], We design a
grouping algorithm based on the similarity of task sets between
two accounts. The grouping method includes the following
steps:
• Bi,j represents the number of tasks both accounts i and
j have done. Ai,j represents the number of tasks either
accounts i or j has done alone. Then the similarity
between i and j, denoted as Si,j , is calculated as:

Si,j =
m

Bi,j +Ai,j
e

Bi,j
Ai,j (1)

where m is the total number of tasks. The greater the
similarity, the more similar task set of the two accounts
are.

• Then an undirected graph is constructed, where nodes
represent accounts, and the edge between i and j rep-
resents their similarity Si,j . Note that only edges that
exceed the threshold P are included.

• Subgraphs are discovered using Depth First Search (DFS)
algorithm. Each component represents a set of accounts
who have done similar tasks. Each subgraph is a group,
and the account that is not in any component will be
treated as a separate group.

(d) Si,j > 10

Fig. 3. An example of TS-SC

likely to come from malicious workers.
• Secondly, the trajectory of a malicious worker’s accounts

should have a similar pattern. So the data uploaded by
accounts with high trajectory similarity is likely to come
from malicious workers.

For the above two characteristics, we group accounts that
are likely registered by malicious workers and give their data
a lower weight in GTD. Please note that we do not delete
the data of these potential malicious accounts because of
the possibility of misidentification. Next, we introduce two
grouping algorithms.

Task Set Similarity Calculating (TS-SC). Due to the fact
that the task sets completed by malicious accounts should have
a high degree of similarity, which means they perform similar
tasks. Inspired by [38], we design a grouping algorithm based
on two accounts’ similarity of task sets they have done. The
grouping method includes the following steps:
• Bi,j represents the number of tasks both account i and

account j have done. Ai,j represents the number of tasks
either account i or account j has done alone. Then the
similarity between account i and account j, denoted as
Si,j , is calculated as:

Si,j =
m

Bi,j +Ai,j
e

Bi,j
Ai,j (1)

where m is the total number of tasks. The greater the
similarity, the more similar the task set of the two
accounts are.

• Then an undirected graph is constructed, where nodes
represent accounts, and the edge between i and j rep-
resents their similarity Si,j . Note that only edges that
exceed the threshold p are included in TS-SC.

• Subgraphs are discovered using Depth First Search (DFS)
algorithm. Each component represents a set of accounts
that have done similar tasks. Each subgraph is a group,
and the account that is not in any component will be
treated as a separate group.

To illustrate the process of this grouping method, we provide
an example in Table III, where the values in the table are the
timestamps for the corresponding tasks.
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Fig. 3 shows the procedure of TS-SC. The adjacency matrix
in Fig. 3a shows the number of tasks both i and j have done.
The adjacency matrix in Fig. 3b shows the number of tasks
either i or j has done alone. Fig. 3c shows the similarity
value between i and j. We set the threshold p = 10, and
an undirected graph is constructed as shown in Fig. 3d. We
see that one component is constructed in this example, i.e.,
{4′, 4′′, 4′′′}. Account 1, 2, and 3 are not in this component,
and each of them becomes a group. The grouping result of
this example consists of four groups, i.e., {4′, 4′′, 4′′′}, {1},
{2}, {3}. Note that TS-SC groups the malicious accounts in
the same group, and thus it is effective.

TS-SC can be used in the scenario where accounts have
diverse accomplished task sets. To deal with the scenario
where most accounts have similar accomplished task sets, we
propose the following account grouping method.

Accounts Trajectory Similarity Calculation (AT-SC).
As mentioned above, the trajectory of a malicious worker’s
accounts should be a degree of consistency. Since we get the
data Di = {(dji , t

j
i ) | tj ∈ Ti} uploaded by ui for task tj as

two time series data, namely accomplished task series Xi and
timestamp series Yi, these two time series data can be viewed
as the trajectory of an account. Due to malicious workers may
register multiple accounts to complete tasks, the trajectories
of these accounts should have relatively high similarity.

Since the number of tasks completed by accounts may vary,
Dynamic Time Warping (DTW) [39] is a measure of the
similarity of two time series of different lengths. Suppose we
have two time series data like two workers’ accomplished task
series, Q and C, whose lengths are n and m, respectively.
Suppose we have two time series data like two workers’
accomplished task series, Q and C, whose lengths are n and
m, respectively. When m is not equal to n, we need to align the
two time series data. So we need to construct a matrix grid
of n × m, the matrix element (i, j) represents the distance
between two points qi and cj , d(qi, cj), which is generally
Euclidian distance, d(qi, cj) = (qi−cj)2. Each matrix element
(i, j) represents the alignment of points qi and cj . The idea
of the DTW algorithm is to find a path from the bottom left
corner of the matrix to the top right corner so that the sum
of the elements on the path is the smallest, and we call the
sum of the elements on the path length. We define this path
as the warping path. The warping path W = ω1,ω2,···, ωk
is a contiguous set of matrix elements that defines the DTW
distance between Q and C. We define the DTW distance as
in [40]:

DTW (Q,C) = min{

√∑K
k=1 wk

K
} (2)

where K in the denominator is mainly used to compensate
for paths of different lengths. Here we define a cumulative
distance matching the two series Q and C starting at (0, 0),
and at each point, the distances calculated at all previous
points add up. After arriving at the end point (n,m), the
cumulative distance is the total distance we said above, that
is, the similarity between the sequence Q and C. Cumu-
lative distance γ(i, j) can be expressed in the following
way, the cumulative distance γ(i, j) is the current grid point

(a) DTW (Xi, Xj) (b) DTW (Yi, Yj)

(c) Di,j

4'

4" 4"'

0.0002

0.0003

0.001

 
(d) Di,j < 1

Fig. 4. An example of AT-SC

distance d(i, j), that is, the Euclidian distance of points qi
and cj and the cumulative distance of the smallest adjacent
elements that can reach the point: γ(i, j) = d(qi, cj) +
min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}.

Based on the DTW distance between the task series and the
time series of the accounts, we propose a grouping method that
includes the following steps:

• The difference between account i and j, denoted as Di,j ,
is calculated as:

Di,j = DTW (Xi, Xj) +DTW (Yi, Yj) (3)

Note that the less the difference, the more similar the
trajectories of the two accounts.

• Then an undirected graph is constructed, where nodes
represent accounts, and the undirected edge between i
and j represents their difference value Di,j . Note that
only edges that are under a threshold ϕ are included.

• Like TS-SC, subgraphs are discovered using the Depth
First Search algorithm. Each component represents a set
of accounts with similar trajectories. Each subgraph is a
group, and the account that is not in any component will
be treated as a separate group.

Next, we still use the example in Table III to illustrate the
process of AT-SC. We use two adjacency matrices in Fig. 4a
and Fig. 4b to represent the DTW difference between account
i and account j according to the task series and timestamp
series. The adjacency matrix in Fig. 4c shows the difference
value between account i and account j. We set the threshold
ϕ = 1, and thus an undirected graph is shown in Fig. 4d. One
component is constructed in this example, i.e., {4′, 4′′, 4′′′}.
Accounts 1, 2, and 3 are not in the component, and thus each
of them is regarded as a group. Therefore, the grouping result
includes four groups, i.e., {4′, 4′′, 4′′′}, {1}, {2}, and {3}. We
can see that the method correctly groups all the accounts used
by the malicious workers in one group.

Due to different grouping methods, some accounts may
be mistakenly classified as malicious worker groups. So we
keep two grouping results and process them in the subsequent
grouping truth discovery algorithm.
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B. Grouping Truth Discovery

At this stage, we first integrate the grouping data. Let G =
{g1, g2, ..., gl} denotes the account grouping results, where gi∩
gj = ∅ and ∪gi∈Ggi = U . Each group gk ∈ G represents a set
of accounts likely used by the malicious workers. Let T̂k =
∪i∈gkTi denotes the set of tasks performed by the accounts
in group gk. Then CDToken groups data as follows. For each
task tj , we first aggregate the data within each group gk ∈ Gj ,
where Gj = {gk | gk ∈ G, tj ∈ T̂k}. The weight calculation
method for each account in group gk is as follows:

wij = 1−

∣∣∣dij − dkj ∣∣∣∑
l∈gk

∣∣∣dlj − dkj ∣∣∣+ ε
(4)

where dkj is the mean of data uploaded by accounts in gk. ε is
a small constant real number. The reason we need ε is to make
sure the equation still makes sense when

∑
l∈gk

∣∣∣dlj − dkj ∣∣∣ = 0.
The data results for each group are calculated as follows:

d̂kj =

∑
i∈gk w

i
jd
i
j∑

i∈gk w
i
j

(5)

The weight of each group gk is calculated as

ŵk = 1− |gk|
|Uj |

(6)

where |gk| denotes the number of accounts in group |gk|, and
|Uj | is the number of accounts who upload data for task tj .
Note that using only one data to represent each group reduces
the impact of malicious workers.

Finally, the CDToken estimates the truth for each task
according to the truth discovery algorithm. A general truth
discovery algorithm can be divided into two stages: weight
estimation and truth estimation. First, the algorithm randomly
guesses the truth of each task, and then iteratively updates the
weight and estimated truth of each worker until convergence.

Weight estimation: In this step, each worker’s weight
wi is estimated based on the distance between its data and
the estimated truth. Let Uj denotes the workers who upload
sensing data for task tj and e∗j denotes the last round’s
estimated truth for task tj . The weight wi for task tj is
calculated as

wi = 1− log(
D(dij , e∗j )∑

i∈Uj
D(dij , e∗j ) + ε

) (7)

where D() is the distance function measuring the difference
between the worker’s data and the estimation truth.

Truth estimation: In this step, according to the last round’s
weight of each worker wi for task tj , the estimation truth of
task tj is calculated as

e∗j =

∑
i∈Uj

wid
i
j∑

i∈Uj
wi

(8)

Although some existing truth discovery algorithms have
some differences in weight and truth update, they all follow
the same principles: 1) workers whose data are closer to the
estimated truth have a higher weight. 2) the results of the
aggregation are more dependent on high-weight workers.

Algorithm 1 Grouping Truth Discovery Algorithm
Input: Workers’ data D
Output: Estimated truth {d∗j | tj ∈ T}

1: //Account grouping
2: G← AG(D)
3: //Data grouping
4: for each tj ∈ T do
5: Group data for tj based on G
6: Aggregate data in each group gk ∈ Gj using (5)
7: Calculate the weight ŵk of each group using (6)
8: end for
9: Get an initialization estimation truth by (9)

10: repeat
11: //Weight estimation
12: for each group gk ∈ G do
13: Update weight wi by wi = 1− log(

D(dij ,dj)∑
i∈Uj

D(dij ,dj)+ε
)

14: end for
15: //Truth estimation
16: for each tj ∈ T do

17: Update the estimation truth using d∗j =
∑

i∈Uj
wid

i
j∑

i∈Uj
wi

18: end for
19: until convergence criterion is satisfied
20: return estimation truth {d∗j | tj ∈ T}

The truth discovery algorithm we designed is summarized
in Algorithm 1. Different from the general truth discovery
algorithm, we treat the accounts in one group as a whole, and
thus we use d∗j for group gk. In addition, instead of randomly
initializing the estimated truth for each task, we initialize the
estimated truth of each task tj as follows

d∗j =

∑
gk∈Gj

ŵkd̂kj∑
gk∈Gj

ŵk
(9)

Let’s assume that the ground truth obtained is {d∗j | tj ∈ T}.
We denote the distance between any two data dij and dkj
by d(dij , d

k
j ). The distance measurement function d() mea-

sures the similarity between different data. It could be their
Euclidean distance, cosine distance, or any other specified
similarity distance. A smaller distance usually indicates higher
similarity, and vice versa.

The quality of each worker i’s data is measured based on its
deviation vij from the ground truth, shown in Equation (10).
Obviously, data with higher quality is in closer proximity to
the ground truth than lower quality ones, which results in a
smaller deviation vij .

vij = d(dij , d
∗
j ) (10)

Let ηi be the deviation ratio, i.e., ηi =
∑

k∈Uj
vkj

vij+ε
. We calculate

the worker i’s data quality based on the following equation:

qij =
ηi∑

k∈Uj
ηk

(11)

where ε is a small constant real number. We note that qij is a
real number within (0, 1) and

∑
i∈Uj

qij = 1.
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Our proposed quality estimation method handles numerical
data values only. The intention of our design can be applied to
more general crowdsensing scenarios, where the ground truth
can be calculated by aggregating high-quality data, and the
distance to the truth reflects the accuracy of each worker’s
contributed data.

C. Reward Payment

Since we have used two grouping methods before, we can
get two data qualities for each worker, qij,t and qij,a. So the
quality score of each worker for task j can be expressed as:

λij = γ ∗ qij,t + β ∗ qij,a (12)

where γ and β are the weight of the influencing factors of
grouping and γ+β = 1. Considering that workers with higher
quality scores should get higher rewards, the reward for each
worker is:

rij = λij ∗Bj (13)

where Bj is the budget of the task j and
∑
i∈Uj

λij = 1.
Under our proposed model, truthfulness can be guaranteed

naturally. Workers only upload data that they sensed, and
workers cannot get other information when completing tasks
and uploading data. The data quality of each worker is related
to the data of other workers, so workers cannot manipulate
their data to obtain higher rewards. To gain their desirable
payment, the best way is to improve the accuracy of their
data as much as possible.

D. Layered Sharding Blockchain Based on Membership De-
gree

Since the consensus mechanism of the blockchain requires
the participation of all nodes in the entire network, each node
needs to verify and store all transactions, and each consensus
message needs to be broadcast in the entire blockchain net-
work like Fig. 5a. This leads to the low efficiency problem of
blockchain. However, as far as we know, most of the existing
related studies have neglected the low efficiency caused by the
blockchain. As shown in Fig. 5b, the current common sharding
is called complete sharding, where the shards are completely
isolated, and each node belongs to one shard. The nodes in the
same shard are responsible for the consensus within the shard,
including verification and storage. Pyramid [29] proposes
a layered sharding blockchain where nodes can belong to
multiple shards. In Fig. 5c, due to red nodes storing the records
of both shards, red nodes verify the transaction sent by yellow
nodes to purple nodes. The i-shards include nodes that are only
responsible for processing internal transactions. The b-shards
can handle cross-shard transactions by connecting multiple i-
shards.

The sharding structure is randomly generated in Pyramid,
and the number of shards is also random. However, in an
actual CDT system, this randomization method will reduce
the throughput of the system. In crowdsensing, due to the
limitations of workers’ devices, the tasks completed by each
worker are often similar. For example, a worker’s temperature
sensor is more accurate, so he is likely to often complete tasks

i-shardi-shard b-shard

(a) Non-sharding (b) Complete sharding (c) Layered sharding

Fig. 5. Different blockchain systems
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Fig. 6. An example of weighted undirected graph example

related to temperature measurement. Then according to this
logic, each worker will frequently transact with some specific
people. Then in the transaction verification stage, a shard is
formed by nodes that have a high probability of frequent
transactions, which will increase the throughput of the system.

Due to the transparency of the blockchain, we can obtain
historical data of transactions between nodes. In this way, we
get a matrix F of transaction frequency between nodes, where
fi,j represents the number of transactions between node i and
node j. The matrix F can be regarded as the adjacency matrix
of the weighted undirected graph Fig. 6 composed of nodes.

In reality, there are interactions between individuals, and the
weighted network can reflect the strength of the interaction
between individuals. Next, we propose a Layered Sharding
based on Membership Degree (LSMD) shown in Algorithm 2.
In the initial stage of sharding, each node can be regarded as
an independent shard. We define the weight s(x) of node x as
the sum of the weights of edges between all nodes connected
to this node:

s(x) =
∑
y∈τ(x)

ωx.y (14)

The higher the weight of the node, the greater the local
influence of the node in the network. And it plays an important
role in the sharding process. If the weight of a node is greater
than the weights of all its neighbors, this node is a core node.

We first look for core nodes, that is, those nodes with the
greatest local influence. We regard each core node as a shard.
Next, we expand these shards. Nodes have different affiliations
to different shards. We use the membership degree to indicate
the degree of membership of the node to the shard and set the
membership threshold θ as the basis for sharding. We define
the membership degree of node i to shard Sk as:

m(Sk, i) =

∑
j∈τ(i) ωi.j

S(i)
(15)

Generally speaking, when a node is connected to multiple
shards, the membership degrees of the node to multiple shards
are calculated and then compared with the threshold θ. When
the membership degree of the node is greater than θ, the node
is added to the shard. If the membership degree of a node and
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TABLE IV
THE MEMBERSHIP DEGREE OF NODES AND SHARDS

Core node Neighbor node Membership degree
3 1 0
3 2 0.73
3 4 0.35
3 5 0.16
9 8 0.94
9 10 0.27
9 11 0.92
9 12 0.65
9 13 1

Algorithm 2 Layered Sharding Blockchain Based On Mem-
bership Degree
Input: Network = (V,E,W )
Output: Sharing structure S

1: Set θ //Set initial membership degree threshold
2: //Get core nodes
3: Go through every i ∈ V do:
4: for each neighbor u of i:
5: if ∀S(u) ≤ S(i) then
6: S = S ∪ {i}; //Extend the core node set
7: //Extend core nodes
8: repeat
9: Go through every k ∈ S do:

10: for each neighbor i of Sk:
11: Compute m(Sk, i); //Compute the membership degree
12: if m(Sk, i) > θ then
13: Sk add i; //Extend the node into the set of core

node
14: until all nodes are visited
15: return sharing structure S

multiple shards are greater than θ, then this node belongs to
these shards at the same time. That means the node is in the
b-shard in the layered sharding blockchain.

Next, to facilitate the expansion of shards, we normalize
membership degree as:

M(Sk, i) =
m(Sk, i)−min
max−min

(16)

where max represents the maximum value of m(Sk, i), and
min represents the minimum value of m(Sk, i). The larger
the value of M(Sk, i), the greater the possibility that node
i belongs to the sharding Sk. Conversely, the smaller the
M(Sk, i), the less likely it is that node i belongs to the
sharding Sk. If all neighbor nodes of node i are in the sharding
Sk, then M(Sk, i) = 1, if M(Sk, i) > θ, then node i belongs
to the sharding Sk.

We calculate the membership degree of nodes and shards
in Table IV. It can be seen from the table, that the algo-
rithm finds two shards formed by core nodes, namely shards
{3} and {9}. When we assume that θ = 0.4, in the first
round we expand the shards into {2, 3} and {8, 9, 11, 12, 13},
and finally all nodes are divided into {1, 2, 3, 4, 5, 6, 7} and
{6, 7, 8, 9, 10, 11, 12, 13}, so {6, 7} is the overlapping part,
which is the b-shard nodes.

Fig. 7. PoIs for measurement

V. PERFORMANCE EVALUATION

Since there is no public dataset with malicious behaviors
and ground truth for crowdsensing, we evaluate our framework
through real experiments rather than large-scale simulations. In
this section, we first describe our experimental setup. We also
introduce some performance metrics for comparison. Then we
implement some baselines to compare the performance of the
CDT-B system.

A. Experimental Settings

To analyze the performance of CDT-B in this paper, we
implement the CDT-B prototype and deploy CDToken to an
experimental environment based on Ethereum. In our exper-
iment, we consider a CDT-B system in which the tasks are
measuring the Wi-Fi strength, decibel, and light intensity at
8 Points of Interest (PoIs) as shown in Fig. 7. We recruit
50 volunteers in our system, including 40 legal workers and
10 malicious workers. Each legal worker uses one account
to perform tasks and each malicious worker has 3 accounts.
Malicious workers can use one or more accounts to perform
tasks. Note that each account is only allowed to upload one
sensor data at one PoI. Therefore, a malicious worker can
upload at most 3 data for one task using 3 accounts. We
assume that two malicious workers upload fake data. Please
note that although there are only 10 malicious workers in
our experiment, the experimental results can still represent
the scenario when there are malicious workers in the CDT-B
system since the percentage of malicious accounts is close to
the percentage of legal accounts. We collect Wi-Fi strength,
decibel, and light intensity in each PoI multiple times, and
calculate the average value as the ground truth. To represent
the activity of each account, we define

αi =
|Ti|
m

(17)

where |Ti| is the number of tasks performed by worker i and
m is the total number of tasks. In our experiment, each account
has to perform at least two tasks and each account performs
the task according to his or her preference. It is not hard to see
that activity is a good indicator of the contribution of accounts
to the system. However, more active malicious workers can
cause more damage.

For sharding, the account/balance model is used to represent
the state of the ledger, and each node has its account and
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(e) AT-SC’s effect
Fig. 8. ARI comparison with different α-legal

balance. The nodes in the sharding blockchain are connected
by a partially synchronized peer-to-peer network [41], and
messages sent by the nodes can reach any other node through
an exponentially increasing timeout. Similar to most running
blockchain test platforms, in our test platform, the bandwidth
of all connections between nodes is set to 30Mbps, and the
link delay is 2 milliseconds. In a consensus round, each node
can verify up to 4096 transactions. We implement a prototype
of the sharding blockchain based on the degree of membership
for performance evaluation. For comparison, we also imple-
ment non-sharding and complete sharding prototypes.

B. Performance Metrics & Baselines

The following metrics are used to analyze the performance
of the CDT-B system.

• Adjusted rand index (ARI) [42]: This is a widely used cri-
terion for evaluating clustering performance. ARI ranges
from -1 to 1 and the larger the value, the better the
clustering performance. ARI reflects the degree of overlap
between the two groups.

• Average running time: This value is the running time of
different truth discovery algorithms.

• Mean absolute error (MAE): This value is a measure of
the accuracy of the truth obtained by the truth discovery
algorithm. The specific calculation is as follows.

MAE =
1

m

m∑
j=1

∣∣d∗j − gtj∣∣ (18)

where m is the number of tasks, and d∗j and gtj are the
estimated truth and ground truth for task tj , respectively.
The lower the MAE value, the higher accuracy for the
data aggregation.

• Transaction per second: This value is the transaction
throughput in transactions per second for LSDM and
other sharding blockchain systems.

• Confirmation latency: This value is the confirmation
latency of transactions for LSDM and other sharding
blockchain systems.

• Extended modularity (EQ): Since we cannot predict the
structure of the shards, we use modularity to evaluate the
quality of the results. Moreover, our shards overlap, and
the traditional modularity cannot be accurately measured.
So we use EQ to evaluate the quality of the sharding
structure [43]. EQ is calculated as follows:

EQ =
1

2m

K∑
k=1

∑
vi,vj∈Ck

[Aij −
didj
2m

]
1

OiOj
(19)

where m is the total number of edges of the network, K
is the number of shards, di is the degree of node vi, Oi is
the number of shards to which node vi belongs, and A is
the adjacency matrix of the network. If there is an edge
between vi and vj , then Aij = 1; otherwise, Aij = 0.
The larger the value of EQ, the higher the quality of the
sharding structure.

To analyze the performance of GTD proposed in this paper,
we compare it with two truth discovery algorithms, one is
based on CRH [36] and the other based on the truthfinder [30].
Due to the different experimental environments, we adjust the
algorithm according to the core idea to adapt to our model.

To compare the performance of sharding based on member-
ship degree, we also implement three other sharding methods:

• Spectral clustering [44] is an algorithm evolved from
graph theory. This is a widely used clustering algorithm.
Compared with the traditional K-Means algorithm, spec-
tral clustering is more adaptable to data distribution.

• COPRA [45], a label delivery method. The main idea is
that the label of a node is affected by surrounding nodes.
This algorithm can be regarded as an improved algorithm
of the RAK algorithm. The biggest improvement of the
COPRA algorithm to the RAK algorithm is that it can
discover overlapping communities.

• Random like Pyramid [29], in which nodes are randomly
allocated to the shards. Nodes in b-shard could handle
cross-shard transactions.

We test the EQ of these sharding methods on four widely
used partitioned datasets:

• Dolphin data set [46] is obtained by D. Lusseau and oth-
ers through long-term observation records of the lifestyle
of 62 dolphins in a community living off Doubtful Sound.
The nodes represent dolphins, and the edges represent the
frequency of contact between two dolphins.

• Football data set [47] contains the network of American
football games between Division IA colleges during reg-
ular season Fall 2000, as compiled by M. Girvan and M.
Newman. The nodes have values that indicate to which
conferences they belong.

• Karate data set [48] is obtained by research scholar
Zachary by observing the relationships between members
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Fig. 9. MAE comparison without malicious workers
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Fig. 10. MAE comparison with malicious workers

of karate clubs in American universities and describes the
relationships between members in a small social network.

• Polbooks data set [49] is a book about American politics.
The node represents books about American politics sold
on Amazon’s online bookstore. Edges represent frequent
co-purchasing of books by the same buyers, as indicated
by the “customers who bought this book also bought these
other books” feature on Amazon.

C. Simulation Results and Analysis

1) DUP: In this section, we first analyze the performance
of TS-SC and AT-SC and then compare the performance of
grouping methods according to ARI. Fig. 8 shows the ARI
of grouping methods and the truth under different settings. In
each setting, the activities of legal workers are fixed, and that
of malicious workers varies. We set the activity in three grades,
α = 0.4, 0.6, and 1 respectively. In Fig. 8, we can see that
ARI will increase with the increase of the activity of malicious
workers in the two grouping methods. This is because more
information like accomplished task sets and timestamps is used
to distinguish between these malicious workers. As shown in
Fig. 8d, since TS-SC distinguishes workers by comparing the
similarity of task sets completed by workers, when workers’
activity α = 1, the similarity of task sets among workers
is very high, so TS-SC performance deteriorates. However,
in Fig. 8e, AT-SC not only compares the similarity of task
sets but also compares the timestamp similarity of workers’
completion of tasks. So ARI in AT-SC increases as worker
activity increases. Overall, TS-SC performs better when work-
ers’ activities are low. AT-SC performs better when workers
are more active.

2) GTD: We now use MAE as a metric to measure the
accuracy of the proposed method and the two methods men-

tioned above. We analyze the MAE of the GTD algorithm
in the CDT-B system with or without malicious workers. As
can be seen in Fig. 9, no malicious workers are added under
different settings. In each setting, we fix the activeness of
workers and vary the number of workers. We see that the
MAE values of the three methods decrease with the increase
of the worker numbers from Fig. 9d. The reason is that as
more data is obtained from legal workers, these methods will
be more accurate in estimating aggregate results. Also, the
MAE decreases when the workers’ activity increases. This is
because that, with the increase in workers’ activity, more task
data can be obtained, making the accuracy of the algorithms
higher. As shown in Fig. 9, the three methods have similar
performance under different settings.

Fig. 10 shows the MAE of the proposed method and the
two methods mentioned above with the addition of malicious
workers in different settings. In each setting, we still fix
the activeness of workers and vary the number of malicious
workers. We can see that the MAE values of the three methods
increase with the increase in the number of malicious workers.
This is because, with more data from malicious workers, it is
harder to guarantee the accuracy of the aggregation results. We
also see that the MAE values of the three methods decrease
with the increase in the activity of workers. The reason is
that as more data is obtained from workers, it is harder for
malicious workers to manipulate the aggregated results. As
shown in Fig. 10c, the MAE of truthfinder is still larger even
with the high activeness of workers. But the MAE of our
proposed method is always lower than CRH and truthfinder no
matter the number of malicious workers. This is because that
our method can diminish the impact of malicious behaviors by
grouping data from the suspicious workers. We can see from
Fig. 10d that MAE grows larger as the number of malicious
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varying node number

workers increases. At the same time, the MAE decreases with
the increase in worker activity, because the system obtains
more data to make the estimated truth more accurate.

As shown in Fig. 11, among the three methods, the running
time of CRH is the longest. The running time of truthfinder
is the shortest and keeps at the millisecond level. The running
time of GTD is slightly longer than truthfinder and GTD’s run-
ning time increases more as the number of workers increases.

3) LSMD: For LSMD, we use artificial synthetic network
data sets and first compared the effects of different θ on the
results. From Fig. 12, we can see the change of the EQ value of
the entire slice structure as theta changes. When θ = 0.4, the
EQ value is the highest. When θ becomes larger and larger, the
number of nodes that have not joined any shard will increase,
forming an isolated node. This makes the structure of sharding
worse, and the EQ value drops significantly. So in the next
experiment we set θ = 0.4.

We measure the transaction throughput of LSDM and other
sharding blockchain systems with different numbers of nodes,
and the results are shown in Fig. 13. We can see that as the
number of nodes in the network grows, the performance of
non-sharding has been poor. The transaction per second of
complete sharding and layered sharding are getting larger and
larger, and the transaction per second of LSMD is the highest.
This is because the other three methods do not consider the
impact of historical information on the fragmentation structure,
which leads to excessive randomness of the fragmentation
process. Our sharding method significantly improves the trans-
action per second of the system, and to a certain extent
overcomes the overhead caused by using the blockchain.

Then we study the comparison latency in LSDM and other
blockchain systems with different numbers of nodes. As shown
in Fig. 14, the latency increases as the node number increases.
As the node number increases, the number of shards also
increases, which causes more cross-shard transactions. In
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Fig. 17. Different sharding structures on Dolphin data set

complete sharding, cross-shard transactions are divided into
multiple sub-transactions, so confirmation latency increases.
The confirmation latency of LSMD and layered sharding is
relatively close because their sharding structure is similar.

We evaluate the EQ of LSDM and the other three sharding
algorithms under different node number settings on the artifi-
cial data sets, and the results are shown in Fig. 15. We find
that the performance of spectral clustering is poor because the
algorithm does not work well when facing overlapping shards.
COPRA performs slightly better than random, but due to the
randomness of the COPRA algorithm, the sharding results are
unstable. LSMD has the highest EQ.

Then we measure the EQ of these several sharding algo-
rithms on real-world datasets shown in Fig. 16. We find that
the performance of spectral clustering and random is relatively
poor, and the performance of LSMD and COPRA is relatively
close. The LSMD algorithm has the highest EQ value, that is,
the sharding structure has a better performance.

In addition, to express sharding structure more intuitively,
we take the Dolphin data set as an example. As shown in
Fig. 17, since random and COPRA have certain randomness,
the sharding structure of the algorithm is not good enough.
Meanwhile, as the shard number needs to be set in advance in
the spectral clustering algorithm, the algorithm performance
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depends on the shard number. In our experiment, the shard
number is consistent with the first two algorithms. As can be
seen from Fig. 17d, the sharding structure effect of the LSMD
algorithm achieves a better performance.

VI. CONCLUTION

In this paper, we combine the Crowdsensed Data Trading
system with intelligent Blockchain (CDT-B), which includes a
smart contract called CDToken that can be regarded as a third
party. We first utilize the CDToken to record the requesters’
reward function and workers’ data uploading function to avoid
making the targeted trick. At the same time, we not only design
a Data Uploading and Preprocessing (DUP) mechanism in
CDToken to collect and process the workers’ sensed data, but
also propose a Grouping Truth Discovery (GTD) to evaluate
their data quality for determining the payments. Moreover,
considering that there exist a large number of requesters and
workers in a CDT-B system, we propose a Layered Sharding
blockchain based on Membership Degree (LSMD) to solve
the inefficiency problem caused by the blockchain. Finally,
we deploy CDToken to an experimental environment based
on Ethereum and demonstrate its remarkable trustworthiness
and efficiency. In future work, we will consider the dynamic
sharding blockchain to adapt to the real-time changes of the
CDT-B systems.
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