
Symbol-Level Reliable Broadcasting of Sensitive Data in
Error-Prone Wireless Networks

Pouya Ostovaria,∗, Jie Wua, Abdallah Khreishahb

aDepartment of Computer & Information Sciences, Temple University, Philadelphia, PA
19122

bDepartment of Electrical & Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102

Abstract

Reliable packet transmission over error-prone wireless networks has received a
lot of attention from the research community. In this paper, instead of using
simple packet retransmissions to provide reliability, we consider a novel retrans-
mission approach, which is based on the importance of bits (symbols). We study
the problem of maximizing the total gain in the case of partial data delivery
in error-prone wireless networks, in which each set of bits (called symbols) has
a different weight. We first address the case of one-hop single packet trans-
mission, and prove that the optimal solution that maximizes the total gain has
a round-robin symbol transmission pattern. Then, we extend our solution to
the case of multiple packets. We also enhance the expected gain using random
linear network coding. Our simulation results show that our proposed multiple
packets transmission mechanism can increase the gain up to 60%, compared to
that of a simple retransmission. Moreover, our network coding scheme enhances
the expected total gain up to 15%, compared to our non-coding mechanism.

Keywords: Symbol-level coding, broadcasting, reliability, random linear
network coding, weight, wireless networks, error-prone channel.

1. Introduction

Broadcasting schemes are widely used for disseminating data and control
messages in wireless networks. However, the error-prone wireless links cre-
ates challenges in these networks. To handle these challenges, different mech-
anisms [1–5] have been proposed to provide reliability. In the case of numeric
data, e.g., the captured information by sensor nodes, the importance of the data
(numbers) decreases from the left (most significant bit) to the right (least signifi-
cant bit). Therefore, any mechanism that addresses numeric data transmissions
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in a lossy environment should consider the weights of the bits. The problem of
reliable transmission has received a lot of attention; however, to the best of our
knowledge, nobody has studied the problem of transmitting symbols (a group
of bits) with different weights.

In contrast to the previous works, in this paper, we propose a novel broad-
casting approach in wireless networks which considers the importance of the
symbols. Instead of providing reliable transmissions and guaranteeing a full
delivery of the data, we are interested in maximizing the expected total gain
of the destination nodes, with a fixed given number of symbol transmissions.
In applications such as transmitting numeric data from a source node to a set
of destination nodes, encountering an error in more important bits has a more
negative impact, and with a given number of transmissions, it is more efficient
to allocate more transmissions to the most important part of the data.

Figure 1 (a) shows an example, in which a packet with 2 symbols is trans-
mitted to a destination node. The weights of the symbols s1 and s2 are equal
to 2 and 1, respectively. Assume that the error-rate of the link is equal to 0.6.
The window size for transmitting the packet is equal to 2 symbols, and after
that, another packet will be ready for transmission. In this case, the traditional
methods transmit each symbol once. Now, let us compute the expected gain.
We represent the number of transmissions of symbols s1 and s2 as x1 and x2,
respectively. Thus, the probability of successful delivery of symbols s1 and s2
is equal to 1 − px1 and 1 − px2 , respectively. Consequently, the expected gain
is equal to w1 × (1 − px1) + w2 × (1 − px2), where w1 and w2 are the weights
of symbols s1 and s2. The possible distribution of 2 transmissions and their
respective utilities are shown in Figure 1 (b). The figure shows that it is more
efficient to allocate both of the transmissions to symbol s1. Now assume that
the window size is equal to 3 transmissions. Figure 1 (b) shows that the optimal
solution is allocating 2 transmissions to symbol s1, and 1 transmission to symbol
s2. It should be noted that if there is no deadline, then the optimal solution is
a simple extension from the channel coding theory [6].

Finding the importance of a data is application specific. As another example,
consider a multi-layer (multi-resolution) video [7–9]. In multi-layer video coding,
each video is divided into a base layer and a set of enhancement layers. The base
(first) layer is required to watch the video. In contrast, the enhancement layers
can increase the quality of the video. However, a layer is not useful without
the layers with a smaller index. In this case, the layers with a smaller index
are more important than the layers with a greater index. In order to assign
weights to the different layers, we can measure the effect (quality enhancement)
of adding a layer to the layers with a smaller index and consider it as the weight
of that layer.

In this work, we answer the following question. How should we distribute
the transmissions to different symbols with unequal importance in order to
maximize the total expected gain? While answering this question, we have the
following contributions:

• In contrast to previous works, which study the problem of reliable packets
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Figure 1: Motivation example; (a) setting, (b) the choices with 2 and 3 transmissions.

or symbol level transmission, we study the problem of maximizing the
total gain in the case of partial data delivery.

• In the case of single packet transmission to multiple destinations with
homogeneous channel conditions, we propose an algorithm to find the
optimal solution, and prove its optimality. This algorithm assigns the
transmissions to the symbols in a set of round-robin iterations.

• We also propose an optimal algorithm for the case of transmitting a single
packet to multiple destinations with heterogeneous channels.

• We extend the proposed single packet transmission algorithms to the case
of multiple packets, and use the advantage of random linear network cod-
ing to enhance the expected gain.

• We show that network coding does not necessarily increase the gain, and
we find the condition that network coding results in more gain than the
non-coding mechanism.

The rest of this paper is organized as follows. Section 2 reviews the re-
lated work and describes linear network coding. In Section 3, we provide the
problem definition and the setting. We propose our mechanisms for the case of
transmitting a single packet in Section 4. In Section 5, we extend our proposed
mechanism to the case of transmitting multiple packets, and we boost the gain
of the proposed method using linear inter-packets network coding. We discuss
the implementation issues in Section 6, and evaluate the proposed mechanisms
through simulations in Section 7. Section 8 concludes the paper.
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2. Related Work and Background

2.1. Reliable Transmission
Certain mechanisms, such as feedback messages, can be applied in error-

prone wireless networks to provide reliability. Automatic Repeat reQuest (ARQ)
is one of the most frequently used approaches for addressing this challenge [1].
Nevertheless, ARQ imposes overhead, since it requires transmitting many feed-
back messages, especially for the case of multi destination nodes. Hybrid-ARQ
approaches [2, 10], which combine FEC (Forward Error Correction) with ARQ,
are proposed to solve this problem. The RMDP approach, which is a complex
method, [10] uses Vandermonde [11] code and ARQ to ensure reliability.

Using rateless (fountain) codes [3–5] is an efficient way to provide reliability
without using feedback messages. In these schemes, the source node can gener-
ate and transmit an unlimited number of encoded packets until each destination
node receives enough encoded packets to retrieve the original packets. In this
scheme, the destination nodes need to collect a sufficient number of encoded
packets, regardless of which packets have been lost. Assuming that the number
of original packets is k, the number of sufficient coded packets that need to be
received is N = (1 + ϵ) [3], where ϵ is a small number and shows the overhead
of the rateless codes. Note that ϵ is independent of the reliability of the links.
It can be shown that as k → ∞, the overhead goes to zero [12]. Therefore,
rateless codes are very efficient for transmitting a large number of packets, but
are inefficient for transmitting a small number of packets. As a result, rateless
codes are not appropriate for delay-sensitive applications, such as our problem,
which needs small batches of packets.

2.2. Network Coding
Network coding (NC) [13–19] is introduced in [20] for wired networks, to

solve the bottleneck problem in single multicast problem. It is shown in [21]
that linear network coding achieves the capacity for the single multicast session
problem. The authors in [22] provide a useful algebraic representation of the lin-
ear network coding problem. Random linear network coding is proposed in [23],
and it is shown that randomly selecting the coefficients of the coded packets,
achieves the capacity asymptotically, with respect to the finite field size.

In random linear network coding, coded packets are the random linear com-
bination of the original packets over a finite field. The coded packets are in the
form of

∑k
i=1 αi × Pi, where P and α are the packets and random coefficients,

respectively. Using random linear network coding, the source node generates
and transmits random coded packets and their respective random coefficient
vector. The destination nodes are able to decode the coded packets once they
receive k linearly independent coded packets. The decoding process is done
using Gaussian elimination for solving a system of linear equations. Using this
scheme, the destination nodes can send just one acknowledgment message to
stop the source node from sending more coded packets once they are able to
decode the coded packets.
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The work in [24–27] address the problem of reliable one-hop broadcasting. In
order to provide reliability, the source node needs to retransmit the lost packets
by the destination nodes. The source node uses the benefit of network coding
in the retransmission phase to improve the transmission efficiency. In order
to reduce the number of required retransmissions, these methods combine the
packets that have not been received correctly by different receiver nodes. As-
sume that in Figure 2, the source node sends packets P1 and P2, and destination
nodes d1 and d2 only receive packets P1 and P2, respectively. As a result, the
source node needs to retransmit both of the packets. However, using network
coding, the source node can mix the packets to send a single packet P1 + P2.
If nodes d1 and d2 receive the coded packets, they can retrieve their respective
packets P2 and P1, by performing (P1+P2)−P1 and (P1+P2)−P2, respectively.

Symbol-level network coding for wireless mesh networks is introduced in [28],
and it is shown that its throughput is more than that of the packet-level network
coding. The insight behind the symbol-level coding is that, even in the case that
a node does not receive a coded packet correctly, some of the symbols that form
the packet might be received without any error. As a result, if instead of coding
the packets together we code the symbols, the successfully received symbols
do not need to be retransmitted, and transmitting the remaining symbols is
sufficient; therefore, symbol-level transmission reduces the transmission cost.

The authors in [29, 30] use the symbol-level coding to propose a method for
distributing data and multimedia in vehicular networks. They show that the
symbol-level network coding outperforms the packet level network coding for
content distribution in Vehicular Ad-Hoc Networks (VANET). The goal in [30]
is to efficiently designate live streaming multimedia to the mobile nodes in a
specific region of a road, called an area of interest.

3. Setting

We consider a single-hop wireless network that consists of one source and
n destination nodes d, as depicted in Figure 2. The source node has a batch
of k packets to send to the destination nodes, and each packet consists of m
symbols. Each symbol itself might contain several bits. Each symbol has a
weight wi, and in general, wi > wi+1,∀i : 1 ≤ i ≤ m − 1. For simplicity,
we assume that the weight of the i-th symbols of all of the packets are the
same. However, the proposed solutions in this paper can be easily extended to
the case of packets with different symbols’ weights. We assume that the error
rate of each transmitted symbol (or packet) from the source node to the i-th
destination node is equal to pi. We represent the number of times that the i-th
symbol is transmitted as xi.

In our model, the packets of a batch have a deadline to be received by
the destination nodes, which is equal to the window size, and after this time
another batch of packets will be ready for transmission. As a result, channel
coding, hierarchical coding, and unequal error protection methods cannot be
applied in our setting. We assume that this window size for a batch of packets
is enough for transmitting t× k symbols, where t is the assigned window for a
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Figure 2: System setting.

single packet. If the packets are not delay sensitive, or the source has infinite
packets to transmit, the optimal solution is a simple extension of the well-
known channel coding theory [6]. Our goal is to maximize the total weight of
the received symbols of a batch of k packets by the destination nodes. As a
result, our utility function becomes:

u = k ×
m∑
i=1

n∑
l=1

wi × (1− pl
xi) (1)

s.t.
m∑
i=1

xi = t

It is obvious that we should assign a larger portion of the transmissions to the
symbols that are more important than the other symbols, as successful delivery
of these packets to the destination nodes results in more gain. However, it is
not clear how we should assign and distribute the transmissions (duplications)
to the different symbols of the packets in order to maximize the total gain. Our
goal in this work is to find this optimal assignment. In the rest of the paper we
use gain and utility interchangeably. The set of symbols used in this paper is
summarized in Table 1.

For the case of data like binary data, in which the importance of the i-th
bit is twice that of the i + 1-th symbol, the weight of the i-th symbol can be
defined as 2m−i. As a result, the objective function becomes:

k ×
m∑
i=1

n∑
l=1

2m−i × (1− pl
xi)

In this case each symbol contains one bit. In Binary-Coded Decimal (BCD),
each decimal digit is represented with a fixed number of bits, usually 4 bits.
Figure 3 shows a decimal number and its conversion to BCD. For the case of
BCD, we can consider the 4 bits that correspond to the same decimal digit as a
symbol, in which the weight of the i-th symbol is 10 times that of the i+ 1-th
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symbol. Consequently, for the BCD data, the objective function will be:

k ×
m∑
i=1

n∑
l=1

10m−i × (1− pl
xi)

In this work, we do not restrict the solution to a special weighting system,
and solve the problem in the general case. The parameters in our proposed
method can be adjusted based on the application and the structure of the data
to be transmitted.

4. Optimal Solution for the Case of Single Packet

In the following two sections, we first find the optimal distribution of trans-
missions to different symbols in the case of destination node with homogeneous
channels, and then we extend it for heterogeneous destination nodes.

4.1. destinations with Homogeneous Channels
We first investigate and address the problem in the case of a packet size

equal to 2 symbols. Then, we generalize the solution to the case of m symbols.

4.1.1. Packet Size m = 2

for a packet size m = 2, the objective function becomes:

u = n×
[
w1 × (1− px1) + w2(1− px2)

]
s.t. x1 + x2 = t

We denote the change in the total gain as we increase the i-th symbol’s
transmissions from xi to xi + 1 as ∆xi , so we have:

∆xi = n× wi × (1− pxi+1 − (1− pxi))

= n× wi × (1− p)× pxi
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Table 1: The set of symbols used in this paper.
Notation Definition
di The i-th destination node
n The number of destination nodes
m The number of symbols inside each packet
k The number of packets
wi The weight of the i-th symbol of each packet
pi The error rate of the link between the source and the i-th destination

node.
t The size of the transmission time window for each packet (in the term

of number of symbols)
si The i-th symbol (in the case of single packet)
sj,i The i-th symbol of the j-th packet
Si The i-th coded symbol
Pi The i-th packet
∆xi The change in the utility gain as we increase xi to xi + 1
u The utility function
ui The gain (utility) from the i-th symbols
uNC
i The gain (utility) from the i-th symbols when we use linear NC

uNC The total gain (utility) of using linear NC
uUC The total gain without using linear NC
cNC The header cost of a linear coded packet
cUC The header cost of an uncoded packet
τ The number of sets of t transmissions performed so far
pi,τ The actual error rates of the link between the source and node di in the

set of τ -th set of transmissions
p̂i,τ The estimated error rates of the link between the source and node di in

the set of τ -th set of transmissions
ri,τ number of successfully received symbols by the destination node di in

the set of τ -th set of transmissions

As mentioned in the setting, w1 > w2. Thus, it is obvious that, in order
to achieve more gain, the number of times the source node transmits the first
symbol should be more than or equal to that of the second symbol. If we consider
the problem in t rounds of transmission, the first time we should increment x2

and transmit the second symbol is when the gain of increasing x1 is less than
that of increasing x2. In other words, the condition to increase x2 is ∆x1 < ∆x2 .
Consequently, we have:

n× w1 × (1− p)px1 < n× w2 × (1− p)px2
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and as a result,

px1 <
w2

w1
px2 (2)

In this case, we are incrementing x2 for the first time, so x2 = 0, and we
have:

px1 <
w2

w1
(3)

Therefore, the first time we should increment x2 is when px1 < w2

w1
; we refer

to this point as the saturation point. After this point, whenever px1 < w2

w1
px2 , we

should increment x2, since it results in more gain. In contrast, if px1 ≥ w2

w1
px2 ,

we increment x1.
We show the optimal distribution of the transmissions between x1 and x2 for

different total numbers of transmissions t in Figure 4. The weights of symbols
s1 and s2 in this example are assumed to be 5 and 1, respectively. To find the
optimal distribution, we compute the utility for all of the possible distributions.
It can be inferred from this figure that, after incrementing x2 for the first time,
the optimal solution has a round-robin incrementing pattern. The insight behind
this phenomenon is as follows. The ratio of ∆x1 and ∆x2 is equal to:

n×∆x1

n×∆x2

=
w1 × (1− p)× px1

w2 × (1− p)× px2
=

w1 × px1

w2 × px2
(4)

Before we reach the saturation point, ∆x1 ≥ ∆x2 , and the ratio in Equa-
tion (4) is greater than 1. However, after the saturation point, whenever we
increment x2, the ratio in Equation (4) is multiplied by 1

p , and it becomes
greater than 1. As a result, the next transmission should be assigned to x1,
as it results in more gain. In contrast, whenever we increment x1, the ratio
is multiplied by p, which makes the ratio less than 1. In this case, it is more
beneficial to assign the next transmission to x2.

Based on the discussion, our algorithm works as follows. We iteratively
increment x1 and decrement t until px1 < w2

w1
. If any more transmissions are

left, we start to distribute these remaining transmissions between x1 and x2

in a round-robin pattern. We prove the optimality of this algorithm in the
Appendix Appendix A.1.

4.1.2. General Packet Size m

Similar to the case of m = 2, the first symbol (the symbol with the smallest
index) has more weight, so it is more important than the other symbols. As
a result, we should not transmit other symbols until ∆x1 > ∆x2 . It should be
noted that this condition implies that ∆x1 > ∆xi ,∀i : 2 ≤ i ≤ m. The reason is
that, w2 > wi,∀i : 3 ≤ i ≤ m, and xi = 0,∀i : 2 ≤ i ≤ m. Consequently, similar
to the case of packet size m = 2, the first time that we should increment x2 is
when px1 < w2

w1
, and after this point, the transmissions should be distributed

between x1 and x2. However, in contrast with the case of m = 2, after a specific
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Figure 4: Optimal distribution of transmissions between 2 symbols for an error probability
p = 0.5, w1 = 5, and w2 = 1.

point, we should start to transmit the third symbol. The condition to increment
x3 is when ∆x1 < ∆x3 and ∆x2 < ∆x3 . For ∆x1 < ∆x3 we have:

n× w1 × (1− p)px1 < n× w3 × (1− p)px3

At this step, we are increasing x3 for the first time; therefore, x3 = 0, and the
first optimality condition becomes px1 < w3

w1
. Moreover, for the second condition

∆x2 < ∆x3 we have:

n× w2 × (1− p)px2 < n× w3 × (1− p)px3

As x3 = 0, the equation becomes px2 < w3

w2
. When these two conditions hold,

we should start assigning the remaining transmissions to the first 3 symbols in a
round-robin pattern. By the same reasoning, the condition for increasing xm is
when pxi < wm

wi
,∀i : 1 ≤ i ≤ m− 1. Figure 5 shows the optimal distribution of

the transmissions between different symbols when m = 5 for different numbers
of total symbol transmissions t. The link’s error rate and wi are equal to 0.5
and 25−i, respectively. This figure shows that, even in the case of a packet size
more than 2 symbols, the round-robin distribution of the transmissions results
in the optimal solution.

We can summarize the discussion and the procedure of our weighted re-
transmission with homogenous destinations (WRH) algorithm as follows. We
assign the transmissions to x1 until px1 < w2

w1
. Then, we distribute the re-

maining transmissions between x1 and x2 until px1 < w3

w1
and px2 < w3

w2
. After

this point, we continue the round-robin distribution of the remaining trans-
missions among x1, x2, and x3. In general, we start incrementing xj when
pxi <

wj

wi
,∀i : 1 ≤ i ≤ j − 1, and we add xj to the round-robin increment-

ing process. We continue this process until t becomes 0. The proof of this
algorithm’s optimality is presented in Appendix Appendix A.2.
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The binary and BCD representations of decimal number 83 are shown in
Figures 6 (a) and (b), respectively. In BCD, the weight of symbol s1 is 10 times
that of symbol s2. Also, the weight of symbol si is twice that of symbol si+1

in binary representation. Assuming that the error rate of the link between the
source and destination nodes is equal to 0.2, we show the optimal solutions in
the cases of 8, 12, and 16 symbol transmissions for the binary number in Figure 6
(a). Note that, in this case, each symbol contains one bit. In BCD, the size of
each symbol is 4 times that of the binary representation. Therefore, in Figure 6
(b), we show the optimal transmissions with 2, 3, and 4 symbol transmission in
the BCD representation.

4.2. Destinations with Heterogenous Channels
In the case of multiple destination nodes with different transmission error

rates, the round-robin distribution pattern does not exist. For this reason, we
use an iterative algorithm, which we call weight retransmission (WR). In each
iteration of the WR method, we assign one transmission to a symbol such that it
maximizes the increase in the total gain. In the case of heterogenous destination
nodes, ∆xi

can be calculated as follows:

∆xi = wi ×
n∑

l=1

[
1− pxi+1

l − (1− pxi

l )
]

= wi ×
n∑

l=1

[
pxi

l − pxi+1
l

]
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and the total utility is equal to:

u =

m∑
i=1

[
wi ×

n∑
l=1

(1− pxi

l )
]

The WR algorithm assigns the total number of transmissions t to the dif-
ferent symbols in t rounds. At each iteration, our algorithm computes ∆xi ,∀i :
1 ≤ i ≤ m, and it assigns the current transmission to xj that increasing its
number of transmissions by one results is more increase in the total gain. In
other words, j = argmax1≤i≤m ∆xi . Algorithm 1 shows the iterative process.

The second loop (the loop over j) and its internal for loop in Algorithm 1
run t and m times, respectively. Moreover, ∆xi is a summation over n nodes.
As a result, the complexity of the WR method is in the order of O(t×m× n).
We leave the proof of optimality to Appendix Appendix B.

5. Efficient Solution for the Case of Multiple Packets

In order to broadcast a batch of k packets from a source node to a set
of destination nodes, we can use two approaches: without and with network
coding. We describe the details of the mechanisms in the following sections.
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Algorithm 1 WR Algorithm
for i=1 to m do
xi = 0

for j=1 to t do
max = 0
argmax = 0
for i=1 to m do
∆xi = wi ×

∑n
l=1(p

xi

l − pxi+1
l )

if ∆xi > max then
max = ∆xi

argmax = i
xargmax = xargmax + 1

5.1. Without Network Coding
In our model, we assume that the packet sizes (in term of symbols) are

equal. Moreover, the weights of the i-th symbols in different packets are the
same. As a result, the problem of sending k independent packets becomes k
similar problems with the same solution. Consequently, we can simply use the
result of the previous section, and repeat the same process for the different
packets. In the weighted multiple packets retransmission (WMPR) mechanism,
we first compute the optimal number of transmissions for each symbol. For
this purpose, we perform one of the proposed algorithms in the previous section
(WRH or WR), depending on the channels condition. Then, we use the output
values xi from the first step, and transmit each of the i-th symbols of the different
packets xi times. As we repeat the same process on k packets, the utility of this
scheme is k times the gain of transmitting one packet.

5.2. Inter-Packet Network Coding
Random linear network coding can increase the gain of the WMPR mech-

anism. In our heuristic algorithm with network coding, much similar to the
WMPR method, we run the WRH or WR algorithms to compute the optimal
value of xi,∀i : 1 ≤ i ≤ m. Then, as it is shown in Figure 7, we code all of
the i-th symbols of the k packets together. We denote the i-th coded symbols,
as Si. The coded symbols are in the form of Si =

∑k
j=1 αj × sj,i, where αj,i

is a random coefficient. In this scheme, the source node generates and sends
xi × k coded symbols from the i-th original symbols. This is in contrast with
the WMPR approach, in which the source node transmits the i-th symbol of
each packet xi times (xi × k transmissions for k packets). We refer to our pro-
posed weighted multiple packets retransmission method with network coding as
WMPR-NC method.

In the discussed inter-packet network coding policy, each destination node is
able to decode the i-th coded symbols and retrieve the k original i-th symbols
of different packets, if it receives at least k linearly independent coded symbols.
The decoding phase can be done using Gaussian elimination for solving a system
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Figure 7: Inter-packet network coding.

of linear equations. Consequently, the gain from the i-th symbols of the k
packets can be calculated using the following equation:

uNC
i = wi × k ×

n∑
l=1

[ xi×k∑
j=k

(
k×xi

j

)
× (1− pl)

j × pxi×k−j
l

]
(5)

In Equation (5), we multiply wi by k since, when we code the i-th symbols
of the k packets together, any destination node can decode all of the symbols,
or none of them. The total number of transmissions for the set of i-th symbols
is equal to xi × k; as a result, the probability of receiving j coded symbols
correctly, and happening error in the rest of the coded symbols, is equal to(
k×xi

j

)
× (1 − p)j × pxi×k−j , where

(
k×xi

j

)
is the number of possible ways to

select j coded symbols out of the transmitted coded symbols. A node needs at
least k coded symbols to decode the coded symbols; therefore, the number of
received coded symbols should be in the range of k and xi × k.

Because of using network coding, each coded symbol contributes the same
amount of information to the destination nodes. Therefore, receiving any k
coded symbols is sufficient for retrieving the symbols. This is in contrast to the
case of non-coding transmissions, in which a destination node might not receive
some of the symbols, and might receive the other symbols multiple times. In
this case, receiving a symbol multiple times does not contribute to the total
gain. However, network coding decreases the probability of receiving partial
i-th symbols of the packets. The reason is that, if a destination node receives
enough coded symbols, it can decode the coded packets and retrieve all of the
original symbols; however, it cannot decode the coded symbols in the case of
receiving an insufficient number of coded packets.

Consider the example in Figure 8, in which the source node wants to send two
single symbol packets to the destination node d1. Assume that the transmission
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Figure 8: Example of inter-packet network coding.

error rate is equal to 0.5, and x1 = 2. The WMPR scheme sends each symbol
twice. As a result, the probability of the destination node receiving both of
the packets is equal to (1 − p2) × (1 − p2) = 0.5625, and the probability of
receiving just one of the packets is equal to 2× (1− p2)× p2 = 0.3750. On the
other hand, the WMPR-NC scheme sends 4 random linear combinations of the
symbols. Therefore, the destination node can decode and recover both of the
symbols, if it receives at least any 2 coded symbols out of the 4 transmitted coded
symbols. In this case, the probability of retrieving both of the packets is equal
to 1− p4 − 3× p3 × (1− p) = 0.75, which is more than the WMPR mechanism.
The reason for this difference is that, in the case of non-coded symbols, the
destination node needs to receive each of the transmitted symbols at least once,
and receiving one of the symbols twice does not have any advantage. However, in
the case of network coding, the probability of retrieving just one of the symbols
is equal to 0; as in random linear network coding, partial retrieval is not possible.

Figure 9 shows the gain of the network coding and no coding approaches
for a different number of transmissions t. The number of packets and the link’s
error rate are equal to 10 and 0.5, respectively. It can be inferred from the
figure that, in this case, for a t greater than 2, it is more efficient to use the
proposed inter-packet network coding. In contrast, for a t less than or equal to
2, we should avoid using network coding, since it reduces the gain.

Referring to our discussion, for each set of symbols from the different packets,
it might be beneficial to use network coding, or it might be more efficient to
avoid using network coding. Therefore, for each set of the i-th symbols of the
packets, we compute the utility of the non-coding and coding mechanisms. If
the performance of the coding policy is more than that of the non-coding, we
generate k × xi random coded symbols, where xi is the optimal number of
transmissions when we use the non-coding mechanism. This process is shown
in Algorithm 2. It should be noted that, if it is more efficient to transmit the
i-th symbols of the packets without using network coding, we do not need to
continue the algorithm for the remaining symbols. The reason is that, always,
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Algorithm 2 WMPR-NC Algorithm
Compute the optimal x⃗ by running WRH or WR merhods
for i=1 to m do
ui = wi × k ×

∑n
l=1(1− pxi

l )

uNC
i = wi × k ×

∑n
l=1

[∑xi×k
j=k

(
k×xi

j

)
× (1− pl)

j × pxi×k−j
l

]
if uNC

i > ui then
for i=1 to k × xi do

Create a random linear combination of the i-th symbols

1 2 3 4 5
0

2

4

6

8

10

Number of transmissions

U
til

ity

 

 

No coding
Inter packet−NC

Figure 9: Comparison between the gain of the inter-packet network coding and no coding
mechanisms, error probability p = 0.5, number of packets k = 10.

xj ≤ xi,∀i, j : j > i, as wj ≤ wi. Therefore, if is not efficient to encode the i-th
symbols together, it is definitely not efficient to encode the j-th symbols.

6. Implementation

6.1. Packet Header
After assigning the transmissions to the symbols, we should put them to-

gether to form the packets. In the WRH, WR, and WMPR mechanisms, we
need to specify the index of each symbol in the packet. If we had just one trans-
mission for each symbol, we could simply mention the first and the last index
of the symbols that are included in the packet. Then we could put the symbols
in the packet in increasing order of their index. However, in our schemes, each
symbol might be included in a packet several times. As a result, we need 3 fields
in the header to indicate the locations of symbol si. The first field represents
the index of the symbol. The second and the third fields are used to show the
starting and the ending locations of symbol si in the packet, respectively. Fig-
ure 10 (a) shows the structure of the header in the WRH, WR, and WMPR
mechanisms.

The header contains important information about the location of the sym-
bols in the packet. As a result, the header must be received correctly by the

16



Algorithm 3 Optimal header duplication
Max gain = 0
for x0 = 1 to t− 1 do

depending on the setting, run the WRH, WR, and WMPR algorithms to
compute the optimal x⃗ in transmitting t− x0 symbols
use Equation (6) to compute u
if u > Max gain then
Max gain = u

else
return xo and x⃗
exit loop

..
.

(a)

Source IP          Dest. IP

Index i      Start       End 

Index j      Start       End 

The locations of 

the i-th symbols
..

.

(b)

Source IP         Dest. IP

Index i       Coding flag

Index i+1   Coding flag

Coefficient 1

Coefficient 2
..

.

Figure 10: Packets’ header, (a): The WRH, WR, and WMPR mechanisms, (b): The WMPR-
NC mechanism.

destination nodes. To increase the reliability, forward error correction (FEC)
codes [31–33] can be used. In addition to FEC codes, we can include the header
multiple times in the packet, as this part of the packet is much more impor-
tant than the other parts. If we consider the correct delivery of the header, the
Objective Function (1) can be rewritten as follows:

u = k ×
m∑
i=1

n∑
l=1

wi × (1− pxo

l )× (1− pl
xi) (6)

s.t.
m∑
i=0

xi = t

where x0 is the header duplication.
Consider Figures 11 (a) and (b). We assign different values to x0 and run the

WRH algorithm to find the optimal distribution of the remaining transmissions
to the symbols. Figures 11 (a) and (b) show the maximum achievable gain when
the total number of transmissions is equal to 10, and the error rates are equal to
0.2 and 0.5, respectively. These figures show that, as we increase the duplication
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Figure 11: Optimal header duplication, total number of transmissions equal to 10; (a): p=0.2.
(b): p=0.5.

of the header, the total gain increases. The reason is that, a correctly received
symbol is not useful unless the header is also received correctly. However, after
a specific point, the total gain starts to decrease. To find the optimal header
duplication x0, we start with x0 = 1, and run the WRH, WR, and WMPR
algorithms to compute the optimal xi in transmitting t− 1 symbols. We repeat
the same process for x0 = 2 and t − 2, and stop once we find that the utility
decreases as we increment x0. The details are shown in Algorithm 3.

In the WMPR-NC mechanism, the i-th symbol might be encoded or non-
coded. Therefore, we need a flag field to indicate the encoded symbols. The
packets’ header in the WMPR-NC method is shown in Figure 10 (b). In addition
to the source and destination IP addresses, we use index and coding flag to show
the encoded symbols. The coefficients of the coded symbols are also included
at the end of the header, which increases the overhead. In order to decrease
this overhead, we can put some predefined random coefficient vectors on the
destination and the source nodes. In this way, instead of including the coefficient
in the header, the source can just put the index of the coefficient vectors in the
header. In order to make the coefficient vectors useful for any packet batch size,
the size of the predefined vectors should be chosen long enough. If the size of a
given batch is less than the vector size, the extra elements of the vector can be
ignored by the destination nodes.

6.2. Packet Header Overhead
It is clear that the header overhead of network coded packets is more than

that of the uncoded packets. As a result, depending on the header costs, network
coding might be efficient or inefficient. In order to consider the packet’s header
cost, we modify Algorithm 2 to Algorithm 4, and refer it as the WMPR-header
algorithm. We denote the total gain in the case that network coding is enabled
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Algorithm 4 MPT-header
uNC = 0
uUC = 0
Compute the optimal x⃗ by running WRH or WR methods
for i=1 to m do
ui = wi × k ×

∑n
l=1(1− pxi

l )

uNC
i = wi × k ×

∑n
l=1

[∑xi×k
j=k

(
k×xi

j

)
× (1− pl)

j × pxi×k−j
l

]
uNC = uNC +max(uNC

i , ui)
uUC = uUC + ui

uNC = uNC − cNC × (
∑m

i=1 wi)× k × t
m × n

uUC = uUC − cUC × (
∑m

i=1 wi)× k × t
m × n

if uNC ≤ uUC then
Turn off network coding

as uNC . Moreover, the total gain without network coding (uncoded packets)
is represented as uUC . We first compute the utilities in the cases that network
coding is enabled or disabled (raw utilities). Each iteration of the loop computes
the utility of each symbol. In each iteration of the for loop, we add max(uNC

i , ui)
to uNC , since the i-th symbols in the network coding mode can be coded or
uncoded (see Algorithm 2).

After computing the raw utilities, we subtract the header costs from the raw
utilities. Assume that the header cost of a linear coded packet and an uncoded
packet are equal to cNC and cUC , respectively. The value of each packet is equal
to

∑m
i=1 wi. Moreover, we have k packets and each of them will be transmitted

t
m times (note that t is the total number of symbol transmissions for each
packet). Consequently, the total overhead of network coded packets is equal
to cNC × (

∑m
i=1 wi) × k × t

m . We are computing the total utility of n nodes;
thus, we multiply the overhead by n and subtract it from the raw utilities. If
uNC ≤ uUC , we disable network coding, as it reduces the gain. Algorithm 4
shows the details.

6.3. Unknown Channel
So far, we have assumed that the channel erasure probabilities are perfectly

known by the source node. The total gain is highly dependent on the error
rate of the links; therefore, the source node needs to learn them, when it does
not have perfect channel knowledge. For this purpose, each destination node
di sends a feedback message to the destination node at the end of the t × k
transmissions by the destination node (t transmissions for the case of single
packet), which contains the number of successfully received symbols. Assume
that the number of correctly received symbols in the last transmission window
τ , and the estimated error rate of the destination node di after the τ -th set of
transmissions, are equal to ri,τ and p̂i,τ , respectively. Accordingly, the estimated
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Algorithm 5 Updating channels’ error rate
After the τ -th set of transmissions update the error rates pi,τ+1, as follows,
for i=1 to n do

Receive ri,τ from destination di
pi,τ =

t×k−ri,τ
t×k

p̂i,τ+1 =
(τ−1)×p̂i,τ+pi,τ

τ

channel error rate of the destination node di is given by:

p̂i,τ+1 =
(τ − 1)× p̂i,τ + pi,τ

τ
(7)

where pi,τ represents the error rate of the link between the source and node di
in the τ -th set of transmissions, and can be calculated as follows:

pi,τ =
t× k − ri,τ

t× k

In Equation (7), we multiply τ − 1 by p̂i,τ to compute the total error rate in
the τ −1 set of transmissions. Then, we sum it up with the measured error rate
in the last set of transmissions, and compute the average error rate. Algorithm 5
shows the updating process of the error rates.

7. Simulation

7.1. Setting
In this section, we evaluate our proposed mechanisms WRH (weighted re-

transmission with homogenous destinations), WR (weighted retransmission with
heterogenous destinations), WMPR (weighted multiple packets retransmission),
and WMPR-NC (weighted multiple packets retransmission with network cod-
ing). We compare our proposed mechanisms with a simple retransmission (SR)
method. In this method, we distribute the transmissions evenly to the different
symbols of the packets. As mentioned in the setting, the packets of a batch have
a deadline to be received by the destination nodes, which is equal to the window
size, and after this time another batch of packets will be ready for transmis-
sion. Thus, channel coding, hierarchical coding, and unequal error protection
methods cannot be applied in our setting. That is the reason we do not include
them in our simulations. Moreover, the objective of the mentioned papers in the
related work is to provide 100% reliability, and they do not have any constraint
on the number of transmissions. In contrast, we want to maximize the gain
with a fixed number of transmissions. We run the simulations on 1,000 random
topologies, with different links’ error rates, and for each of the random topolo-
gies, we run the simulations 10 times. The plots in this paper are based on the
average outputs of the simulation runs. We assume that the weight of the i-th
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symbol of a packet is equal to 2m−i. The tunable metrics in the simulations are
as follows:

• Total number of transmissions: in order to study the effect of the number
of transmissions on the total gain, we evaluate the methods with a number
of transmissions in the range of m and 4×m for each packet.

• Packet size: the number of symbols in each packet in different plots are in
the range of 5 to 10.

• Number of packets: in the case of multiple packets transmission, we change
the number of packets that the source node transmits to the destination
nodes from 20 to 50.

We choose these ranges since we believe that they are reasonable numbers in a
typical scenario.

7.2. Results
7.2.1. Single Packet

in the first experiment, we compare the total gain of the WRH and the SR
methods in Figure 12 (a). The packet size in this experiment is equal to 10
symbols. Also, the number of destination nodes and the link error probability
are equal to 5 and 0.3, respectively. It is clear that the total gain should increase
as we increase the total number of transmissions, which can be seen in the
figure. Moreover, the figure shows that the difference between the WRH and
the SR methods decreases as we increase the total number of transmissions
from 10 to 40 symbols. The reason is that the successful delivery of all of the
symbols approaches 1 in both of the mechanisms as we increase the number of
retransmissions. Figure 12 (a) shows that the total gain of the WRH mechanism
is up to 30% more than that of the SR method.

We increase the link’s error rate to 0.5, and repeat the previous experiment
in Figure 12 (b). Similar to Figure 12 (a), the difference between the two
mechanisms decreases as we increase the number of retransmissions in Figure 12
(b). However, by comparing Figures 12 (a) and (b), we find that the efficiency
of our proposed mechanism, WRH, increases as the link’s error rate increases.
The total gain of the WRH approach in this figure is up to 60% more than that
of the SR method.

In the next experiment, we evaluate the gain of the WR mechanism in send-
ing a packet to multiple destinations, by comparing it to the SR method in
Figure 13 (a). We set the packet size to 10 symbols, and transmit a total of 10
symbols. In each of the 1,000 runs, the links’ error rates are randomly chosen in
the range of [0.2, 0.4]. The figure shows that the gain of both of the mechanisms
increase as we increase the number of destinations; this is due to the presence
of more receiver nodes. Also, it is clear from the figure that the relationship of
the total gain and the number of destinations is linear, which is because of the
independence of the links. As a result, the ratio of the gain of the mechanisms
is fixed in this figure.

21



10 20 30 40
2500

3000

3500

4000

4500

5000

5500

Number of transmissions

T
ot

al
 g

ai
n

 

 

SR
WRH

(a)

10 20 30 40
2500

3000

3500

4000

4500

5000

5500

Number of transmissions

T
ot

al
 g

ai
n

 

 

SR
WRH

(b)

Figure 12: Comparison between the gain of the WRH and SR mechanisms in the case of single
packet transmission, m = 10, k = 1, n = 5; (a) p = 0.3, (b) p = 0.5.
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Figure 13: Comparison between the gain of the WR and SR mechanisms in the case of single
packet transmission, m = 10, k = 1, t = 10; (a) p ∈ [0.2, 0.4], (b) p ∈ [0.2, 0.6].

We repeat the previous experiment in Figure 13 (b) by increasing the range of
the links’ error rates to [0.2, 0.6]. As it is expected, the gains of the mechanisms
in Figure 13 (b) are less than that of Figure 13 (a). The efficiency of the WR
mechanism increases as the error rates increase.

7.2.2. Multiple Packets
Figure 14 (a) shows the total gain of the WMPR, WMPR-NC, and SR

mechanisms. In this figure, the packet size is equal to 5 symbols. Also, the
number of destination nodes is equal to 5, and the error rate of the links between
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Figure 14: Comparison between the gain of WMPR, WMPR-NC, and SR mechanisms, m = 5,
n = 5; (a) p = 0.4, t = 5 (b) k = 50.

the source and the destination node is equal to 0.4. We increase the total number
of transmissions as we increase the number of packets, and it is equal to the total
number of symbols (total number of symbols is equal to 5 times the number of
packets). As it is expected, the gain of the WMPR-NC mechanism is more than
that of the other methods. Moreover, the gain of the WMPR mechanism is more
than that of the SR method. Figure 14 (a) shows that the gain of the WMPR-
NC mechanism is up to 15%, and 45% more than that of the WMPR and SR
methods, respectively. Also, the efficiency of the network coding increases as
we increase the number of packets, which are coded together.

We evaluate the effect of the link’s error rate on the gain in Figure 14 (b).
The packet size and the number of packets are equal to 5 symbols and 50,
respectively. Also, for the total 250 symbols that the source node needs to
transmit, we set the total number of transmissions to 250. The figure shows
that the total gain of the WMPR and SR mechanisms drop dramatically as we
increase the error rate. In contrast with the other methods, WMPR-NC is more
robust to the error rate, which is due to the use of network coding.

We repeat the experiment of Figure 14 (a) in Figure 15 (a) with 5 destination
nodes. The packet size is equal to 5 symbols, and the links’ error rates are
in the range of [0.3, 0.5]. Much similar to Figure 14 (a), the gain of all of the
mechanisms increase as we increase the number of packets. Note that we increase
the total number of transmissions as we increase the number of packets. By
comparing Figure 14 (a) with Figure 15 (a), we find that the difference between
the WMPR and WMPR-NC decreases in the case of multiple destinations, which
is because of the diversity of the links. Consequently, the efficiency of WMPR-
NC increases in the case that the error rates of the links are close to each other.

We compare the performance of the WMPR-NC mechanism to the WMPR
in Figure 15 (b). For this purpose, we divide the gain of the WMPR-NC mech-
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Figure 15: Comparison between the gain of WMPR, WMPR-NC, and SR mechanisms, m = 5,
n = 5, p ∈ [0.3, 0.5]; (a) total gain, t = 5 (b) Performance of the WMPR-NC mechanism over
the WMPR method.

anism by that of the WMPR mechanism, and plot its CDF. In this experiment,
the packet size and the number of packets are equal to 5 symbols and 50, respec-
tively. Also, the error rate of the links between the source and the 5 destination
nodes are in the range of [0.3,0.5]. This figure shows that, in less than 5% of
the cases, the number of delivered symbols in the WMPR-NC mechanism is less
than that of the WMPR method. Moreover, in more than 50% of the cases,
the number of delivered symbols of the WMPR-NC protocol is more than 10%
higher than that of the WMPR mechanism.

Figure 16 (a) shows the gain of the WMPR, WMPR-NC, and WMPR-
header. We set the header cost of the coded and uncoded packets to 0.07
and 0.05, respectively. The number of packets and symbols in each packet are
equal to 20 and 5. Moreover, the size of the transmission time window for each
packet is set to 5. Figure 16 (a) shows that, for more reliable links, performing
network coding might not be efficient, as the gain of WMPR-NC is less than
that of the WMPR method. The reason is that, for these cases, the advantage
of performing network coding over uncoding is less than the increase in the
overhead. The WMPR-header considers the header overhead of the packets; as
a result, it disables network coding when it finds that coding is not efficient.
As we increase the error rate of the links, the difference between the utility of
network coding and uncoding increases. Therefore, the utility of WMPR-NC
becomes more than that of the WMPR method, and the WMPR-header method
automatically switches to coding.

We increase the header cost of the coded packet cNC to 0.09, and repeat
the previous experiment. Figure 16 (b) shows the simulation result. Increasing
cNC reduces the utility of network coding; thus, the WMPR-header method
turns on coding in the case of less reliable links. Note that in this simulation
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Figure 16: Comparison between the gain of WMPR, WMPR-NC, and WMPR-header mech-
anisms, m = 5, n = 5, k = 20, t = 5; (a) cNC = 0.07, cUC = 0.05 (b) cNC = 0.09,
cUC = 0.05.

the number of packets is fixed, and an alternative way to make network coding
more efficient is increasing the number of packets k, as shown in Figure 15 (a).

8. Conclusion

There is much work on reliable transmissions over error-prone wireless chan-
nels. In contrast to the previous work on reliable transmission, we consider a
novel problem in this paper. We study the problem of maximizing the total
gain in the case of partial data delivery in error-prone wireless networks. In our
setting, each set of bits, called symbols, has a different weight. We first address
the case of single packet transmission to a homogenous destination nodes, and
we show that the optimal solution of this problem has a round-robin pattern.
Then, we extend our solution to the case of heterogenous destinations. We also
provide a solution for the case of sending multiple packets to multiple desti-
nations, and we enhance the expected gain (utility) using inter-packet random
linear network coding.

Our extensive results show that our proposed multiple packets transmission
mechanism can increase the gain up to 60%, compared to that of a simple
retransmission mechanism. Moreover, using random linear network coding can
enhance the gain.
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Appendix A. Optimality of WRH Method

Here, we prove the optimality of the WRH mechanism, and we show that
the optimal solution has a round-robin pattern. The utility function in the case
of transmitting one packet to homogeneous destinations is as follows:

u =

m∑
i=1

n× wi × (1− pxi)

s.t.

m∑
i=1

xi = t

For the packet size equal to 2 symbols (m = 2) we have:

u = n×
[
w1 × (1− px1) + w2(1− px2)

]
s.t. x1 + x2 = t

Appendix A.1. Proof of Optimality for the Case m=2
Lemma 1. If px1 < w1

w2
px2 , then px1 > w1

w2
px2+1.

Proof. We use contradiction to proof Lemma 1. We refer to the optimal
solution at the current iteration as (x1, x2). Assume that the current state is
(x1, x2) and px1 < w1

w2
px2+1. As a result, px1−1 < w1

w2
px2 , and we have:

w1p
x1−1 < w2p

x2

By multiplying the two sides of this inequality with n× (1− p) we will have:

n× w1 × (1− p)px1−1 < n× w2 × (1− p)px2

⇒ ∆x1−1 < ∆x2

As a result, it should be more efficient to increase x2 in the previous iteration.
Therefore, in the current iteration we will have (x1−1, x2+1), which contradicts
the assumption that the current state is (x1, x2). Consequently, we have px1 >
w1

w2
px2+1.

Lemma 2. If px1 > w1

w2
px2 , then px1+1 < w1

w2
px2 .
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Proof. We use contradiction to proof Lemma 1. Assume that the current state
is (x1, x2) and px1+1 > w1

w2
px2 . As a result, px1 > w1

w2
px2−1, so we have:

w1p
x1 > w2p

x2−1

By multiplying the two sides of this inequality with 1− p we will have:

n× w1 × (1− p)px1 > n× w2 × (1− p)px2−1

⇒ ∆x1 > ∆x2−1

Therefore, it should be more efficient to increment x2 in the previous state.
Thus, in the current state, we will have (x1+1, x2− 1), in which x2 ≥ 1 (x2− 1
cannot be negative) contradicts the assumption that the current state is (x1, x2).
Consequently, px1+1 < w1

w2
px2 .

Proposition 1. Assigning the transmissions to x1 for x1 ≤ logp
w2

w1
and then

incrementing x1 and x2 in a round-robin pattern will result in the optimal so-
lution.

Proof. Based on Equation 3, if px1 < w2

w1
then ∆x1 < ∆x2 , so x2 should be

zero. In addition, based on Lemma 1 after this point, every time we increment
x2, ∆x2+1 becomes less than ∆x1 . Therefore, in this case, assigning the next
transmission to x1 results in a larger gain. Lemma 2 is the reverse of Lemma 1,
which results in a round-robin incrementing pattern.

Appendix A.2. Proof of Optimality for the case general m
Lemma 3. If pxi >

wj

wi
pxj∀i, j ∈ [1,m], j ̸= i, then pxi+1 <

wj

wi
pxj .

Proof. Assume that the current state is (x1, x2, ..., xm), and there is a j such
that pxi+1 >

wj

wi
pxj . Then, pxi >

wj

wi
pxj−1 in one of the previous states. As a

result, ∆xi > ∆xj−1, so we should see a state with xi + 1 and xj − 1. In this
case, there is no way to see the current state, which contains xi and xj .

Proposition 2. The WRH algorithm results in an optimal solution.

Proof. It can be inferred from Lemma 3 that the optimal assignment has a
round-robin pattern. The reason is that, when we increment xi, pxi becomes
less than wj

wi
pxj ,∀j : j ̸= i. The next time pxi becomes greater than wj

wi
pxj is

when we increment all xj , j ̸= i.

Appendix B. Optimality of the WR Method

Lemma 4. The optimal xi, ∀1 ≤ i ≤ m are non-decreasing as we increase the
number of transmissions t.
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Proof. The utility of a symbol si is equal to:

n∑
l=1

wi × (1− pxi

l ) (B.1)

which is a non-decreasing function. Therefore, assigning more transmissions
to a symbol results in more utility. Moreover, the utility of each symbol is a
summation of concave functions; therefore that is a concave function. It means
that the ∆xi , ∀1 ≤ i ≤ m is a decreasing function. Assume that for a given t′,
the optimal number of transmissions for symbols sj and sk are equal to xj and
xk, respectively. Moreover, for a t > t′ transmissions, the optimal number of
transmission for sj and sk are xj −y and xk+y, respectively, where y is a given
positive number. It contradicts with the optimality of xj and xk transmissions
in the case of t′ total transmissions. The reason is that if xj − y and xk + y
results in more gain, then xj and xk cannot result in optimal solution for the
case of t′ transmissions. Note that this holds since the utility of each symbol
(Equation (B.1)) is a concave and non-decreasing function. Consequently, xi

are non-decreasing.
The following corollary can be concluded from Lemma 4.

Corollary 1. The optimal solution for t transmissions can be calculated from
the optimal solution for t′ < t transmissions.

Proposition 3. The WR algorithm results in an optimal solution.

Proof. We proof the optimality of the WR algorithm by induction. Let t =
1. It is obvious that the transmission should be assigned to the symbol si
with the maximum ∆xi . Now, assume that for t− 1 transmissions the optimal
solution is (x1, .., xm). By Lemma 4, each xi is non-decreasing. Therefore, from
Corollary 1, in order to find the optimal solution for t transmissions, we just
need to find the symbol si with the maximum ∆xi and increase x1 by one. That
is exactly the same as what the WR algorithm performs.
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