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Abstract

The rapid growth of data and parameter sizes of machine learning models makes it necessary to improve the efficiency of
distributed training. It is observed that the communication cost usually is the bottleneck of distributed training systems.
In this paper, we focus on the parameter server framework which is a widely deployed distributed learning framework.
The frequent parameter pull, push, and synchronization among multiple machines leads to a huge communication vol-
ume. We aim to reduce the communication cost for the parameter server framework. Compressing the training model and
optimizing the data and parameter allocation are two existing approaches to reducing communication costs. We jointly
consider these two approaches and propose to optimize the data and parameter allocation after compression. Different
from previous allocation schemes, the data sparsity property may no longer hold after compression. It brings additional
opportunities and challenges for the allocation problem. We also consider the allocation problem for both linear and
deep neural network (DNN) models. Fixed and dynamic partition algorithms are proposed accordingly. Experiments on
real-world datasets show that our joint compression and partition scheme can efficiently reduce communication overhead
for linear and DNN models.

Keywords: Data sparsity, distributed machine learning, graph partition, parameter server framework

1. Introduction

The efficiency of distributed machine learning systems becomes more and more important with the rapid

growth of the training data volume and model parameter sizes. In the big data era, both sizes of training

data and machine learning models can be extremely large. For example, the Alibaba click-through rate

prediction dataset contains more than 12 billion data instances [1]. The BERT-large [2] model for natural

language processing has 345 million parameters. A single machine may be infeasible to store all model

parameters or lack sufficient computation power when training large models. It is common to train large
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models in distributed systems. However, the distributed training brings additional communication overhead.

Worker machines participating in the training procedure need to maintain the parameters of the learning

model. Therefore, it is necessary to reduce the communication overhead and improve the training efficiency.

In this paper, we focus on reducing the communication overhead for the parameter server framework

[3], which is a distributed machine learning framework and is widely discussed and deployed in academia

[4] and industry [5]. Logically, the parameter server structure contains a server node and multiple worker

nodes. The server node maintains the whole parameter set. Training data is allocated into worker nodes.

During training, worker nodes iteratively pull parameters from the server, compute parameter updates with

local data, and push updates to the server. The server would aggregate parameter updates from all workers

and modify the parameter set accordingly. In practice, using a single machine as the server node may cause

congestion on its network interface. Therefore, efficient implementation usually partitions the parameter set

into multiple machines [6]. Specifically, a machine would act as both worker and server nodes as illustrated

in Fig. 1. This approach helps to distribute the communication workload for all worker machines. However,

the communication overhead still can become a bottleneck of the system performance.

The large network traffic volume usually is the bottleneck of the parameter server framework. In partic-

ular, when training large machine learning models, the communication overhead significantly enlarges the

overall training time. Even after distributing the communication workload, the communication overhead

can take a large portion of the total training time. [7] shows that training with 300 GB data would cause

about 4 TB network traffic volume when parameters are randomly allocated. Compared to the computation

time consumption, the communication overhead is large even with high-speed network interfaces, such as 10

Gigabit Ethernet. Therefore, in addition to improving the power of computation units, shrinking the network

traffic volume can efficiently accelerate the training process and improve the system performance.

Existing efforts made to reduce the network communication cost mainly include optimizing the model

compression [8, 5] and partition [7, 9]. Both approaches utilize the sparsity of training data. Specifically,

there usually are many zero entries in each data sample. One popular compression approach is applying

hash functions on sparse data samples. After hashing, the size of every data instance is reduced. The model

size can be significantly reduced accordingly [8]. However, the drawback of this approach is that the model

accuracy drops after hashing. Moreover, a larger compression ratio usually means a more severe accuracy

loss, which restricts the application scenarios of the model compression approach. The model partition

approach reduces the network communication cost by mitigating the inter-machine network communication

traffic into inner-machine communication. Specifically, training with a sparse data instance usually only
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Figure 1. Communication patterns in the parameter server framework.

impacts and updates a small subset of parameters. Allocating data samples and their required parameters

in the same machine can reduce the network traffic without harming the model accuracy. Considering that

the inner-machine communication bandwidth is usually much greater than the inter-machine communication

bandwidth, optimizing the data and parameter allocation can reduce the communication time consumption

during training. However, the benefits are not significant when the number of partitions is too small or too

large. Additionally, existing model partition methods only work for linear machine learning models and

cannot be used for deep learning.

In this paper, we jointly consider the model compression and partition. In this approach, we can use

a smaller compression ratio to achieve the same level of network traffic reduction, compared with merely

applying the model compression. It helps to reduce the sacrifice of model accuracy when optimizing the

network traffic. However, we cannot simply apply existing model partition algorithms after hashing. Model

partition algorithms usually rely on the sparsity of training data, while the sparsity property may no longer

hold after hashing. We need to develop an efficient model partition algorithm regardless of the sparsity of

training data. The general model partition problem is NP-hard [7]. Additionally, we investigate the model

partition problem for deep neural networks (DNNs). The challenge of partitioning DNN model parameters

arises in the complex data and parameter correlation. Unlike training linear models, the parameter access

locality in DNN training is unknown before training.

Instead of directly combining existing model compression and partition methods, we adapt the model

partition algorithm for training data after hashing. Moreover, we propose to adaptively update parameter

allocations when model pruning is applied to the training procedure. A dynamic parameter partition and

allocation algorithm is proposed for deep learning models. Specifically, model compression, i.e. hashing,

would lower the number of zero entries in each data instance, and change the ratio between data and param-

eter sizes. We investigate different heuristics for parameter partition, and our scheme can adaptively choose

the proper heuristic to reduce the partition overhead. Additionally, we show the approximate ratio of our
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partition algorithm based on the submodular property of network communication cost function. Moreover,

we propose a dynamic parameter partition for DNN models. It would estimate the parameter access locality

during training and adjust the parameter allocation accordingly.

Our contributions are summarized as follows:

• We investigate the communication overhead of the training process in parameter server frameworks.

We formulate an optimization problem that minimizes the bottleneck traffic volume during training.

• We jointly consider the model compression and partition methods to reduce the communication over-

head. We investigate different heuristics to efficiently partition linear models.

• We propose a dynamic parameter partition scheme for DNN models. The scheme estimates the pa-

rameter access pattern and dynamically updates the model parameter partition and allocation during

training.

• We evaluate our approach with real-world datasets. Our scheme can significantly reduce the network

bottleneck traffic volume, improve the training efficiency, and accelerate the training process.

The remainder of the paper is organized as follows. Related works are reviewed in Section 2. Training

procedures of machine learning models, hashing functions, network models, and problem formulations are

introduced in Section 3. The method to allocation parameters for linear models is explained in Section 4.

The dynamic partition method for the DNN models is shown in Section 5. Experiment settings and results

are illustrated and analyzed in Section 6. Our paper is concluded in Section 7.

2. Related Work

DNN model simplification is a common approach to accelerate DNN training or inference jobs by modi-

fying and simplifying DNN models. This approach investigates the trade-off between computation workload

and model accuracy. There are some small-scale DNN models that are specially designed to be used on mo-

bile devices. For example, [10] proposed a new small-scale DNN based on speaker verification. MobileNets

[11] presented an efficient model for mobile computer vision applications. YOLO-lite [12] developed a

real-time object detection DNN model that could run on mobile devices without GPUs, such as laptops or

cellphones. In addition to designing a dedicated DNN, some systems could adaptively adjust the DNN size

according to resource limitations. MCDNN [13] presented an optimizing compiler that can systematically

trade off inference accuracy for resource usage. Taylor et. al. [14] proposed an adaptive scheme to select
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Figure 2. Node degree distribution.

the most efficient DNN from a DNN pool at runtime. Wang et. al. [15] proposed to adaptively adjust the

accuracy requirement based on the wireless network conditions. Wu et. al. [16] proposed an adaptive strat-

egy to dynamically adjust the configuration. In this paper, we propose to reduce the communication cost of

distributed model training by jointly optimizing model compression and parameter allocation.

Specifically, model pruning [17, 18, 19, 20, 21] can gradually reduce the DNN model size during the

training process. Han et. al. [17] proposed the idea of learning connection importance during training

and pruning unimportant connections. Li et. al. [18] proposed an optimization problem to automatically

choose the thresholds in layer-wise magnitude-based pruning. Furthermore, Liu et. al. [19] proposed a

framework to automatically determine hyperparameters for the pruning process. [22] jointly considered

model compression and network architecture optimization and introduced a compiler-level automatic code

generation framework. Wimmer et. al. [23] presented interspace pruning which used filters constructed in

a dynamic interspace to avoid potential bias caused by standard unstructured pruning methods. Ma et. al.

[24] presents a scheduled grow-and-prune method. In their method, a subset of DNN layers is grown dense

first and then pruned back to sparse after several training iterations. The proposed method can efficiently

compress model size and preserves the model quality at the same time. Different from those methods, we

propose to dynamically partition and allocate DNN model parameters to accelerate distributed training by

reducing communication costs. Our dynamic model partition and allocation approach can be combined with

the model compress methods to further reduce the training cost.

In addition to compressing the model size, gradient compression can accelerate the DNN training pro-

cess by reducing the communication overhead. Zhang et. al. [25] proposed a compression algorithm for

distributed gradient descent with a guarantee on model convergence. Abdelmoniem et. al. [26] introduced

an efficient compression technique to minimize the extra computation overhead for gradient compression.
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Shi et. al. [27] further investigated the trade-off between computation and communication in gradient sparsi-

fication. Abrahamyan et. al. [28] exploited a neural network to build an autoencoder for identifying common

information in gradients during distributed training. The captured common information can be used to avoid

communication redundancy and improve communication efficiency. Yu et. al. [29] introduced a novel opti-

mization method, which overlaps the gradient compression phase with part of the communication phase and

hides the time consumption of the gradient compression. Different from those approaches, we consider the

correlations between training data and model parameters and investigate their allocation problem, which can

further reduce the communication cost beyond the compression.

3. Model

In this section, we first introduce the training procedures of machine learning models. Then, we briefly

explain the application of hashing techniques in machine learning model compression. Moreover, we show

the network communication pattern in the parameter server framework and identify the feasibility of com-

pressing network traffic in this framework. Eventually, we formulated our problem with the objective of

reducing the communication cost during distributed training.

3.1. Training Machine Learning Models

Training machine learning models, including Deep Neural Network (DNN) models, usually can be

treated as a procedure of minimizing loss functions. Loss functions are used to evaluate the performance

of machine learning models on the given training dataset. Typical loss functions can be categorized into two

groups: regression loss and classification loss. For example, in regression models, the mean square error

or L2 loss [30] can be used to measure the different model predictions and actual values. In classification

models, the cross-entropy loss [31] is widely used to quantify the probability divergence between the pre-

dicted class and the actual labels. Training algorithms, such as stochastic gradient descent, would iteratively

update the parameter weights in loss functions such that the function value on the training dataset is reduced.

Training terminates when the loss value cannot be further reduced or an iteration threshold is reached. We

notice that there are many zero or near-zero weight updates during training iterations when training machine

learning models for click-through rate prediction [32]. Motivated by this observation, we study the correla-

tion between training data and parameter updates with the objective of reducing the communication volume

during training.
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Formally, we use D = {d1, d2, . . . , dn} to denote the set of n training data samples, where di is the i-th

data vector. We focus on supervised learning models in this paper. Therefore, the data vector di = (xi, yi),

meaning it consists of a feature vector xi and a groundtruth label yi. The feature vector xi is a vector that

quantifies the input data. For example, the feature represents the occurrence frequency of a word in text

classification applications. We use P = {p1, p2, . . . , pm} to denote the parameter set of machine learning

models. Each parameter pi is a scalar value that is used to adjust the importance or weight of each feature in

the loss function. In linear models, the parameter set usually consists of weights for features in xi plus a bias

term. Each feature is associated with a weight as its coefficient. Therefore, the size of parameters m usually

equals the dimension of xi plus one for the bias term. In DNN models, the parameter value represents the

weights of connections between neurons. The number of parameters is mainly determined by the number

and types of layers in the DNN model, and may greatly exceed the number of features. In a training iteration,

not all parameters will be updated. In contrast, for both linear and DNN models, gradient vectors which are

used for parameter updating are usually sparse [9, 17, 33].

We use bipartite graphs to model the correlation between data and parameters. If a training iteration

using data di will update the value of parameter p j, then we denote that di and p j are correlated. For

linear models, the correlation graph could be estimated without pre-training the model when training with

the parameter server framework introduced in [6]. Zero elements in a data vector di will not update the

value of the corresponding parameter during training. According to this property, we build a bipartite graph

G = (D ∪ P, E) to represent the correlation between data samples and model parameters. There are two

types of vertices which represent the data D and parameter P, respectively. The edge set E ⊆ D× P contains

an edge between di and p j if they are correlated. The graph G can be built before training by scanning

nonzero entries for all di ∈ D. For DNN models, the correlation is dynamic and hard to predict since the

loss function of DNN models is a compound function. Because of the chain rule, the partial derivative

∂Loss/∂pi of parameter pi depends on both data values and the value of other parameters. The gradient of

the loss function relies on data values and current parameter states.

3.2. Hashing and Model Compression

Considering the sparsity in training data, hashing is an efficient approach to compress machine learning

models. Specifically, using a hashing function can map di ∈ D into a smaller size vector d′i . Let D′ denote

the dataset after mapping. Training with D′ can significantly reduce model sizes with a slight sacrifice

of model accuracy. More importantly, it is valid for both linear and DNN models. In addition, dynamic
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Figure 3. Hashing changes the correlation between data and parameters.

parameter pruning [19, 20] can also reduce the model size during training. The insight is that the neural

connections which are not important would be dynamically deleted during the training process. Our data

and parameter problem is built upon those scenarios. Our data partition algorithm introduced in Section 4

considers the case that hashing can reduce the model size. It can adaptively balance the time complexity of

data and parameter partition based on their sizes and can be used for efficient data and parameter partition

when hashing algorithms are applied. In addition, we can estimate the parameter access pattern for DNN

models even if the model pruning techniques are applied. With the estimated parameter access patterns,

we can approximate correlation graphs of data and parameters during the DNN training procedures. Our

partition algorithms introduced in Section 5 would re-evaluate the correlation between data samples and

parameters and perform parameter reallocation to reduce the communication traffic during training DNN

models. Fig. 3 provides a high-level illustration of how hashing can change the correlation between data

samples and parameters. The tuple within each data node in the figure shows which parameter will be

updated when processing the data point. For example, (1, 0, 0, 0, 0) means the first parameter would be

changed by this data sample. Comparing the correlation graph before and after hashing, we can observe

that hashing may significantly reduce the number of parameters but the number of edges in the correlation

graph is less impacted. The insight is that hashing may reduce the parameter size but should not lose the

information (i.e., how the model should be updated) integrated within each data sample. This example shows

that the correlation graph could still be dense after hashing and optimizing the parameter reallocation can

potentially reduce the inter-machine communication cost for the training process.

3.3. Network Communication in Parameter Server

With the rapid increase of data size, distributed training of machine learning models becomes necessary.

In this paper, we follow the data parallelism [34, 35] and focus the network communication in the parameter

server [3]. The framework of the parameter server is illustrated in Fig. 1. Let W = {w1,w2, . . . ,wk} denote

the set of k worker machines that are available for training. Each worker wi ∈ W would be allocated with
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Figure 4. Data and parameter partition (left: random, right: optimal).

a subset of data from D. If the hashing algorithm proposed in [8] is used, a subset of mapped data from

D′ would be allocated to workers. Let Di ⊂ D or Di ⊂ D′ denote the subset of data allocated to worker

wi. Worker wi would iteratively apply training algorithms, such as stochastic gradient descent, on the subset

of data Di. Notably, each worker also acts as a node of parameter server. This configuration can utilize

the high speed inner-machine communication buses and the update locality to reduce the communication

overhead [6]. Worker wi would be assigned a subset of parameters. We use Pi to denote the subset of

parameters assigned to wi. To minimize the communication cost, we need to carefully schedule the partition

and allocation of dataset D and parameter set P.

When training with the parameter server framework, each iteration contains three major steps. Firstly,

workers pull model parameters from parameter server nodes. Then, each worker calculates the parameter

updates using its training data locally. Finally, workers push the updates to parameter server nodes. The

communication overhead is caused by the pull and push operations. To reduce the cost, the parameter server

supports partially pull/push operations. For linear models, workers would only pull/push parameters that

are correlated with its data [6]. For DNN models, we can dynamically prune the model parameters during

training [36]. There is no need to pull or push pruned parameters, which causes the dynamic correlations.

Definition 1. Let f : 2D × 2P 7→ R+ denote the communication cost function. f (Di, P j) denotes the commu-

nication volume between Di ⊆ D and P j ⊆ P.

For linear machine learning models, the communication cost can be theoretically formulated and has

monotone and submodular properties that are useful for data and parameter partition. It is difficult to for-

mulate the cost function for DNN models because of the complex correlation between data and parameters.

We propose to estimate the communication cost during training and adaptively adjust the parameter partition

accordingly.
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We utilize the fixed data and parameter correlation to formulate the function f for linear machine learning

models. Based on the bipartite graph G, we can find the correlation set of each vertex. Formally, for a data

sample di ∈ D, its correlation set is {p ∈ P|(di, p) ∈ E}. Symmetrically, {d ∈ D|(d, p j) ∈ E} is the correlation

set of the parameter p j ∈ P. Moreover, for a subset Di ⊆ D or P j ⊆ P, its correlation set is the union of the

correlation set of its every element. Let δ : 2D ∪ 2P 7→ 2P ∪ 2D denote the correlation set function. Notably,

G is a bipartite graph. The correlation set of a subset of D must be a subset of P, and vice versa. Then,

δ(Di) = {p ∈ P|d ∈ Di, (d, p) ∈ E} and δ(P j) = {d ∈ D|p ∈ P j, (d, p) ∈ E}. For example, the vertex d3 shown

in Fig. 4 is connected with two parameter nodes p1 and p2. Accordingly, δ({d3}) = {p1, p2}. For a subset of

vertices {p1, p2}, its correlation set δ({p1, p2}) = {d1, d2, d3, d4}.

We can formulate the communication volume for training linear machine learning models based on δ.

Formally, the communication cost f (Di, P j) = |δ(Di) ∩ P j|, where | · | represents the cardinality of a set.

δ(Di) represents the set of parameters required when training with data Di. Its intersection with P j means

the set of parameters that should be transmitted between wi and w j during training. The cardinality of the

intersection set gives the communication volume between Di and P j. Recall that each worker machine

maintains a subset of parameters. For a worker wi, it needs to pull/push parameters correlated with its data

Di during training. δ(Di) is the set of parameters required by wi. Among them, f (Di, Pi) = |δ(Di) ∩ Pi| is

the number of parameters that are located in itself. Those parameters are transmitted via the system bus and

are not counted for the network communication volume. The rest f (Di, P \ Pi) = |δ(Di) ∩ (P \ Pi)| is the

volume of parameters stored in other worker machines, which contributes to the network communication

volume. What’s more, other workers need to pull/push parameters through wi. The number of parameters

located at wi and needed by other workers is f (D \ Di, Pi) = |
⋃

i, j δ(Di) ∩ P j|, which also should be added

to the inter-machine communication cost. Above all, the network communication volume of worker wi is

f (Di, P\Pi)+ f (D\Di, Pi) = |δ(Di)∩ (P\Pi)|+ |δ(D\Di)∩P j|. The meanings of the notations we introduced

are summarized in Table 1.

3.4. Problem Formulation

We aim to reduce the communication overhead for distributed machine learning. Notably, the communi-

cation among worker machines is performed simultaneously. Instead of minimizing the overall communica-

tion volume among all workers, we should focus on balancing the communication workload among available

workers, i.e., minimizing the largest communication cost among workers. According to the analysis in Sec-

tion 3.3, the network communication volume of worker wi is f (Di, P \ Pi) + f (D \ Di, Pi). We can adjust
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Table 1. Table of Notations

Notations Description

W, wi the worker set and the i-th worker

k the number of worker machines

D, Di the data set and the subset of data allocated to wi

n the number of data nodes

P, Pi the parameter set and the subset of parameter allocated to wi

m the number of parameter nodes

E the edge set E = D × P

f (Di, Pi) the the communication volume between Di ⊆ D and P j ⊆ P

δ(·) the correlation set function δ : 2D ∪ 2P 7→ 2P ∪ 2D

| · | the cardinality of a set

f (D′) the cardinality of neighbor set of D′

the communication cost by optimizing the data and parameter partition. Therefore, it leads to our partition

problem. Formally, the formulation of our problem can be shown as the following equations.

min max
i

( f (Di, P \ Pi) + f (D \ Di, Pi)) (1)

s.t.
⋃

i=1,...,k
Di = D (2)⋃

i=1,...,k
Pi = P (3)

Among them, Eq. (1) is the objective equation. For linear machine learning models, the closed-form

formulation of f is shown in Section 3.3. For DNN models, the function value can be estimated during

training. Eq. (2) is the data partition constraint, which means that all data should be partitioned and allocated

into k workers. If hashing methods are applied to the training data set, then D refers to the data after hashing.

Eq. (3) shows the parameter partition constraint. The whole parameter set P should be covered in the

parameter partition.

4. Parameter Allocation for Linear Models

To efficiently reduce the communication cost, existing approaches either use hashing techniques to re-

duce the sizes of linear models [8, 37], or utilize graph partition methods to mitigate the inter-machine

communication into inner-machine communication [9, 6]. In this section, we jointly consider the impact of
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hashing and graph partition to efficiently shrink the communication cost for linear machine learning models

while limiting the impact on the model accuracy.

4.1. Submodular Optimization Framework

As we introduced in the previous section, linear models have fixed data-parameter correlations. Specif-

ically, before training, we can obtain the subset of parameters that would be updated by each data sample.

Based on the correlation graph G, we can reduce the communication overhead by optimizing the data and

parameter partition among worker machines. Sparsity and submodularity are useful properties for the parti-

tion. The sparsity of the correlation graph may be changed by model compression. Therefore, we first focus

on the submodularity and present the optimization framework. Then, we adaptively adjust the heuristics

used in partition for different sparsity. The submodularity of our communicaiton cost function is shown in

the following theorem.

Theorem 4.1. Given a data set Di ⊆ D, the communication cost function f is monotone and submodular

w.r.t. parameter set P j and vice versa.

Proof: We first show that f is monotone w.r.t. variable P j. For a constant Di ⊆ D, f (Di, Pa) ≤ f (Di, Pb)

if Pa ⊆ Pb ⊆ P. It can be proved by definition. For any Pa ⊆ Pa ⊆ P, |δ(Di) ∩ Pa| ≤ |δ(Di) ∩ Pb|. Hence,

f (Di, Pa) ≤ f (Di, Pb). Additionally, f is monotone w.r.t. variable Di. Specifically, for a constant P j ⊆ P,

f (Da, P j) ≤ f (Da, P j) if Da ⊆ Db ⊆ D. For Da ⊆ Db ⊆ D, δ(Da) =
⋃

d∈Da
δ({d}) ⊆

⋃
d∈Da∪(Db\Da) δ({d}) =

δ(Db). Therefore, δ(Da) ∩ P j ⊆ δ(Da) ∩ P j and |δ(Da) ∩ P j| ≤ |δ(Db) ∩ P j|.

Then we show the submodularity. Given a constant Di ⊆ D, f (Di, P j) = |δ(Di) ∩ P j| is a modular

set function w.r.t. P j. Every modular set functions is a special type of submodular function. Therefore,

f (Di, P j) = |δ(Di) ∩ P j| is submodular w.r.t. P j. On the other hand, f (Di, P j) is also submodular w.r.t.

variable Di when P j ⊆ P is treated as a constant. Formally, for Da ⊆ Db ⊆ D, f (Di, P j) is submodular to

Di if and only if f (Da ∪ {d}, P j) − f (Da, P j) ≥ f (Db ∪ {d}, P j) − f (Db, P j), where d ∈ D. By definition,

f (Da∪{d},P j) − f (Da,P j) ≥ f (Db∪{d},P j) − f (Db,P j) is equivalent to:

|δ(Da∪{d})∩P j|−|δ(Da)∩P j|≥|δ(Db∪{d})∩P j|−|δ(Db)∩P j| (4)

By definition, we have δ(Da ∪ {d}) = δ(Da) ∪ δ({d}). Therefore, δ(Da ∪ {d}) ∩ P j = (δ(Da) ∪ δ({d})) ∩

P j = (δ(Da) ∩ P j) ∪ (δ({d}) ∩ P j). Associated with the property of cardinality of intersection, we have

|δ(Da∪{d})∩P j| = |(δ(Da)∩P j)∪ (δ({d})∩P j)| = |δ(Da)∩P j|+ |δ({d})∩P j| − |(δ(Da)∩P j)∩ (δ({d})∩P j)| =
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|δ(Da)∩ P j|+ |δ({d})∩ P j| − |δ(Da)∩ δ({d})∩ P j|. Similarly, |δ(Db ∪ {d})∩ P j| = |δ(Db)∩ P j|+ |δ({d})∩ P j| −

|δ(Db)∩δ({d})∩P j|. Plugging in those equations, Eq. (4) is converted to |δ({d})∩P j|− |δ(Da)∩δ({d})∩P j| ≥

|δ({d})∩ P j| − |δ(Db)∩ δ({d})∩ P j|. After subtracting |δ({d})∩ P j| and multiplying −1 on both sides, Eq. (4)

is eventually converted to:

|δ(Da) ∩ δ({d}) ∩ P j| ≤ |δ(Db) ∩ δ({d}) ∩ P j| (5)

We have shown that δ(Da) ⊆ δ(Db) if Da ⊆ Db ⊆ D. After intersection with δ({d}) and P j, we have

δ(Da)∩ δ({d})∩ P j ⊆ δ(Db)∩ δ({d})∩ P j and Eq. (5) holds. By definition, f (Di, P j) is submodular w.r.t. Di.

■

To simultaneously partition both data and parameter sets is a graph partition problem, which is NP-

hard[7]. Therefore, we partition them in sequence. We partition the correlation graph with a two-step

heuristic. Because the data vertex and the parameter vertex in the correlation graph is symmetric, we can

partition either D or P first. W.l.o.g., we assume D is partitioned first. With the submodularity shown in

Theorem 4.1, we can apply the submodular optimization techniques introduced in [38] to partition D. The

optimization framework iteratively samples unassigned elements and greedily chooses a subset of samples

such that the cost increment is minimized. To achieve the efficient partition, we adapt the optimization

framework to fit a different graph density caused by model compression or hashing. As shown in the proof

of Theorem 4.1, f (Di, P j) is a modular function w.r.t. P j. With the property, we present a greedy algorithm

for parameter partition.

4.2. Data and Parameter Partition

We present the detailed procedures of data and parameter partition in this subsection. Notably, we

propose to adaptively adjust the size of the data sampled in the submodular optimization framework. The

time complexity for data partition is exponential to the data sampling size. We propose to adaptively adjust

the time complexity such that data and parameter partitions have the same big-O complexity. The insight is

that hashing will reduce the number of model parameters and we don’t want the data partition to become the

scheduling bottleneck.

The procedures of data partition are shown in Alg. 1. We first initialize k data partitions into empty

sets in line 1. The following loop implements the submodular optimization. Line 3 randomly samples from

unassigned data instances and stores the sampled data in set S . During sampling, each data instance is

chosen randomly with probability n/(k|D|), where |D| indicates the number of unassigned data instances. S

is valid if its cardinality is smaller than or equals to 2n/k. In line 5, we greedily choose the data partition Di

13
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Algorithm 1 Data Partition
Input: Correlation graph G, number of partitions k

Output: Data partition Di, i = 1, 2, . . . , k

1: Di ← ∅ 1 ≤ i ≤ k

2: while D is not empty do

3: Sample a random S ⊆ D with probability n
k|D|

4: if |S | ≤ 2n/k then

5: Find the data partition Di that has the smallest size

6: S ∗← arg minS ′⊆S ,|S ′ |<α f (Di ∪ S ′, P)−β|Di ∪ S ′|

7: if f (Di ∪ S ∗, P) − β|Di ∪ S ∗| < 0 then

8: Di ← Di ∪ S ∗, D← D \ S ∗

9: return Di, 1 ≤ i ≤ k

that has the smallest size to assign data combinations in a valid S . Line 6 finds the best data combination for

Di. Let S ∗ denote the best subset chosen in line 6. Specifically, from all possible subsets of S , the one that

minimizes the value of f (Di ∪ S ′, P)−β|Di ∪ S ′| is chosen, where S ′ represents a subset of S , α limits the

size of S ′, and beta is a hyperparameter of the submodular optimization[38]. Notably, testing all possible

subsets S ′ costs exponential time. We adjust the time complexity by limiting the size of S ′. If S ∗ can bring

sufficient benefits as shown in line 7, then we assign S ∗ to Di and remove vertex in S ∗ from D. Finally,

line 9 returns the data partition result. We will show how to determine the value of α after introducing the

parameter partition algorithm.

The procedures of parameter partition are shown in Alg. 2. Line 1 initializes parameter partitions into

empty sets. Line 2 defines cost functions for parameter partitions. For partition P j at for worker machine

w j, the cost is the network communication volume f (Di ∪ S ′, P)−β|Di ∪ S ′| for worker w j as defined in

Section 3.3. Then, parameters are greedily assigned in the loop of lines 3-6. The worker machine w j with

the lowest communication cost is chosen in line 4. Then, an unassigned parameter p∗ that introduces the

smallest cost increase is picked in line 5. Line 6 puts p∗ into P j and removes p∗ from P. The while loop

terminates when all parameters are assigned. Finally, P j, 1 ≤ j ≤ k are returned as the parameter partitions

for worker machines.
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Algorithm 2 Parameter Partition
Input: Parameter set P, data partition Di, and k

Output: Parameter partitions for k worker machines

1: Initialize parameter partition P j ← ∅ 1 ≤ j ≤ k

2: Initialize cost function for worker w j, cost(P j)← f (Di, P \ Pi) + f (D \ Di, Pi),∀1 ≤ j ≤ k

3: while P is not empty do

4: j← arg min j cost(P j)

5: p∗ ← arg minp∈δ(D j) cost(P j ∪ p) − cost(P j)

6: P j ← P j ∪ p∗, P = P \ p∗

7: return P j, 1 ≤ j ≤ k

4.3. Properties

Because of the submodular property shown in Theorem 4.1, the performance of data partition shown

in Alg. 1 has an approximation ratio according to the submodular optimization theory [38]. In particular,

when the number of workers is much less than the number of data samples (which is a common case in real-

world applications), Alg. 1 is Θ(n/ log n)-approximate w.r.t. the worst communication cost maxi f (Di, P j)

as explained in the following theorem.

Theorem 4.2. Let D∗i denote the optimal data partition on for worker wi that minimize the worst communi-

cation cost maxi f (D∗i , P). Then, the data partition Di generated by Alg. 1 guarantees that maxi f (Di, P) ≤

Θ(n/ log n) maxi f (D∗i , P).

Proof: In Alg. 1, random sampling is used to reduce the time complexity. According to [38], the data parti-

tion Di found by Alg. 1 with random sampling still satisfies the submodular property when k = Θ(n/ log n).

It is for arbitrary partitions Di and D j found by Alg. 1, we have f (Di, P)+ f (D j, P) ≥ f (Di∪D j, P)+ f (Di∩

D j, P), so as the optimal partition D∗i and D∗j . Moreover, D∗i ∩ D∗j = ∅ since duplicated or overlapped data

allocation can only enlarge the communication cost and would not be the optimal solution. Therefore, we

have that f (D∗i , P) + f (D∗j , P) ≥ f (D∗i ∪ D∗j , P) + f (D∗i ∩ D∗j , P) = f (D∗i ∪ D∗j , P) + f (∅, P) = f (D∗i ∪ D∗j , P).

Repeatedly apply the property on all k data partitions, we have
∑k

i=1 f (Di, P) ≥ f (D∗1∪D∗2∪· · ·∪D∗k, P) =

f (D, P). In addition, f (D, P) ≥ maxi f (Di) since f (D, P) contains all correlations between D and P. Even

if we need to transmit all of them cross machines, the communication cost is f (D, P). Combining those

properties, we have the inequality
∑k

i=1 f (D∗i , P) ≥ maxi f (Di, P) or maxi f (Di, P) ≤
∑k

i=1 f (D∗i , P).
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By definition, we also have maxi f (D∗i , P) ≥ f (D∗i , P),∀1 ≤ i ≤ k. Therefore
∑k

i=1 f (D∗i , P) ≤ k ·

maxi f (D∗i , P). Above all, we have maxi f (Di, P) ≤
∑k

i=1 f (D∗i , P) ≤ k ·maxi f (D∗i , P), when k = Θ(n/ log n).

It is maxi f (Di, P) ≤ Θ(n/ log n) maxi f (D∗i , P). ■

Theorem 4.2 shows that using random sampling in Alg. 1 still provides performance bounds because of

the submodular property. Another advantage of our approach is that it can balance the time complexity of

data and parameter partition by adjusting the sample rate in the data partition. We can adjust the sample rate

in Alg. 1 to fit the time complexity for parameter partition. Therefore, the overall time complexity is mainly

determined by the time complexity of the parameter partition, which is analyzed in Theorem 4.3.

Theorem 4.3. The time complexity of parameter partition is O(nm2), where n = |D| and m = |P|. D and P

can either be original data and parameter sets or the sets after hashing.

Proof: The time complexity of Alg. 2 mainly comes from the while loop in lines 3-6. In particular, line 4

greedily finds the current parameter partition that has the smallest cost. It takes O(k) time. Line 5 searches

for the best assignment that minimizes the cost increment. Notably, we need to calculate the value of

cost(P j ∪ p) for each candidate p ∈ δ(Di). It cannot be done in constant time. Instead, it costs at most

O(n) time to recalculate the number of data samples that are correlated with p. The number of candidates

p ∈ δ(Di) is at most O(m). Therefore, line 5 takes O(nm) time to find the parameter that introduces the

lowest cost increment. Hence, each loop round takes O(k + nm) time. Considering k < m and k < n in most

cases, O(k+ nm) = O(nm). Moreover, the while loop at most takes O(m) rounds to terminate. Therefore, the

overall time complexity of the parameter partition shown in Alg. 2 is O(m) · O(nm) = O(nm2). ■

5. Dynamic Partition for DNN Models

For DNN models, parameter pruning technologies [33, 17, 39] are widely used to reduce the commu-

nication overhead during training. They notice that there are redundant connections in DNNs and dropping

unimportant connections during training will not affect the model accuracy [17]. After pruning, the size

of effective model parameters is significantly reduced. Applying parameter pruning technologies in the pa-

rameter server framework will cause parameter access locality. The important parameters are frequently

accessed and updated during training, while unimportant parameters are dropped. The pruning may unbal-

ance the communication workload among workers. Additionally, when updating parameter weights in each

iteration, the gradient vector is sparse when the model pruning and sparsification methods are applied. We
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Algorithm 3 Building Correlation Graph for DNN Models
Input: Dt ⊆ D, set of data samples for training batch t

Output: Correlation graph Gt for training batch t

1: Gt ← (Dt ∪ P, ∅)

2: for (d, p) in Dt × P do

3: Nd ← find r-nearest neighbors of d in LRU

4: Data similarity vector s, where the vector entry sl ← reciprocal of distance between d and dl ∈ Nd,

1≤ l≤r

5: Parameter access vector q, where an entry ql ← 1 if p is accessed by dl ∈ Nd, and 0 otherwise,

1 ≤ l ≤ r

6: f (d, p)← (
∑r

l=1 slql)/(r
∑r

l=1 sl)

7: Add the edge (d, p) into Gt if f (d, p) > c, where c is a pre-defined constant

8: return Gt as the correlation graph for batch t.

should frequently update the parameter partition and allocation according to the parameter access locality.

Even if the gradient vectors are sparse, it is still difficult to partition the parameter set dynamically, since data

and parameter correlations are unknown before training. Another challenge is that the mitigating parameters

among workers too frequently would cause additional communication overhead. We propose to estimate the

communication cost f among workers during training and adjust the parameter allocation when necessary.

Unlike linear models, we cannot build the correlation graph G by scanning nonzero entries of training

data samples. According to the chain rule, the gradient of parameters in an intermediate layer depends on

the partial derivative information of DNN layers following it. Parameter updates relay on the backward

propagation procedure. The complex connections between data samples and parameters aggregates during

the backward propagation. Therefore, we can no longer simply use the distribution of nonzero entries to build

the correlation graph. We propose to use the parameter access locality to estimate the data and parameter

correlations.

We assume that similar data instances have the similar parameter access pattern in adjacent training

iterations. For two data samples, their similarity can be measured by the distance between corresponding

data vectors. In this paper, we use the Euclidean distance to quantify the data similarity. Although we cannot

exactly know which set of parameters would be accessed before actually training with data, we can estimate

it using the similar data samples that have been seen in previous iterations. Notably, we should look for
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Algorithm 4 Parameter Partition for DNN Models
Input: Correlation graph Gt for the following training batch

Output: Parameter partition for workers: Pi, 1 ≤ i ≤ k

1: repeat

2: Pmax ← arg max j f (Dt, P j)

3: Pmin ← arg min j f (Dt, P j)

4: Find p∗ ∈ Pmax such that p∗ = arg minp∈Pmax abs( f (Dt, Pmax\{p}) − f (Dt, Pmin ∪ {p}))

5: ∆← f (Dt,Pmax) −max{ f (Dt,Pmax\{p}), f (Dt,Pmin∪{p}),maxP j,Pmax,P j,Pmin f (Dt, P j)}

6: if ∆ < size of p∗ then

7: Break

8: Update Pmax ← Pmax\{p∗} and Pmin ← Pmin ∪ {p∗}

9: until ∆ < size of p∗

10: return Pi, 1 ≤ i ≤ k as the updated parameter partition

similar data from the most recent iterations since the parameter access pattern is also related with parameter

staleness. Training the same data on completely different parameters would generate different gradients.

Parameters in adjacent training iterations usually have similar values. During training, we can use a Least

Recently Used (LRU) cache to record the set of parameters accessed by each used training data. The LRU

cache not only costs a constant memory overhead, but also restricts the staleness of history data samples.

With the LRU cache, we can frequently estimate and update the correlation graph Gt for training batch t.

When training DNN models, training samples are usually split into multiple batches. We use Dt ⊆ D

to denote the set of data instances used in batch t. Except for several starting batches, we can estimate the

correlation graph Gt for each training batch using the training trace history. The LRU cache would store

recently used data samples and the list of parameters updated by each sample. The list can be obtained

from the gradient information. A parameter is updated if the corresponding gradient is greater than a small

threshold ϵ. Using the cache, we can build the graph Gt. Note that Gt is a weighted graph for DNN models.

The weight of edge (d, p) represents the probability of which the parameter p ∈ P is accessed and updated

when training with the data d ∈ Dt.

The procedure to build the correlation graph Gt is shown in Alg. 3. We first initialize the bipartite

graph Gt in line 1. Its vertex set contains the training data Dt for batch t and the parameter set P. The

edge set is initialized to an empty set. In the following loop, we estimate the weight of each potential edge
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(d, p) ∈ Dt × P. We use r similar history traces in the LRU cache to estimate the weight of (d, p). Line 3

chooses r nearest neighbors of d from the cache based on the similarity or the reciprocal of distance between

data vectors. We use Nd to denote the set of data samples similar to d. Lines 4 and 5 prepare the data

similarity vector s and the parameter access vector q to calculate the edge weight f (d, p). An element sl of

vector s shows the similarity between d and dl ∈ Nd. The similarity is measured by the reciprocal of the

distance between them. If the data dl ∈ Nd has accessed the parameter p, then the entry pl of p is set to

1. Otherwise, it is set to 0. Line 6 calculates the weight of (d, p). f (d, p) = (
∑r

l=1 slql)/(r
∑r

l=1 sl). The

term
∑r

l=1 slql is the weighted sum of the parameter access history. Trace of the data with larger similarities

contributes more to the sum. The other term r
∑r

l=1 sl normalizes the weighted sum. If p is accessed by all

data samples in Nd, then f (d, p) = 1. If no one in Nd has visited p, then f (d, p) = 0. Line 7 updates the

graph Gt. To reduce the density of graph Gt, the edge (d, p) is added into Gt only if the weight f (d, p) is

greater than a pre-defined threshold. When the weight is small, the parameter p is not likely to be updated

by d during training. Finally, line 8 returns Gt after evaluating the weight of every possible edge.

With the estimated correlation graph, we can update the parameter partition and allocation. Notably,

different from the fixed allocation introduced in Section 4, updating parameter partition has an additional cost

of mitigating parameters among workers. Therefore, there is no need to update the parameter partition for

every training batch. We use an unbalanced communication threshold to trigger the parameter reallocation.

The parameter partition is recalculated if the difference between the largest and smallest communication

workloads exceeds the threshold. Additionally, we only need to build graph Gt before reallocation instead

of every batch.

The procedure of the parameter reallocation that considers the parameter mitigation cost is shown in Alg.

4. For reallocation, we repeatly move parameters from the partition with the largest communication cost to

the partition with the smallest cost. Specifically, lines 2 and 3 find the partition Pmax and Pmin with the largest

and smallest cost, accordingly. Note that Gt becomes a weighted function for DNN models. Therefore, the

communication cost function f is overloaded. Instead of using cardinality (i.e., edge weights are uniform),

it uses the sum of edge weights to evaluate the communication cost. Line 4 greedily chooses a parameter

from Pmax such that the communication cost difference between Pmax and Pmin is minimized after moving

the parameter to Pmin. Line 5 calculates the potential decrease of the bottleneck traffic volume after moving

p∗ from Pmax to Pmin. We use ∆ to denote the network traffic decrease volume. Line 6 compares ∆ with

the cost of moving p∗. The first term f (Dt, Pmax) shows the bottleneck traffic before moving. The other

term max{ f (Dt,Pmax\{p}), f (Dt,Pmin∪{p}),maxP j,Pmax,P j,Pmin f (Dt, P j)} calculates the largest network traffic
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(a) Communication cost (b) Accuracy

Figure 5. Partition with different hash bin size.

volume among workers after moving p∗. If the benefits ∆ is less than the mitigation cost, then we break

the loop. Otherwise, we move p∗ and update the partition in line 8. The loop terminates when there is no

additional benefit of reallocation, as indicated by line 9. Finally, line 10 returns the updated parameter sets.

6. Experiment

6.1. Experiment Setup

In our experiment, we use Amazon EC2 to set up the machine cluster for training. The EC2 cluster

we used has 16 t2.xlarge instances with 16GB RAM. On the EC2 cluster, we use PS-lite1 to set up the

parameter server. We install OpenMPI on each instance as its message passing interface. We evaluated our

data and parameter partition algorithms with linear models. For dynamic parameter partition, we simulate

the parameter pruning process using training snapshots. Specifically, we record parameter snapshots during

training and drop parameters with small weights. For each snapshot, we use the parameter and data partition

in the previous snapshots as the initial assignment and execute our reallocation algorithms based on the

assignment. The network communication volume and parameter migration costs are simulated with the size

of the parameters to be retrieved or moved.

We use both real-world and synthetic datasets to evaluate our algorithms. For real-world datasets, we

use two LIBSVM [40] datasets: rcv1.binary and news20. Data and parameter correlation graphs are built

upon those datasets. The correlation graph can be built by traversing input data attributes. By counting the

non-zero attributes, we can find the correlation between data samples and parameters. Fig. 2 illustrates the

statistics of node degrees of rcv1.binary and news20 datasets. From the figure, we can find that most nodes

1https://github.com/dmlc/ps-lite
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Figure 6. Impact of number of partitions.

have relatively small degrees. The frequency of large-degree nodes is small. It reveals that the connections in

correlation graphs of those two datasets are sparse. It is more likely to reduce the communication cost across

machines using data and parameter partitions on the sparse dataset. For synthetic datasets, we randomly

generate correlation graphs with different n : m ratios, where n is the number of data nodes and m is the

number of parameter nodes. The sparsity of synthetic datasets can be evaluated by the ratio of the number of

generated edges to the number of edges in the corresponding fully connected graph. We control the number

of edges in the correlation graph to adjust the sparsity.

In our experiment, we compare our data and parameter partition algorithm (denoted as DPPA) with the

multilevel graph partition[41] (denoted as MGP). The random partition is used as a baseline. The communi-

cation cost is evaluated by the accumulation of cross-machine push/pull counts. It reveals the inter-machine

communication volume.

6.2. Experiment Results

We first illustrate the impact of hashing on model size and accuracy. We use the hashing algorithm

introduced in [8] to compress linear models. The model size is measured by the number of model parameters.

Fig. 5 shows the communication cost and model accuracy when using different bin sizes in hashing. From

the figure, we notice that the communication cost increase with the bin size, so as the model accuracy. It is

because that using a smaller bin size would make the number of data attributes smaller, but also introduce

more conflicts during hashing. Some data information is lost because of those conflicts. With smaller bin

sizes, the model size decreases nearly exponentially, while the model accuracy decreases nearly linearly.

The experiment result shows that hashing can significantly reduce the communication cost with a relatively

small sacrifice on model accuracy when using smaller bin sizes. We can use bin sizes to balance the trade-off

between inter-machine communication cost and model accuracy.
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Figure 7. Impact of n : m ratio.

Then, we investigate the impact of the number of partitions on partition algorithm performances. Also,

we evaluate the influence of different bin sizes on the performances of data and parameter partition al-

gorithms. Fig. 6 shows the communication cost of different partition approaches under different hashing

bin sizes on the news20 dataset with random data and parameter allocation. We find that the overall inter-

machine communication volume increases with the number of partitions. When data samples and parameters

are distributed on a large number of machines, there will be frequent communication among those machines.

DPPA can help to reduce the inter-machine communication volume. From the figure, we notice that the com-

munication cost reduces if the bin size is smaller. Increasing the value of α of DPPA, i.e. using a higher

sample rate, can improve the algorithm performance. It shows that hashing approach can both reduce the

model size and the communication cost. In addition, our DPPA outperforms the MGP on different bin sizes.

However, their performance gap decreases when the bin size decreases. It is because that the correlation

graph becomes denser with a smaller hashing bin. In a relatively dense graph, the potential benefits of graph

partition become smaller compared with a sparse graph.

Moreover, we investigate the influence of the relative size of the parameter set using synthetic datasets.

The ratio n : m represents the relative size. Recall that n represents the number of data samples and m is the

number of parameters. If the ratio n : m > 1, then there are more data samples. In this case, the parameter

set is relatively small. Fig. 7 shows the communication cost of different ratios with different hashing bin

sizes. From each subfigure, we find that the inter-machine communication costs increase with the n : m

ratio. This shows that the communication among worker machines is more frequent when there are more

data samples. In addition, comparing Fig. 7(a) with Fig. 7(b), we notice that the performance gap between

MGP and DPPA becomes larger when the bin size is larger. This is also caused by the difference in the

sparsity of their correlation graphs. Hashing with a smaller bin size can reduce the graph sparsity and cause

more information loss. The improvement of data and parameter partition becomes more obvious when the
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Figure 8. Dynamic partition for DNN models.

correlation graph or the training dataset is sparse.

Furthermore, we evaluate the dynamic partition for DNN models using our simulator. We record the

inter-machine communication volume in each epoch. Fig. 8 shows simulation results. Notably, MGP is a

graph partition algorithm that does not consider the dynamic changes on graphs. We rerun the MGP after

each pruning event to update the partition. MGP does not consider the migration cost when recalculating the

partition on a changed graph. From the simulation results, we can find that DPPA significantly outperforms

MGP. The performance gap between DPPA and MGP becomes more obvious when the number of the epoch

is larger. This shows that the migration cost of parameter reallocation is not negligible. The negative impact

of omitting the migration cost may accumulate along training epochs. Comparing Fig. 8(a) and Fig. 8(b),

we can also find that pruning can reduce the inter-machine communication cost during training, and using

DPPA can efficiently find proper data and parameter partitions to avoid migration costs.

7. Conclusion

We investigate the communication overhead of the model training process in parameter server frame-

works. We propose to reduce the network bottleneck traffic by jointly considering model compression and

model partition. For linear machine learning models, we build the fixed correlation graph of data samples

and model parameters. We utilize the submodular property of the communication cost function to optimize

the graph partition. Different partition heuristics are investigated. Our scheme can adaptively choose the

partition approach to avoid large partition overhead. Additionally, we investigate the partition problem for

DNN models whose correlation graph changes during training. A dynamic partition method is proposed for

DNN models. In the dynamic partition, we use the training history to estimate the data-parameter correlation

and the communication cost. Our partition algorithm not only dynamically partitions the correlation graph
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but also considers the parameter mitigation cost. Real-world dataset is used in the evaluation. Experiment

and simulation results show that our approach can efficiently reduce the communication overhead for both

linear and DNN models.
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