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a b s t r a c t

Provisioning reliability in a high-performance content-based publish/subscribe system is a challenging
problem. The inherent complexity of content-based routing makes message loss detection and recovery,
and network state recovery extremely complicated. Existing proposals either try to reduce the complexity
of handling failures in a traditional network architecture, which only partially address the problem, or
rely on robust network architectures that can gracefully tolerate failures, but perform less efficiently
than the traditional architectures. In this paper, we present a hybrid network architecture for reliable
and high-performance content-based publish/subscribe. Two overlay networks, a high-performance one
with moderate fault tolerance and a highly-robust one with sufficient performance, work together to
guarantee the performance of normal operations and reliability in the presence of failures. Our design
exploits the fact that, in a high-performance content-based publish/subscribe system, subscriptions are
broadcast to all brokers, to facilitate efficient backup routing when failures occur, which incurs a minimal
overhead. Per-hop reliability is used to gracefully detect and recover lost messages that are caused by
transit errors. Two backup routing methods based on DHT routing are proposed. Extensive simulation
experiments are conducted. The results demonstrate the superior performance of our system compared
to other state-of-the-art proposals.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Content-based publish/subscribe (CBPS) systems as a commu-
nication substrate have many advantages compared to traditional
connection-oriented architectures, including better flexibility,
anonymity, straightforward support for content caching, efficient
support for complex communication patterns, etc. The most pop-
ular designs organize brokers into an overlay network, and let
subscribers express their interests by sending subscriptions to bro-
kers. Routing tables are configured accordingly by each broker
so that published messages can be routed to the interested sub-
scribers. Subscriptions in CBPS systems are generated fromamulti-
dimensional descriptionmodel that grants the users a high-degree
of expressiveness in expressing complex application requirements.

There are generally two architectures for a CBPS system as
shown in Fig. 1. The first architecture, called Broadcast-based
CBPS (B-CBPS) in this paper, employs a mesh-based overlay
network of brokers to connect publishers with subscribers. In
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this architecture, subscriptions are broadcast and routing paths
are obtained by reversing the broadcast tree. The second archi-
tecture aims at supporting large-scale and dynamic CBPS sys-
tems without central coordinations. P2P technology is key in
this architecture, so it is called P2P-based CBPS (P-CBPS) in
this paper. B-CBPS can be highly-efficient and optimized, and is
used in various performance-critical scenarios [21]. To avoid the
complexity of reconfiguring brokers’ routing tables when fail-
ures occur, backup and/or replication techniques can be em-
ployed. However, this approach causes considerable overhead
and costs in maintaining a replica of a broker’s states, which
results in increased hardware, software, and manpower costs.
On the other hand, P-CBPS offers significantly higher reliability
compared to B-CBPS because of its robust network architecture.
However, the performance of P-CBPS is inferior to B-CBPS as is
demonstrated in many previous studies [14,25,36], which hinders
its uses in performance-critical scenarios.

Because messages are forwarded based on the filtering of bro-
kers, communication in a CBPS system is fundamentally dynamic
and distributed, and there are no predefined endpoints for for-
warding messages. Additionally, users can revoke their interests
by unsubscribing, which further complicates the communication
patterns and increases the dynamism. Due to these issues, con-
ventional techniques for network reliability do not work in a CBPS
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(a) B-CBPS architecture. (b) P-CBPS architecture.

Fig. 1. High level illustration of the two architectures of CBPS systems.
system. A lot of research has been done to address this issue [2,3,
6–8,10,15–17,22]. However, existing proposals either rely on repli-
cation, which requires additional resources, or trade performance
degradation for better reliability. Our goal in this paper, therefore,
is to explore the design space of a high-performance CBPS system
with a high-degree of reliability.

We observe that the fragile network structure of B-CBPS, which
is key to achieving high performance message forwarding, hin-
ders efficient fault-tolerance. The network structure itself lends lit-
tle resources to cope with errors and failures. On the other hand,
P2P style systems provide far better reliability and fault-tolerance
because of their inherent resilient network structure, which in-
evitably results in an inferior performance compared to B-CBPS. In
this paper, we take a mixed design approach. The basic idea, how-
ever, is to combine the two structures.We show that overlapping a
P2P-based fault-tolerant layer on top of the B-CBPS infrastructure
requires minimal overhead, both in storage and bandwidth con-
sumption, while providing significantly higher reliability than the
B-CBPS alone. A key enabling fact of this result is that, in B-CBPS,
subscriptions are broadcast to all brokers. Because all brokers are
aware of all others’ subscriptions, they do not need to retransmit
subscriptions to establish backup routing when a failure occurs,
which provides a smooth transition from the high-performance
B-CBPS infrastructure to the P2P routing layer. This smooth-
ness can be crucial to many real-world applications, for example,
financial trading systems [31] and distributed messaging mid-
dleware [21], which require minimal disruptions. Additionally, it
simplifies the maintenance of the P2P routing layer and reduces
overheads.

The first design question of the system involves how the system
can detect message loss. Transit errors or failures of overlay links
and brokers can result in dropped messages. As proven in previ-
ous work [3], loss detection in CBPS systems is complicated. This
is because each message is filtered by brokers and the subscribers
that should receive themessage cannot be determinedwithout ac-
tually delivering it. In [8], a method that requires each message
to piggyback matched subscriptions is proposed. It is effective but
may cause a large overhead since the number ofmatched subscrip-
tions of popular messages can be high, and the verification process
requires examining the piggybacked subscriptions, which can sig-
nificantly delay the delivery of the message. In [3], a lightweight
non-intrusive technique for best-effort CBPS systems is presented.
This technique is simple and effective, but does not fully address
the lost message detection problem because it only supports prob-
abilistic detection. In this paper, we propose the use of a per-hop
loss detection and recovery scheme, which avoids unnecessary
overhead and guarantees the detection of message loss.

Another problem lies in efficiently maintaining the P2P rout-
ing layer. Existing techniques for P2P-based CBPS are designed for
large-scale systems that are distributed across a wide geographic
range, and require complex mapping between the content space
and the P2P identifier space. Their performance cannot meet the
requirements of many performance-critical applications. We de-
sign a light-weight P2P routing protocol that does not need com-
plex processing. In order to achieve a good delivery performance,
the protocol utilizes a unique feature of the B-CBPS infrastruc-
ture, i.e., consistent subscriptions on all brokers. In the presence of
persistent or long-term failures, which would require the recon-
figuration of the B-CBPS infrastructure to provide the optimal
performance, our system falls back to the conventional topology
reconfiguration procedures [22]. This design makes sure that the
system performs consistently in all situations and maintains the
optimal performance in the long run.

Our main contribution in this paper is a hybrid CBPS system
that seamlessly combines two network architectures, namely
B-CBPS and P-CBPS, and demonstrates the effectiveness of the
hybrid design. Other important contributions include:

• We present a light-weight loss detection scheme that fully
detects all lost messages with minimal overhead.

• We design a P2P routing scheme based on content space
mapping, which provides sufficient performance and a smooth
transition from the B-CBPS infrastructure to the P-CBPS layer.

• Wepropose a failure recovery protocol for topological reconfig-
uration in the presence of long-term or persistent failures.

• We perform extensive simulation studies to verify the perfor-
mance of our designs. The results demonstrate the effectiveness
and efficiency of our system.

The rest of the paper is organized as follows. Section 2 presents
the assumptions that are used in the discussion and an overview
of the system. Section 3 presents the detailed designs, including
loss detection, P2P routing, and routing layer switching. Section 4
sketches the implementation of our system. Section 5 presents
the results of the performance evaluation from both simulations
and testbed experiments. Section 6 discusses related work, and
Section 7 concludes this paper.

2. Problem settings and overview of design

This section presents the important settings of our research
context and an overview of the design.

2.1. Problem settings

The system is comprised of brokers and end users, which are
collectively called nodes. Usually, brokers are processes running
on powerful hardware, and end users are running on PCs. Each
broker serves as a portal for a large number of end users, usually
on the order of thousands or more. We assume that each end
user only connects to one broker. In practice, multi-homing can be
applied, but the overall design still works. Our problem settings
are fundamentally different from a pure P2P-based CBPS system,
where all end users are considered equal in their processing
capability and functionality. Our settings are more like those P2P
systems that have super peers [1].

Similar to the design in [2], each broker implements a module
called subscription endpoint or subend, which is called subscription
processor in this paper. A subscription processor processes
incoming subscriptions from end users and other brokers to
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Fig. 2. High level illustration of the two-layer hybrid routing structure.

configure the routing table, and stores the routing table by using
a reliable storage service. Therefore, it is assumed that a broker
could regain its routing table after recovering from a failure. This
assumption is different from some previous research [17,16]. Our
rationale is that reliable storage services are generally available
and cheap in practice, for example, with Cloud storage services.
Therefore, in this paper, we will not consider the problem of
recovering the routing tables of failed brokers.

Each broker also implements a publish endpoint or pubend.
Pubend maintains a persistent record of all delivered messages to
the end users that directly connectwith it. Same as subend, pubend
also provides reliable storage service. End users can recover history
messages from a broker if needed. Therefore, the problem of
providing durable publications [3] is not considered in this paper.

From an abstract point of view, end users could be publishers
and subscribers. We assume that each end user can simultaneously
publish messages and subscribe to certain content. In simulations,
this setting is simulated with a uniform publish rate for all end
users. Additionally, we acknowledge that in practice, it is most
likely that only a few information sources will publish messages,
whereas all other end users publish a much smaller amount
of messages. This setting is also simulated in the performance
evaluation.

The subscription processing follows the conventional ap-
proach [5,6], where subscriptions are broadcast to all brokers, and
a dissemination tree is formed on the reverse path of the broad-
cast tree. Because the subscriptions of end users are summarized
by brokers, the source of the subscriptions that are processed in the
broker network only reflect the ID of the originating brokers. Mes-
sages are routed between brokers and then dispatched by pubend
based on the original information recorded by the subend. We will
use the source of a subscription to refer to the broker from which
the subscription originated, instead of the end user that actually
sent the subscription. Therefore,most discussions in the rest of this
paper will not consider end users.

Our designs address two types of failures. The first, random
transient failures that cause message loss. This type of failures are
persistent for a short time frame, usually in a sub-second scale,
which are best recovered by usingmessage retransmission instead
of complex topology reconfiguration protocols. Such failures are
expected to happen frequently because Internet services are
moving to Cloud where services are collectively provisioned by
a large number of distributed and virtualized servers running
on physical machines. Virtualized servers could be brought back
quickly which makes the transient failures possible. The second,
persistent failures. These errors are usually caused by physical
servers down and virtual servers could not be initialized on
other physical servers. Bringing physical servers back needs a few
minutes. Using message retransmission is unable to gracefully
mask the latency experienced by users. In this case, a topology
reconfiguration protocol is necessary. In rare situations, physical
servers could be permanently down, which requires a long-term
topology reconfiguration plan. These situations are all required to
be considered in the designs.

2.2. Overview of design

Our basic design is illustrated in Fig. 2. Two routing layers are
used. At the bottom, a high-performance distributed tree-based in-
frastructure is used, which is called the B-CBPS infrastructure. This
layer can be constructed manually, which may intentionally opti-
mize the end-to-end delay and throughput. Manual configuration
alsomakes it straightforward to implement specific policies, which
are specified by outside business logic. Tree-based content routing
is employed in B-CBPS. Each broker broadcasts the subscriptions
that it receives from end users and records itself in the subscription
as the source. When subscriptions are received by other brokers,
duplicate subscriptions from the same source will be discarded,
and new ones will be stored in the routing table. The routing ta-
ble records the broker from which the subscriptions are received.
This process makes sure that the paths with the minimum latency
to the same broker will be used. In message publishing, end users
push messages to a broker, and the broker checks its routing table
to determine where to forward the message.

On top of the B-CBPS infrastructure, a P2P routing layer is
created. In this paper, we use Chord [29], which is proven to
offer the best overall routing performance and reliability [13]. A
broker’s domain name and port number are used as a hash key to
compute its ID in the Chord ring. Overlay links are created by using
Chord protocol. The P2P routing layer is not used for forwarding
messages if no error or failure occurs. Maintenance is still needed
for maintaining valid states of the P2P routing. Its details are in
Section 3.3.3. When failures occur, traffic will be automatically
forwarded into the P2P layer. Specific designs are presented in
Section 3.3. Because of DHT’s inherent fault tolerance, messages
could be delivered in the presence of serious network failures.
Our design also allows the B-CBPS infrastructure to reconfigure
when failures are persistent or network partitions occur, which
optimizes the long-term performance of the system. The reliability
of this P2P layer is key to supporting the overall reliability of the
entire system. Previouswork onDHT reliability has already verified
its superior fault-tolerance [13,29].

3. Design

This section elaborates on three major components of our
system: message loss detection, p2p routing, and routing layer
switch. Message loss detection and recovery help the system to
recover from transit or short-term failures. P2P routing addresses
efficient routing in the presence of link or node failures that cause
network partitioning. It helps brokers that are affected by failures
form a temporary routing structure to perform routing efficiently.
The routing layer switch makes sure that P2P routing and the
B-CBPS infrastructure switch smoothlywhen failures occur and are
resolved.

3.1. Message loss detection and recovery

This section presents the design of the per-hop reliability based
on sequence numbers. We then discuss the lost message recovery
mechanism, which is based on sliding window transmission.

3.1.1. Per-hop reliability based on sequence numbers
In the presence of transit errors,message loss can occur. Attach-

ing sequence umbers to every message at the publishers is insuf-
ficient for detecting message loss in a CBPS system. The inability
is resulted from the fact that the sequence numbers assigned at



374 Y. Zhao, J. Wu / J. Parallel Distrib. Comput. 73 (2013) 371–382
Fig. 3. High level illustration of the configuration of the sequence numbers
associated with the logical interfaces of a broker.

a publisher do not reflect the sequence at which the subscribers
would receive. Because messages are filtered by brokers distribut-
edly, there will be gaps between the sequence numbers received
at the subscriber. Therefore, the subscriber cannot distinguish such
gaps from the gaps caused by message loss, which makes the se-
quence number useless in detecting message loss.

Even though sequence numbers do not work for end-to-end
message loss detection, it still works in a hop-by-hop scenario. The
subscriptions sent from a broker to another neighboring broker
are consistent. If a message is sent from a broker to another
neighboring broker, the message’s sequence is consistent on both
brokers. In other words, between two neighboring brokers, for any
message being sent from one broker to the other, the two brokers
have a consistent view of the sending and the reception of the
message. If both brokers negotiate a common inception sequence
number, the broker that is receiving messages could detect a
loss by comparing the message’s sequence number to the next
expected one. A brokermaintains the sequence number for each of
its egress interfaces to neighboring brokers. The sequence number
of an interface indicates the next expected sequence number that
should be assigned to an outgoing message or should be received
from an incoming message.

Take the configuration in Fig. 3 as an example: broker A main-
tains sequence numbers for each incoming and outgoing interface.
When messages are acknowledged, the sequence number associ-
atedwith the interface is incremented by 1. Thismechanism is sup-
posed to detect message loss caused by transient failures. Timeout
will trigger routing switch or topology reconfiguration to bypass
persistent failures.

3.1.2. Lost message recovery
Although the mechanism present in the previous section is

a straightforward application of the per-hop reliability scheme,
there is a small disparity caused by the unique properties of
CBPS systems. As discussed before, a message is forwarded
according to the routing table of the broker, so the message will
potentially be forwarded to multiple neighboring brokers through
different interfaces. This requires the broker to maintain multiple
sequence numbers for each sent message. Only when all of the
acknowledgments from the next-hop brokers are received can the
sending broker remove the message from its buffer. Therefore, a
broker needs to maintain a variable number of sequence numbers
for each message and compare them with an equal number of
acknowledgments.

3.2. Routing layer switch protocol

With per-hop loss detection and recovery, the end-to-end
reliability is guaranteed under any conditionwhere no link or node
failure occurs. We will simply use failure to refer to the link and
node failures that cause disconnections in the network. Our basic
idea for handling topology reconfigurations caused by failures is
to let the brokers that are affected by any failure switch to a P2P
routing network. This idea is illustrated in Fig. 2. In Fig. 2, link
and node failures cause brokers to be disconnected. The affected
brokers then forward messages in the P2P routing layer. Due to
the better fault-tolerance of the P2P network, routing paths still
exist. The details of the P2P routing protocol used in our systemwill
be given in Section 3.3. In this section, we describe how to switch
between the two routing layers.

It is arguable that the system should immediately resolve fail-
ures and reconfigure system states to preserve normal operations.
This used to be vital because recovering a failed server can take
excessive time. However, Cloud computing technology, which is
enjoying a fast adoption rate worldwide, changes this situation.
That is, a broken server could be brought back quickly, either by
replicating virtual machines or by migrating workloads to a new
physical server. This operation could be completed in a relatively
short time, for example, less than aminute. Such a short time is still
long enough to noticeably affect system performance. On the other
hand, because the time is short, it makes the recovery of the broker
network very expensive. As discussed in [22], in order for the bro-
ker network to regain its valid state after a topology change, the
subscriptions that are associated with the affected brokers need
to be repropagated throughout the network, which could be the
entire network in the worst case. This operation involves multiple
brokers and can potentially take a much longer time in the case
of cascading failures. Even worse, when the broken brokers come
back, the same operation needs to be performed again, which is
quite a waste of resources. Additionally, the brokers cannot for-
ward messages to subscribers that are affected by the failure until
the reconfiguration is completed, which incurs an excessive delay.

This motivates us to employ a two-layer routing switch
approach. Firstly, our routing switch protocol does not require
the system to immediately respond to the failures in the B-CBPS
routing layer. Instead, the traffic is redirected into the P2P routing
layer. With an almost always available P2P routing layer, the
above complicated operations could be avoided if failures are
transit. In our preliminary design, we set a timeout value to the
90% percentile value of the down time of a broker. After the
timer expires, a routing table reconfiguration will be executed
to reconfigure network states. After the B-CBPS infrastructure is
recovered and settled down, the affected brokers will switch back
to the B-CBPS routing layer. This scheme avoids the unnecessary
network reconfigurations and simplifies the overall system design.

If no failure occurs, a brokerwould never forwardmessages into
the P2P routing layer. A broker starts forwarding messages to the
P2P layer only when it detects failures in its neighboring brokers
(link or broker failures). We use switching brokers to refer to the
brokers that are required to send or receivemessages to or from the
P2P routing layer. When switching brokers, the subscriptions that
are affected by the failed brokers need to be identified. There are
two types: the sending and receiving subscriptions. The sending
subscriptions are those that are received from the failed brokers;
the receiving are those that receive messages from the failed
brokers. The sending brokers will forward messages that should
have been directed to the failed brokers to the P2P layer; on the
other hand, the receiving brokers register their subscriptions that
should have receivedmessages from the failed brokers. These ideas
are illustrated in Fig. 4. Broker A’s connection to D is broken. The
interface to Dwill be marked as repair. The messages sent through
a repair interface should be directed to the P2P layer.

3.3. P2P routing in the presence of failures

During the time that the P2P routing layer is being used, its
performance should be good enough to support normal system
operations. We strive to strike a desirable trade-off between
reliability and performance and also provide means to adjust the
trade-off. Existing P2P-based CBPS designs have already explored
a wide range of the design space. We include a CBPS routing
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Fig. 4. The routing table of broker A is configured to forward the message to the
matched brokers of each subscription. Traffic will be redirected to the P2P routing
layer if failure occurs.

Fig. 5. Illustration of the rendezvous-based repair. Broker B failed. Broker C and
D are the affected brokers. Broker C requests repair from the rendezvous broker D.
D then forwards messages to C by using DHT routing. Arrows indicate the direction
of message forwarding.

protocol based on Chord [29] as a comparison in the performance
evaluation section. However, all of these proposals are designed
for a large-scale system scattered over a wide geographic range,
which has a high degree of dynamics, user churn especially. As a
result, most of them are designed to address this problem instead
of providing highly-efficient message forwarding. This motivates
us to investigate new techniques that better serve our purpose in
the design.

The content mapping mechanism is the method of mapping
from the content space of the CBPS system to the identifier space
of the P2P network. It is used in most existing P2P-based CBPS
systems. Certainly, it is straightforward to apply this method in
our design. However, this approach may result in performance
degradation. We would like to discuss it in detail here because
each broker in our system collects the subscriptions from a large
number of subscribers. In our plan, each broker should be able to
serve 100,000 users on average. The users’ interests can be diverse,
so the subscriptions collected at each broker will generally cover
a very large fraction of the entire content space. When failures
occur, affected brokers need to informall of the rendezvous brokers
that are responsible for handling the part of the content space
that corresponds to the subscriptions of the affected brokers. Since
the subscriptions generally occupy a large fraction of the entire
content space, it is likely that a large fraction of the brokers will
be the rendezvous brokers. Therefore, the affected brokers need to
contact many brokers. The messages, on the other hand, only need
to be forwarded to the corresponding broker, which is guaranteed
to be one of the rendezvous brokers. In conclusion, the problem is
that the time it takes for the affected brokers to contact all of the
rendezvous brokers may be long.

3.3.1. A rendezvous-based approach
One simple and effective solution is to take a pro-active

approach in forwarding the messages. When a message is directed
to the P2P routing layer, the rendezvous brokers will broadcast
the message to all matched brokers, regardless of the possible
waste. The rendezvous brokers are mapped from the subscriptions
that require repair by the DHT protocol. Fig. 5 shows a very
simple network configuration, where broker D is mapped by the
subscription of speed = 100 and requires repair by broker C .

After a short time, the notification of the affected brokers will
finally arrive at the rendezvous brokers. Then, the rendezvous
brokers seize broadcasting and use P2P routing to transmit the
message to the affected brokers. This method comes at the cost
of wasted bandwidth and duplicate messages because not all
recipient nodes need the messages. A timer is used to reduce the
bandwidth waste by setting up a timeout to stop broadcasting.
Additionally, duplicate messages can be easily removed by
comparing the sequence numbers assigned by the publishers. Also,
note that broadcast heremeans to forward themessage to all of the
matched brokers; it actually does not broadcast to all brokers in the
network. The rationale for using this concept is the fact that not all
matched brokers are affected by the failure, but they still receive
messages from the P2P layer.

When a broker detects a failure, if it decides to forward the
messages to the P2P routing layer, it sets a repair flag in the
message to indicate that this message should be transmitted in the
P2P routing layer by the rendezvous broker. When the rendezvous
broker receives the message, it first checks its routing table to find
the matched brokers of the message. Part of the matched brokers
can be reached by the B-CBPS infrastructure, and this information
can be found readily by examining the original broker of each
subscription in the routing table. This set of brokers are called
the downstream brokers. The rendezvous broker then removes the
downstream brokers from the matched brokers. The resultant
brokers’ IDs are called the destination set and are appended to the
message. This message will be forwarded to the nearest broker in
the destination set. The first broker that receives themessage in the
destination setwill strip its ID from the destination set and forward
the message to the next nearest broker. This process continues
until all brokers in the destination set are reached. It is possible
that some brokers in the destination set are down. In that case, the
intermediate brokers in the P2P routing layer can detect this and
automatically remove those brokers from the destination set.

The timeout of stopping a broadcast is set as follows. It should
be at least as large as the time for any affected brokers to notify the
rendezvous broker. This time is equivalent to the maximum path
latency in the P2P network. We derive the maximum path latency
by multiplying the average per-hop link latency by the maximum
path length in hop counts. The former could be estimated locally.
The maximum path length in a DHT-based P2P network can be
calculated analytically, as demonstrated in previous work [13]. Or,
we could do a sampling by using a random walk. When the time
expires, the broadcast stops and the rendezvous broker will start
forwarding the repairmessages to the affected brokers. The benefit
of the rendezvous-basedmethod is that the number of brokers that
require repair messages is small.

3.3.2. A multicast-based approach
Since subscriptions are broadcast, each broker is aware of the

sources of the received subscriptions. Fig. 6 illustrates this fact.
Usually, content matching returns the interface associated with
the subscription. When a failure occurs, the interface connected
to the failed link and brokers will be marked as repair. For these
interfaces, the sources of the subscriptions will be collected and
set as the destination set of the repair message. As shown in
Fig. 6, when a new message directed to interface B is received,
broker A appends the source of the matched subscription, D,
to the destination set of the message. The message is then
directed to the P2P layer. Just like the previous rendezvous-based
approach, brokers forward the message starting with the nearest
the destination.

Note that this approach is similar to MEDYM [4]. The difference
is that our design uses P2P routing to providemaximum reliability,
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Fig. 6. Illustration of the multicast-based repair. Broker A knows the source of
the subscription. When A detects that B failed, the interface to B is marked repair.
Messages directed to the interface will be redirected to the P2P layer.

whereas MEDYM uses overlay unicast and multicast to optimize
delivery performance, which does not address the reliability
issue. We would also like to point out that our design could
be straightforwardly integrated with most broadcast-based CBPS
systems. More details about the integration with existing systems
are given in Section 4.

3.3.3. Maintenance of P2P routing layer
The overhead of our design lies mainly in the maintenance

of the P2P routing layer. Section 2.2 indicates that building P2P
routing on top of a B-CBPS infrastructure requires minimum
overhead because subscriptions do not need to be transmitted. The
B-CBPS protocol makes sure that all brokers store subscriptions
that originated from all other brokers. Each broker obtains an ID by
hashing its domain name and port number. The basic DHT is built
from the IDs of the brokers. Note that this process does not concern
subscriptions. A content-to-ID mapping protocol is required in the
rendezvous-based repair protocol. We could borrow the designs
from previous P2P-based CBPS systems [14,24,30,36]. Multicast-
based repair, on the contrary, does not need such a mapping
protocol. A failure detector is needed to keep the statuses of the
neighboring brokers up-to-date, which is also required by the
B-CBPS.

3.4. Message buffer and loss recovery

Per-hop loss detection and recovery has a limitation when
broker failures occur. If a neighboring broker fails, previously-
acknowledged messages may be lost before they could be suc-
cessfully delivered to the next-hop broker. It is necessary to
buffer acknowledged messages for a certain time. The time is de-
termined by themaximal tolerable failure in the system. Analogous
to the sliding window transmission, the buffer size is determined
by the one-way delay for a message to traverse n brokers. Fig. 7
illustrates this idea. Here, n is the maximal brokers that can fail
simultaneously given that any lost message can be recovered. Sup-
pose that the delay of reaching the (n + 1)th broker is σ , and the
outgoing bandwidth of a broker is B, the size of the message buffer
in bytes should be σ × B. Because messages are of variable size,
the actual count of messages stored in the message buffer could
vary. To ensure a high probability of loss recovery, the total size
of the buffered messages should be larger than σ × B. Note that
the above analysis applies for every outgoing interface of a broker,
because the message buffer needs to be maintained for all of the
outgoing interfaces of a broker.

The messages held by the message buffer will be forwarded
during the failures. As is discussed above, the message buffer is
designed for worst-case scenarios where σ brokers fail simultane-
ously. Usually, not all messages in the buffer are lost. We employ
Fig. 7. Illustration of how to determine the size of the message buffer.

a mechanism called message replay to avoid unnecessary trans-
missions. Because of the per-hop loss detection and recovery, if a
message is successfully delivered to subscribers, all messages that
are older than that one are delivered too. Based on this observa-
tion, in a message replay, the messages in the message buffer are
retransmitted from the newest to oldest. When a subscriber re-
ceives a duplicate message, it reports to the rendezvous broker
(in rendezvous-based routing) or the source broker (in multicast-
based routing). When the notification is received, the rendezvous
broker or the source brokerwill seize themessage replay process to
the subscriber. After allmessages in themessage buffer are retrans-
mitted, or all affected subscribers acknowledge that the replay pro-
cess should stop, the source broker will send new messages. The
message replay does not require explicit signaling to indicate its
beginning because the rendezvous brokers and the subscribers can
detect it automatically by checking decreasing sequence numbers
in the repairmessages that are being received from the P2P routing
layer. Similarly, the transmissions of new messages are detected
by observing the increasing sequence numbers that are larger than
the previously recorded numbers in the message replay process.

Message replay avoids unnecessary retransmissions and saves
bandwidth. However, it complicates operations. In certain scenar-
ios where this complexity negatively affects the overall perfor-
mance, or the users prefer a simpler scheme,message replay can be
disabled. Instead, allmessages in the buffer could be retransmitted.

When a failed broker is recovered, the lost messages that have
not been delivered to it can be recovered straightforwardly. As is
discussed before, message buffer guarantees that all messages has
not been delivered to the next hop broker will be buffered. Per-
hop sequence numbers let the recovered broker easily identify lost
messages. It can directly request thosemessages from its upstream
brokers.

4. Prototype implementation

We implement a prototype on PlanetLab [28]. This section
presents important implementation details and the evaluation
results.

4.1. Development details

We use Python/Twisted [32], an event-driven networking de-
velopment framework written in Python, in the implementation.
An event-driven framework is highly efficient and offers clean ab-
straction to model the application requirements of complex net-
worked applications. More details are available on the website
referenced above.

A high-level description of the software architecture of a bro-
ker is given in Fig. 8. As discussed in Section 3, brokers are respon-
sible for the majority of the system functions. Fig. 8 shows four
important functions:message forwarding and dispatching, subscrip-
tion processing, neighbor state management, and message reception.
These functions are completed by various internal modules of the
broker, including the content-based routing module, failure detec-
tor, publication endpoint, and subscription endpoint. All of these
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Fig. 8. High-level software architecture of a broker.

modules rely on a transport layer protocol, and TCP is used in the
prototype. End users or clients are much simpler. They implement
three modules: publish, receive, and subscribe, which are responsi-
ble for pushing and receiving messages to and from brokers and
sending subscriptions to brokers.

In the source code, a broker has two components: a peer
manager and a client manager. The peer manager is responsible
from message forwarding, subscription processing, neighbor state
management. The client manager is responsible for message
reception and dispatching. The complete source code is available
on [27]. Our design can be integrated with most broadcast-based
CBPS systems. The efficiency of our design is best with broadcast-
based content routing because subscriptions do not need to be
forwarded when maintaining P2P routing tables. If, however, it is
implemented with hierarchical CBPS systems, like in [10], some
subscriptions need to be installed by the P2P routing protocol.

4.2. Prototype evaluation

Weallocate 70 PlanetLab nodes as brokers, which are all located
in North America. Clients are implemented as local processes on
the broker node. On each of the PlanetLab nodes, 100 client pro-
cesses are allocated. Clients are connected with the broker that re-
sides on the same physical machine, which are identified through
different port numbers. Each client subscribes to the local broker
with at least 100 subscriptions, and the amount changes to model
different network scales. All subscriptions only have 1 attribute.
Note that this is not a realistic setting. The reason is to accurately
model the impact of the number of subscriptions on the system
performance. That is, it is necessary to check all subscriptions to
match an incoming message, which cannot be filtered by examin-
ing the schema of the subscription and the message.

Each broker node connectswith 6 nodes, which have the lowest
communication delay with the broker node, as the neighbors in
the B-CBPS infrastructure. The same number of finger links are
used in the P-CBPS layer. We study the delay and throughput of
our system. All subscriptions are intervals that randomly picked
from a global limit of [0, 10,000]. The lower and upper bounds
of an interval is obtained by sorting two random numbers drawn
from [0, 10,000]. Eachmessage has no actual payload and only has
the content description and a timestamp. Note that this setting
avoids the impact of transmission delay on the overall network
performance. The evaluation is done like this: after all clients
subscribe to brokers, a client is selected to publish data. Due to
the symmetric of the network, this suffices to evaluate the overall
network performance.

The delay and throughput of our system without failure
are presented in Figs. 9 and 10. The hardware and network
Fig. 9. The delay of the delivered messages on the PlanetLab testbed.

Fig. 10. The throughput on the PlanetLab testbed.

configurations of PlanetLab servers are powerful. As presented in
the Fig. 9, the delay of delivering a message is low. We present
the results of the two matching techniques: sequential matching,
which is the naive approach that examines all subscriptions one
by one and stops when an interface is matched; and TAMA, which
is the approximate matching method presented in [35]. TAMA
slightly reduce the overall delay because of its faster matching. We
note a spike in the delay of the sequentialmatching. This is because
when the amount of subscriptions in the whole network is small,
brokers have to examine almost all subscriptions to determine
whether or not to forward a message. This causes the brokers
to examine more subscriptions when the subscriptions amount
increases. When the subscription amount increases beyond a
threshold, the shortcut effect, i.e. the matching process stops
early once a subscription is matched for an interface, reduces
the number of subscriptions need to be examined. The delay still
increase afterwards due to the sheer increase of the amount of
subscriptions.

The throughput is presented in Fig. 10. We also include the
results of two matching techniques. Similar as Fig. 9, TAMA
performs better than sequential matching. The correspondence
between delay and throughput is not strictly well regulated. In
this test, we let a client inject as many messages as possible to
its connected broker, and then measure the delivered messages
of that client. Since we let messages to have only a timestamp
the primary bottleneck for throughput is the processing speed of
the broker and the underlying routing infrastructure. There is a
small drop in the throughput for the sequential matching method,
which is corresponding to the spike in the delay as shown in the
previous figure. Due to the fact that the subscriptions are generated
in a purely random fashion, the test results show some irregularity
between 60 and 70 subscriptions per client.We believe this ismost
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Fig. 11. The delay of delivered messages on the PlanetLab testbed with growing
number of failed brokers.

Fig. 12. The throughput on the PlanetLab testbed with growing number of failed
brokers.

likely a result of the underlying physical network status and the
randomness of the subscriptions.

Figs. 11 and 12 present the delay and the throughput of two
matching techniques with broker failures. The number of failed
brokers is selected from 1 through 10. The results are consistent
with the analysis we gave previously.

5. Performance evaluation

Simulations are used to evaluate our designs.We implement an
abstract network simulator that is able to capture the properties
of the transport layer, which is much simpler to implement than
a comprehensive packet-level simulator. In this section, we first
present the details of the settings of the simulations and then
discuss the details of the simulation results.

5.1. Simulation settings

A customized simulation program written with C++ is used.
We use the topology generation process described in [33]. An
AS-level (Autonomous System) topology is generalized from real
AS-level connection statistics based on themethod given in [9], and
then a per-AS router topology is populated for each AS by using the
method from [18]. This complete Internet topology is not directly
used in the simulation because of its excessive complexity, but is
used as a basis to derive an inter-AS topology. Inter-AS links are
10 Gbps; inner-AS links are 1 Gbps; and users connect with the
Internet with 15 Mbps LAN, which is consistent with the main-
stream ISP service specifications. The bandwidths and latencies
between end users and brokers are derived from the generated
topology and link connections. Propagation delays are omitted.

Each broker is assigned to an AS, so that the connections be-
tween brokers are implicitly determined by the AS-level topology.
The number of brokers varies from 100 to 1000 to simulate differ-
ent scales of the system. 1000 end users are assigned to each bro-
ker. Each end user subscribes to one subscription that corresponds
to a small range in a one-dimensional attribute space and is drawn
uniformly. Subscriptions are pre-assigned and keep static during
the entire simulation. The width of the range is set to be 1

1000 of the
entire value space of the attribute. Considering the large amount of
end users in the entire system, there are, on average, 100 to 1000
subscribers for each message to be delivered to, for the network
of 100 to 1000 brokers. We let each end user send messages at an
average rate of one message per hour. This rate is implemented as
an exponential inter-transmission time that has an mean value of
one hour. We also vary this rate to simulate different traffic loads
on the system. Each message is 1 MB in size.

Methods in Comparison:Wecompare our designswith twoother
methods: B-CBPS-Reconfig and P-CBPS. The former stands for the
B-CBPS infrastructure with the reconfiguration protocol in [16],
which reconfigures the routing tables of all brokers in the network
when failures occur. There are optimizations made to accelerate
the reconfiguration process and to reduce the induced signaling
overhead. P-CBPS is a Chord DHT network. We make sure that
the B-CBPS infrastructure and the P-CBPS layer of our system is
identical to the B-CPBS-Reconfig and P-CBPS topologies used in
comparison. We also use Rendezvous and Multicast to represent
the two P2P routing schemes.

5.2. Throughput

We first look at the throughput of the system in the presence
of failures. We record 100 s of running states of the system. The
delivered messages in every second are accumulated to calculate
the throughput. We only consider the unsaturated case where the
network bandwidth is enough to accommodate all traffic loads.
There are 100 brokers in the system.We randomly remove a broker
from the network and let it rejoin 5 s later, at the 10th and 70th
second. Note that topology reconfiguration is not executed by our
design. Fig. 13 presents the achieved throughput at every second.
Throughput is disrupted by the failure. All protocols perform
closely. P-CBPS clearly has the lowest amount of disruptions, and
B-CBPS-Reconfig has the highest amount of disruptions. This is
because B-CBPS-Reconfig will seize transmission when a failure
occurs andwill only resume after reconfiguration is completed. In a
network of 100 brokers, the time used to complete reconfiguration
could be acceptable, as demonstrated in the experiments.

To better understand the disruption of failures on throughput in
a large-scale network, we change the count of brokers to 1000 and
repeat the above experiments. To avoid saturating the network,
we reduce the size of the message to 100 kB, so that the overall
throughput is similar to the previous experiment. We randomly
remove 10 brokers at the 10th and 70th second and let them
rejoin the network 5 s later. This is to ensure the same fraction of
failures as in the network of 100 brokers. The results are shown
in Fig. 14. B-CBPS-Reconfig has much higher delays and much
longer disruptions compared to other protocols. Since the network
becomes larger, the time used to reconfigure the routing tables of
brokers becomes much longer than a smaller network. Whereas
for our system, the reconfiguration process is shielded from the
end users by forwarding traffic on the P2P routing layer. The
disruptions in our system are caused by the initial setup time of
the P2P routing and the longer delays of forwarding messages on
the P2P layer.



Y. Zhao, J. Wu / J. Parallel Distrib. Comput. 73 (2013) 371–382 379
Fig. 13. The aggregate throughput of the system calculated in a 1 s time window
in a network of 100 brokers using different protocols.

Fig. 14. The aggregate throughput of the system calculated in a 1 s time window a
large network of 1000 brokers using different protocols.

We then measure the achieved throughput when a fraction
of the brokers fail. Starting from the 10th second, a broker will
be permanently removed from the network in every 10 s. The
network has 100 brokers. Similar to the above, we measure the
achieved throughput in a 1 s time window. The results are shown
in Figs. 15 and 16. Fig. 15 shows the results for a network of
100 brokers. Our system and P-CBPS perform very closely. P-CBPS
works best because the failures cause less path failures, so that
more traffic will be forwarded normally without being disrupted.
On the other hand, since our system tries to switch back to B-CBPS
after a timeout, which is set to 5 s in this experiment, a fraction
of the bandwidth is wasted on exchanging control messages.
Additionally, with more brokers being removed, more traffic will
be forwarded on the P2P layer, which has longer routing paths and
also reduces the short-term throughput. Aswe can see in the figure,
the difference between our system and P-CBPS almost disappears
after the 75th second. This is because, after a sufficiently long time,
the effects of long routing paths in the P2P routing layer are settled.
Also, because a large fraction of the brokers are already removed,
most of the traffic will be forwarded on the P2P routing layer,
which makes our system perform almost identically to P-CBPS.

B-CBPS-Reconfig has a inferior performance compared to
other protocols. This obviously results from the fragile network
Fig. 15. The average delay calculated in a 1 s time window change with broker
failures. 100 brokers. Each second a broker is removed from the network starting
from the 10th second.

Fig. 16. The average delay calculated in a 10 s time window change with broker
failures. 1000 brokers. Each second a broker is removed from the network starting
from the 10th second.

structure, which causes more disruptions and cannot be repaired
quickly. There are large drops in throughput at the 10th, 45th, 50th,
and 62nd second, which is resulted from network partitioning
caused by removing brokers.

We also notice that at the beginning of the simulation, P-CBPS
has a noticeable performance gap compared to other protocols.
This is because the delay of forwarding messages in a P2P network
is large; some of the traffic is not accumulated in real-time, which
makes the throughput less than others. From the beginning to the
10th second, its throughput is also larger than the others, for some
of the traffic is accumulated and added into the throughput, which
results in a larger throughput.We also would like to point out that,
the delay of delivered messages using P-CBPS is larger than the
others; details will be given in the next section.

We also repeat the above experiment in a network of 1000
brokers. The results are presented in Fig. 16. The message size is
reduced to 100 kB, and the time scale is prolonged to 1000 s. We
remove brokers starting at the 100th second. The results are very
similar to those in Fig. 15. Our analysis of Fig. 15 also applies here.

5.3. Delay

We then study the delay of the delivered messages of the
different protocols. Figs. 17 and 18 are the corresponding delays of
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Fig. 17. The average delay of the delivered messages calculated in a 1 s time
window in a network of 100 brokers using different protocols.

Fig. 18. The average delay of the delivered messages calculated in a 1 s time
window in a network of 1000 brokers using different protocols.

the figures in the last section. At the end of every second, we find
the maximal delay of all of the messages received by subscribers
in the last second. In normal operations, the delays achieved
by P-CBPS the largest, which is caused by the relatively longer
routing paths in P2P routing. When a failure occurs, our system
quickly adapts the routing protocol tomaintain a low delay. On the
contrary, B-CBPS-Reconfig needs to wait until the reconfiguration
is completed. The resultant delay is a order of magnitude larger
than the other protocols.

The delay of P-CBPS is much larger than the other protocols in
normal operations. This makes it not a good choice when a small
delivery delay is required by the application. However, this gap is
reduced in a larger network, as shown in Fig. 18. This fact suggests
that P2P-based routingwould outperformbroadcast-based routing
when the network scale is beyond a certain threshold. For the
application scenarios considered in this paper, thiswill not happen.

Note also that the delays of Rendezvous-based and Multicast-
based P2P routing are very close. This is because both methods
react to failureswithout any delay and rely on the sameP2P routing
structure for forwarding messages. There is a small gap between
P-CBPS and our methods. Note that our P2P routing methods
are not exactly the same as normal P2P routing. Multiple
messages can be forwarded on a single path despite multiple
Fig. 19. The ratio of lost messages in a network of 100 brokers. The percentage of
failed brokers varies from 10% to 90%.

different destinations. In pure P-CBPS, messages sent to different
destinations will be forwarded on distinctive paths, which causes
excessive delay.

5.4. Lost messages and overhead

Fig. 19 presents the ratio of lost messages when brokers failed.
Since our system relies on the P2P routing layer to achievemaximal
fault-tolerance, the ratio of the lost messages to the overall mes-
sages that should be delivered will be the same as P-CBPS. There-
fore, we use P-CBPS to represent our system and the pure P-CBPS
system. The figure shows that P2P-based routing reduces message
loss by a large gap. This result complies with the conclusion in [13].

Weonly consider the overhead of the two routingmethods used
in our system. The overhead of other protocols involves different
settings and is inappropriate to compare together. Rendezvous-
based routing forwards duplicatemessages to subscribers. Bymea-
suring the results of the previous experiments, we found that, on
average, 30%moremessages are transmitted by using Rendezvous-
based routing compared to Multicast-based routing.

6. Related work

CBPS systems can be implemented on top of broadcast-based
overlays [4,5,11,23] and P2P-based overlays [14,24,30,36]. Efficient
routing protocol design is an important problem in broadcast-
based overlays. The designs of [5,11,23] use a flat overlay
network of brokers and broadcast-based dissemination. They offer
distinctive reliability guarantees. DHT-based CBPS systems [14,24,
30,36] propose various mapping schemes between the content
space and the ID space. Specifically, Chord [29] has been used
in [24,30,36]. Such systems target large-scale wide-area systems,
which emphasizes the scalability and resilience of the system
instead of the delivery performance.

Reliability in CBPS systems has been studied in a lot of previous
research, both in broadcast-based overlays [2,3,7,8,10,15–17,20,
22,26,34] and P2P-based overlays [12,25]. In [8], the epidemic
algorithm is employed to disseminate potentially lost messages
to end users. The epidemic algorithm is simple to implement, but
wastes bandwidth because duplicatemessageswill be transmitted.
Additionally, it only recovers part of the lost messages. In [10],
a hierarchical multi-layer overlay network is used to coordinate
reliable transmissions in a wide area network. The reliability
is supported by constructing a multi-parent distribution tree
and reliability-aware routing. Their approach is centralized and
complicated, which makes it less favorable in practice. In [2], the
authors present an abstract log-based reliable message delivery
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method. It requires complexprocessing and reliable brokers,which
limits its performance. In [16], the authors propose to cache
topology information to repair routing paths. This approach causes
quadratic storage overhead and excessive delays in forwarding
messages.

The reliability of the P2P-based CBPS systems is implemented
by using DHT to scalably replicate brokers [25] or by utilizing the
inherent robustness and fault-tolerance of the P2P overlay [12].
The reliability of DHT-based P2P networks is a well-studied
topic. In [13], the impact of different DHT routing structures on
routing resilience is studied. Their results verify that Chord [29]
has the best overall performance in terms of routing efficiency
and resilience. In [19], the authors analyze the graph theoretical
properties of many DHT-based P2P routing algorithms.

7. Conclusion

This paper presents the design and evaluation of a hybrid
CBPS system that provides a high degree of reliability and high
performance. We observe that the designs of the broadcast-based
and P2P-based CBPS systems have distinctive goals that optimize
different metrics. Specifically, delivery performance is good in
B-CBPS whereas reliability and robustness are maximized in
P-CBPS. Our system works by utilizing these two architectures
alternatively. The system achieves a good performance in normal
operations and in the presence of failures, both short-term
and long-term failures, by switching to the appropriate routing
structure that works best for the traffic demands. The basic idea
is to combine a broadcast-based infrastructure with a P2P-based
backup routing structure. Due to the inherent high reliability
and fault resilience of DHT-based P2P routing, the system is
able to route messages in the presence of failures with a very
small performance degradation and avoid complex operations to
regain the correct states, which also greatly reduces the overall
overhead. Two P2P-based routing protocols are proposed to handle
failures with simple operations and minimal overheads. Extensive
simulation experiments are carried out to evaluate our designs. The
results verify our claim that the system achieves good performance
across a wide range of failure scenarios and only incurs a small
amount of overhead. Our future work will involve implementing
the system on PlanetLab to study its performance in a real-world
environment.
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