
Y. Duan, N. Wang, J. Wu. Accelerating DAG-Style Job Execution via Optimizing Resource Pipeline Scheduling. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY

Accelerating DAG-Style Job Execution via Optimizing Resource
Pipeline Scheduling

Yubin Duan1(段钰斌), Student Member, IEEE, Ning Wang2(王宁), Member, IEEE, Jie Wu1∗(吴杰), Fellow, IEEE

1Department of Computer and Information Sciences, Temple University, Philadelphia, 19122, USA
2Department of Computer Science, Rowan University, Glassboro, 08028, USA

E-mail: yubin.duan@temple.edu; wangn@rowan.edu; jiewu@temple.edu

Abstract The volume of information that needs to be processed in big data clusters increases rapidly nowadays. It is

critical to execute the data analysis in a time-efficient manner. However, simply adding more computation resources may

not speed up the data analysis significantly. The data analysis jobs usually consist of multiple stages which are organized

as a directed acyclic graph (DAG). The precedence relationships between stages cause scheduling challenges. General DAG

scheduling is a well-known NP-hard problem. Moreover, we observe that in some parallel computing frameworks such as

Spark, execution of a stage in DAG contains multiple phases that use different resources. We notice that carefully arranging

the execution of those resources in pipeline can reduce their idle time and improve the average resource utilization. Therefore,

we propose a resource pipeline scheme with the objective of minimizing the job makespan. For perfectly parallel stages, we

propose a contention-free scheduler with detailed theoretical analysis. Moreover, we extend the contention-free scheduler

for three-phase stages, considering the computation phase of some stages can be partitioned. Additionally, we are aware

that job stages in real-world applications are usually not perfectly parallel. We need to frequently adjust the parallelism

levels during the DAG execution. Considering reinforcement learning (RL) techniques can adjust the scheduling policy on

the fly, we investigate a scheduler based on RL for online arrival jobs. The RL-based scheduler can adjust the resource

contention adaptively. We evaluate both contention-free and RL-based schedulers on a Spark cluster. In the evaluation, a

real-world cluster trace dataset is used to simulate different DAG styles. Evaluation results show that our pipelined scheme

can significantly improve CPU and network utilization.

Keywords data center clusters, directed acyclic graph scheduling, makespan minimization, pipelines

1 Introduction

Nowadays, the data volume in the big data industry

grow rapidly. It becomes more and more critical to effi-

ciently reduce the makespan of data analysis jobs. Over

quintillion bytes of data are generated every day from

Internet of Things devices. However, obtaining the op-

timal schedule of jobs in polynomial time is challeng-

ing. Big data analysis jobs usually consist of multiple

stages with dependencies. The dependency in a job is

usually modeled by a directed acyclic graph (DAG) as

shown in Fig.1 and the general DAG scheduling prob-

lem is known as NP-hard. In some parallel computing

frameworks such as Spark, the execution of each stage

could be divided into multiple phases that use differ-

ent resources as shown in Fig.1. Those stages could be

processed in a pipeline. Exploiting the pipeline could

improve the resource utilization but also brings chal-

lenges for DAG job scheduling.

We have observed that several stages competing for

a resource would enlarge the makespan of a job. Specif-

ically, if we launch multiple stages at the same time as

the default scheduler, the intense contention on one re-

source could reduce the utilization of other resources.

We use stages 1 and 2 of the DAG shown in Fig.1 as

Regular Paper
A preliminary version was published in the Proceedings of IEEE MASS 2020.
This research was supported in part by NSF grants CNS 2128378, CNS 2107014, CNS 1824440, CNS 1828363, CNS 1757533, CNS

1629746, and CNS 1651947.
*Corresponding Author

2 J. Comput. Sci. & Technol.

an example. Let qi and q′i denote the data fetching

and data processing phase of stage i, respectively. The

time of result writing is negligible since the sizes of re-

sults are small and are written to the local disk. If the

scheduler starts q1 and q2 simultaneously as shown in

Fig.2(a), both q1 and q2 take longer time to finish com-

pared with executing them individually. The longer ex-

ecution time of q1 and q2 further delays the starting of

q′1 and q′2, which eventually leads to a larger time cost

of finishing stages 1 and 2. Interleaving the resources

in a pipelined manner could reduce the makespan.

Distributed
MemoryDistributed

MemoryDistributed
Memory

Network

Data Fetching
Phase

Disk

Data Processing
Phase

CPU

Stage 2

Stage 1

Stage 3

Stage 4

Stage 5
Stage 6

Stage

Fig.1. Illustrations of DAGs, stages and phases.

Besides the resource contention, the execution order

of stages also impacts the makespan of a job. It can be

shown on the same example. As shown in Fig.2(b), if

the scheduler starts q2 before q1 and avoids the resource

contention, the makespan of executing stages 1 and 2

is longer compared with that of starting q1 first. The

longer execution time needed by q2 reduces the utiliza-

tion of the computational resource.

The motivation example shows the benefits brought

by the resource pipeline. However, existing researches,

such as [1, 2, 3, 4, 5, 6], pay little attention to this

aspect. In this paper, we investigate the stage schedul-

ing problem for a DAG-style job to minimize the job

makespan. We focus on reducing resource contention

in the stage execution. We theoretically analyze the

scheduling for perfectly parallel stages whose speedups

are proportional to the number of resources allocated

to them. We show that the optimal schedule for those

stages is contention-free, and convert the scheduling

problem into a DAG shop problem which is NP-hard.

A contention-free scheduler is proposed and its approx-

imation properties are analyzed.

𝑞!

𝑞"

𝑞!#
𝑞"#

𝑞!

𝑞"
𝑞!#

𝑞"#

Time

W
or
kl
oa
d

W
or
kl
oa
d

Time

(a)

𝑞!

𝑞"

𝑞!#
𝑞"#

𝑞!

𝑞"
𝑞!#

𝑞"#

W
or
kl
oa
d

W
or
kl
oa
d

Time

Time

(b)

Fig.2. The challenges in scheduling DAG jobs. (a) The resource
contention would increase the makespan. (b) A good execution
order would reduce the makespan.

We also notice that stages are usually not perfectly

parallel in real-world workloads. The contention-free

schedule is no longer suitable for general stages. Allo-

cating all resources to a stage is a waste since the stage

cannot make full use of so many resources. A reason-

able level of resource contention is needed. We propose

a reinforcement learning (RL) based scheduler to adap-

tively adjust the starting time of each stage and the

percentage of resources allocated to it to control the

contention level. The RL-based scheduler frequently

takes the available resources and unprocessed stages as

the input state and adaptively updates the schedule for

the remaining stages.

This paper is an extended version of the conference

paper[7] published in IEEE MASS 2020. Compared

with the conference version, we add the discussion for

scheduling three-phase stages. Specifically, the com-

putation phases of some stages contain multiple oper-

ations, which means we can further divide the com-

putation phase into two parts. Dividing a computation

phase into smaller parts can help our scheduler improve

resource utilization. The divided phases have shorter

Accelerating DAG-Style Job Execution 3

lengths. It is more likely to exploit those parts to ful-

fill the idle time blocks. In the extreme case, if we can

divide the computation phase into infinite parts, our

non-preemptive scheduling problem becomes a preemp-

tive scheduling task. Resource idle blocks can be eas-

ily filled in the preemptive scheduling, while inevitable

overhead would be introduced for storing and recov-

ering computation status. Therefore, we still consider

the non-preemptive scheduling problem and try to fur-

ther improve the resource utilization by dividing the

computation phase into multiple parts. Moreover, we

notice that the number of operations in the computa-

tion phase of a Spark stage rarely exceeds two. There-

fore, we investigate the scheduling problem in which the

computation phase is divided into two parts. Counting

the communication phase, we extend our contention-

free scheduler for three-phase stages.

We evaluate our schedulers on a Spark cluster de-

ployed on the Amazon Elastic Compute Cloud. Our

evaluation uses both a real-world dataset from Alibaba

and a synthetic dataset.

The contributions of the paper are summarized as

follows:

• We investigate the stage scheduling problem for

jobs with DAG structures. Especially, we pro-

pose to minimize the job makespan by reducing

resource contentions.

• We theoretically analyze the scheduling for per-

fectly parallel stages. In our analysis, we con-

vert our problem into a DAG shop problem. A

contention-free scheduler is proposed. Its approx-

imation properties are analyzed.

• We notice that the computation phases of some

stages contains two operations and can be par-

titioned accordingly. We further extend our

contention-free scheduler for those three-phase

stages.

• We also consider the scheduling for general stages,

which makes the problem more practical. We in-

vestigate a RL-based scheduler which can adap-

tively adjust the scheduling policy from experi-

ences.

• Experiments on both synthetic and real-world

datasets show our scheduler could efficiently im-

prove the resource utilization and reduce the job

makespan.

The remainder of the paper is organized as follows.

Section 2 introduces the model of DAG-style jobs and

formulates our stage scheduling problem. Section 3 dis-

cusses the perfectly parallel stage scheduling in which

the speedup of a stage is proportional to the percentage

of resources allocated to it. A contention-free sched-

uler is proposed to schedule those stages. Section 4

extends the contention-free scheduler for three-phase

stages, considering the computation phases of some

stages can be further spitted. Section 5 investigates

a more practical case in which stages have non-linear

speedups when running in parallel and introduces a RL-

based scheduler. Section 6 explains our experiment set-

tings and results. Section 7 reviews related work. Fi-

nally, Section 8 concludes the paper.

2 Models

2.1 Overview of the Spark Job and Stage

In the Apache Spark framework, a job usually con-

sists of a set of stages with dependencies. The execution

of the job is sliced into the processing of stages. Because

of the data flow in each job, some stages cannot be pro-

cessed until intermediate results are generated by some

other stages. The inter-dependencies among stages in

a job are usually represented by a DAG.

4 J. Comput. Sci. & Technol.

Distributed
Memory

Distributed
Memory

Distributed
Memory

Thread

Thread

Thread

Disk

Data Processing

Data Fetching
Network-Intense

CPU-Intense

Fig.3. The procedure of executing a stage on a Spark cluster.

A stage is a physical unit of execution and contains

a set of parallel tasks. The Spark scheduler could al-

locate multiple executors to a stage and process the

stage in parallel. The procedure of a stage execution

is illustrated in Fig.3. The procedure can be divided

into two phases: the data fetching phase and the data

processing phase. In the data fetching phase, machines

in the cluster would shuffle and read the data partitions

which are distributed among different nodes of the clus-

ter. The data fetching phase is network I/O intensive.

In the data processing phase, executors in worker ma-

chines run the task functions on the data partitions they

fetched, and write the result on their local disks. The

data processing phase is computation intense.

The Spark scheduler controls when a stage starts

and how many executors to use. We focus on designing

a scheduler which could reduce the job makespan.

2.2 Notations

Before we formulate our stage scheduling problem,

we first introduce the notations we use. Let G = (S,E)

denote the DAG. W.l.o.g., we assume there is only one

job in our model. Since we consider the stage-level

scheduling, there is no need to distinguish different jobs.

Scheduling a batch of DAG-style jobs could be treated

as scheduling a special DAG-style job which consists

of multiple separate DAGs. The vertex set S of the

graph G represents the set of stages of the job. Specifi-

cally, S = {s1, s2, . . . , sn}, where n is the number of the

stages in the job. The directed edge set E of the graph

represents the dependency relations of the stages in S.

An edge from si to sj is denoted by an ordered pair

(si, sj) ∈ E. It means that the stage sj cannot start

until the stage si is finished. We divide the execution of

a stage into a data fetching phase and a data processing

phase. Let qi and q′i denote the data fetching phase and

data processing phase of a stage si ∈ S, respectively. q′i

cannot start until qi is finished.

The time consumption of executing a stage is af-

fected by the stage size and the amount of resources al-

located to it. The stage size is quantified by the overall

size of data partitions that are processed in the stage.

We use di to denote the overall data size of stage si.

Stages can be processed in multiple worker machines

in parallel. If multiple stages are running, we assume

both of the executor resource and the bandwidth re-

source are equally allocated to those stages. We use

pi to denote the parallelism level of each stage si, i.e.,

the number of executors assigned to the stage. The

bandwidth allocated to the stage si is denoted as bi.

Let li and l′i denote the length or duration of phases qi

and q′i, respectively. Then, li and l′i can be formulated

as a function of the data size di, the parallelism level

pi and the bandwidth bi. Formally, li = fi(di, bi) and

l′i = f ′
i(di, pi). The explicit expression of f and f ′ de-

pends on different types of DAG stages. For perfectly

parallel stages, fi and f ′
i are linear functions. Specifi-

cally, fi(di, bi) ∝ di/bi and f ′
i(di, pi) ∝ di/pi. For gen-

eral DAG stages, they are non-linear functions. We use

ti and t′i to denote the start time and completion time of

the stage si. We consider the non-preemptive schedul-

ing. Hence, t′i = ti + li + l′i = ti + fi(di, bi) + f ′
i(di, pi),

i.e., the completion time of a stage is determined by the

start time ti, the data partition size di, the parallelism

level pi, and the bandwidth bi.

For each stage, its parallelism level and bandwidth

are correlated with the starting time of itself and all

other stages. Instead of simultaneously adjusting all

Accelerating DAG-Style Job Execution 5

four factors, the scheduler can control the values of pi

and bi by setting the start time for all stages, since

we assume the available resources are equally allocated

to the stages running in parallel. This assumption is

practical and reduces the solution space for our prob-

lem. Formally, let O(t) denote the set of stages that are

running in parallel at time t. Then, O(t) can be cal-

culated by counting stages whose processing intervals

[ti, t
′
i] contain t. Formally, O(t) = {si ∈ S|t ∈ [ti, t

′
i]}.

We use P and B to denote the total number of execu-

tors and the overall bandwidth in the cluster, respec-

tively. Then, the computation and network resources

allocated to each stage si ∈ S are pi = P/|O(ti)| and

bi = B/|O(ti)|, where |O(ti)| is the set cardinality.

We also notice that it is not necessary to allocate too

many executors to a stage. For general DAG stages, the

length of the data processing phases l′i = f ′
i(di, pi) can

hardly be further reduced when its parallelism level pi

exceeds a certain threshold. Details are explained in

Section 5.

The makespan of executing a stage is denoted as τ .

Formally, τ = maxsi∈S(t
′
i) − minsi∈S(ti). Its value is

determined by the scheduling policy. Specifically, Let

Λ denote the scheduling policy. It consists of a vec-

tor of start times and a vector of parallelism levels for

all stages. The makespan τ can be reduced by wisely

adjusting the policy Λ.

2.3 Problem Formulation

In this paper, we aim to design a scheduler which

can interleave the usage of different types of resources

such that the makespan of executing a job is minimized.

Specifically, the resource contention can be reduced by

wisely adjusting the start time ti and the parallelism

level pi for each stage si ∈ S. We formulate our schedul-

ing problem as follows:

min τ, (1)

s.t. t′i ≤ tj ,∀(si, sj) ∈ E, (2)∑
si∈O(t)

pi ≤ P,∀t > 0, (3)∑
si∈O(t)

bi ≤ B, ∀t > 0, (4)

ti ≥ 0,∀si ∈ S. (5)

(1) shows our objective of minimizing the makespan

of the job execution. (2) is the precedence constraint.

If there is an edge (si, sj) ∈ E, then the start time of

the stage sj cannot be earlier than the completion time

of the stage si. (3) is the computation resource con-

straint, where O(t) = {si ∈ S|t ∈ [ti, t
′
i]} is the set of

stages processing in parallel at time t. (4) is the band-

width constraint. (5) is the schedule constraint. Each

stage si ∈ S should be scheduled and processed by some

executors.

2.4 Problem Hardness

Finding the optimal solution for our stage schedul-

ing problem is hard. The DAG structure of the job as

well as the complex relation between stage lengths and

the contention level brings challenges to our optimiza-

tion problem. We find that our problem is NP-hard

even in an ideal case where the DAG consists of all per-

fectly parallel stages whose time consumption functions

fi(di, bi) and f ′
i(di, pi) are linear and have closed-form

expressions. The proof is shown in Section 3. For more

general cases where fi and f ′
i are non-linear w.r.t. bi

and pi, the problem becomes even harder.

6 J. Comput. Sci. & Technol.

𝑞"
𝑞#
𝑞$

𝑞"%
𝑞#%
𝑞$%

N
et
w
or
k

U
tili
za
tio
n

C
PU

ut
iliz
at
io
n

(a)

𝑞" 𝑞# 𝑞$

𝑞"% 𝑞#% 𝑞$%

N
et
w
or
k

U
tili
za
tio
n

C
PU

ut
iliz
at
io
n

(b)

Fig.4. A motivation of scheduling ideal stages in a pipelined man-
ner. (a) Splitting resources. (b) Contention-free

3 Scheduling for Perfectly Parallel Stages

In this section, we investigate an ideal case where

the speedup of parallel execution is linear to the num-

ber of working machines. A contention-free scheduler is

proposed and its approximate ratio is discussed theoret-

ically. The contention-free scheduler provides us useful

insights and inspirations for our extended scheduler in-

troduced in Section 4.

3.1 Contention of Perfectly Parallel Stages

We first investigate the scheduling for perfectly par-

allel stages. Those stages have some useful prop-

erties which could help to reduce the complexity of

the scheduling problem. Specifically, there is no need

to set a parallelism limitation for a perfectly parallel

stage. The formulations of li = fi(di, bi) ∝ di/bi and

l′i = f ′
i(di, pi) ∝ di/pi show that the speedup of those

phases is proportional to the units of resources allo-

cated to them. Therefore, we could simply assign all

computational resources to a stage. Then, the schedul-

ing problem becomes to determine the start time for all

stages.

In addition, simultaneously running multiple per-

fectly parallel stages brings no benefits. It might even

enlarge the job makespan. Specifically, the execution

time of perfectly parallel stages merely depends on

resource utilization. Simultaneously running multiple

stages cannot further improve the utilization since run-

ning one stage already can make full use of all resources.

Splitting resources to multiple stages may enlarge the

completion time of some phases, and it delays the start

of the following phases. Fig.4 shows a straightforward

example. If we split the network resource to simulta-

neously execute q1, q2, and q3 as shown in Fig.4(a), the

start of phases q′1, q
′
2, and q′3 would be delayed. It re-

duces the utilization of computation resources. If we

assign all resources to one stage at a time as shown

in Fig.4(b), the makespan of executing stages s1, s2,

and s3 can be reduced. Therefore, we can schedule

perfectly parallel stages in a pipelined manner. It re-

duces the searching space of finding the optimal ti. We

only need to determine an execution sequence for those

stages. Based on the sequence, the scheduler starts a

stage right after its previous stage is finished.

Although the useful properties of perfectly parallel

stages reduce the solution space, our scheduling prob-

lem is still NP-hard. The NP-hardness is shown in The-

orem 1.

Theorem 1. Our scheduling problem for perfectly

parallel stages is NP-hard.

Proof. Any instance J ′ of the job shop problem [8]

with two machines can be converted into an instance

J of our stage scheduling problem with all perfectly

parallel stages in polynomial time. The solution of J

also can be transformed into the solution of J ′ in poly-

nomial time. Specifically, an instance J ′ can be stated

as follows: We are given n jobs. Job i has a sequence

of ki operations which must be processed in this order.

Operations can be divided into two types. Each type of

operation must be processed on a specific machine, and

each machine can process one operation at one time.

The objective is to minimize the makespan of n jobs.

A job in job shop problem is shown in Fig.5. s′ij denotes

the j-th operation on job i. Note that if two adjacent

operations belong to the same type, these operations

Accelerating DAG-Style Job Execution 7

could be merged. Therefore, we can assume adjacent

operations are different in our proof. As shown in Fig.5,

we could convert the job into a path in DAG by insert-

ing dummy operations and treating operations in jobs

as phases in stages. For example, after inserting an ϵ-

length operation before s′i1, we can treat these two oper-

ations as two phases in a stage. An job shop instance J ′

can contain multiple jobs. Each job could be converted

into a DAG path in polynomial time. Then, a common

ancestor with two ϵ-length operations is added before

paths. If we treat ϵ = 0, the instance J ′ is converted

into an instance J of our stage scheduling problem with

perfectly parallel stages.

s′i1 s′i2

s′i1 s′i2

s′i3

s′i3

s′ik

s′ikε

Fig.5. Converting operations in the job shop to stages in the
DAG shop.

Stages in J are perfectly parallel, which makes an

optimal solution of J optimal for J ′. The solution to J

contains start time ti and parallelism level pi for each

stage. For perfectly parallel stages, pi = P and it is

determined. The start time ti could be converted into

the processing sequence by sorting. There may exist

resource contentions in the optimal schedule of J . But

we can always find an equivalent schedule that has the

same makespan and no resource contention. Specifi-

cally, for any two stages si and sj running in parallel

and competing for a resource, we could always delay

the stage with the larger start time without affecting

the makespan, since their overall workload is certain.

W.l.o.g., we assume tj > ti and the processing of qi

and qj are overlapped. Then, we could delay the start

of qj such it starts after the completion of qi. Because

the overlapped sizes of qi and qj as well as the amount

of resource B are fixed, the time needed to finish those

phases would not change, no matter they are processed

simultaneously or separately. Hence, the value of t′j re-

mains and the execution of the following stages would

not be affected.

Above all, the instance J and J ′ are equivalent.

Considering the job shop problem with two machines is

NP-hard [8], our problem is also NP-hard. ■

3.2 Contention-free Scheduling

Inspired by the list scheduling approach[9], we pro-

pose a contention-free scheduling algorithm for per-

fectly parallel stages. In the list scheduling, one task

is processed at a time and each task acquires all re-

sources during its execution. The scheduler assigns pri-

orities to tasks to determine the execution sequence. In

our paper, the contention-free scheduling means both

data fetching and data processing phases of each stage

si ∈ S can acquire all cluster resources, i.e., bi = B

and pi = P . The motivation of using a contention-

free scheduler is that splitting resources to run multi-

ple stages concurrently cannot reduce the makespan,

but may even increase it. Besides, as shown in the

proof of Theorem 1, any optimal schedule could be con-

verted into an equivalent contention-free schedule. In

our contention-free scheduler, stages are executed in a

pipelined manner to interleave the resource usage.

To generate the contention-free scheduling, we need

to determine the processing sequence of stages. The

DAG structure (precedence constraints of stages) and

two different types of phases make it challenging to find

the optimal sequence. The DAG structure gives partial

order relations among all stages. We need to extract

a feasible total order relation when building the se-

quence. Besides, the lengths of phases vary with stages.

Some stages are shuffle-heavy and have longer data

fetching phases than the data processing phases, while

8 J. Comput. Sci. & Technol.

some other stages are computation-heavy. Scheduling

those stages without precedence constraints is not triv-

ial. Dealing with those factors at the same time is NP-

hard and we treat them separately.

We borrow ideas from the topological sort and John-

son’s rule [10] to design our scheduling algorithm. The

topological sort can find feasible execution sequences

of stages in the DAGs. However, the number of fea-

sible sequences is exponential. Calculating makespan

of all feasible sequences and comparing them cannot

be done in linear time. Johnson’s rule is a method of

scheduling flow shop problems. Without the precedence

constraints, it can optimally solve our stage scheduling

problem.

Stage 2

Stage 1

Stage 3

Stage 4

Stage 5
Stage 6

Ready-to-go

Fig.6. The illustration of the ready-to-go stages.

Intuitively, our contention-free scheduling algorithm

iteratively uses Johnson’s rule on a set of ready-to-go

stages until all stages are scheduled. A ready-to-go

stage is a stage whose predecessors are scheduled. Use

the DAG in Fig.6 as an example, the initial ready-to-go

stage set contains s1, s2, and s3. After stages s1, s2,

and s3 are processed, s4 and s5 become ready-to-go. In

each iteration, our algorithm schedules all ready-to-go

stages in the set, removes those stages form the DAG,

and determines the next set of ready-to-go stages. It

stops when all stages are processed and removed from

the DAG.

Algorithm 1 Contention-free Scheduling Algorithm

Input: The DAG G = (S,E), available resources
(B,P)

Output: The scheduling for DAG stages in S
1: Evaluate phase lengths li = fi(di,B), l′i =

f ′
i(di,P),∀si∈S

2: Initialize the schedule list L← ∅
3: while S is not empty do
4: Ready-to-go stage set S′←{si∈S|(sj ,si) /∈E,∀sj ∈

S}
5: Shuffle-heavy stage set S1 ← {si ∈ S′|li > l′i}.

Computation-heavy stage set S2←S′\S1

6: L2 ← Sort si ∈ S2 for ascending order of li.
L1 ← Sort si ∈ S1 for descending order of l′i.
L← L||L2||L1

7: Update S←S \S′. Remove corresponding edges
in E

8: return L as the schedule list

The detailed procedures of our algorithm are illus-

trated in Algorithm 1. Lines 1-2 calculate the phase

lengths for all stages and initialize the schedule list.

In lines 3-7, we iteratively schedule a set of ready-to-

go stages. Line 4 finds the ready-to-go stages that

have no income edges in G. Lines 5-6 apply Johnson’s

rule. The stages are divided into a shuffle-heavy group

S1 and a computation-heavy group S2. Stages in the

computation-heavy group S2 have shorter data fetching

phases. For si ∈ S2, we prefer to process the stage with

the shortest data fetching phase li first. For shuffle-

heavy stages, we process the stage with the shortest

data processing phase l′i last. Then, we concatenate

the sorted stages in S2 and S1 to the list, and the

computation-heavy stages in S2 are concatenate before

S1. The concatenation is represented by ||. Line 7 up-

dates the graph for the next iteration. Line 8 returns

the result.

We use the DAG shown in Fig.6 as a go-through ex-

ample. The length of each phase used in our example

is shown in Table 1. The detailed steps of our schedul-

ing algorithm are shown as follows. In the first itera-

tion, s1, s2, and s3 are ready-to-go stages. According

Accelerating DAG-Style Job Execution 9

to the definition, s1 and s2 is computation-heavy and

s3 is shuffle-heavy. For s1 and s2, we sort them based

on their communication phase length. In our example,

l1 < l2, and s1 is placed before s2. s3 is placed after

s1 and s2 since it is shuffle-heavy. Then, they are re-

moved from the DAG and s4, s5 become ready-to-go.

s4 has a longer data processing phase and should be

processed before s5. After s4 and s5 are scheduled, s6

has no predecessors and is concatenated to the sched-

ule list. Based on the sequence of stages in the list and

the principle of contention-free, the start time of each

stage can be easily derived. Our schedule of the first

four stages is illustrated in Fig.7(a). With our schedul-

ing, the makespan of the input DAG is 17.

Table 1. Lengths of Computation and Communication Phases

s1 s2 s3 s4 s5 s6

li 1 2 5 3 2 1
l′i 2 3 1 4 1 1

Although ready-to-go stages are optimally sched-

uled in each iteration, the final schedule for all stages

might be suboptimal. This is because we manually

set precedence restrictions for stages among different

ready-to-go groups. For example, we schedule s1, s2,

and s3 before s4 and s5 in Fig.6. It introduces a prece-

dence restrictions s3 → s4, which is not necessary.

Adding those restrictions could let the scheduler miss

the optimal solution. As shown in Fig.7(b), the optimal

schedule is (s1, s2, s4, s3, s5, s6). Notably, the stage s4

is processed before s3.

𝑞! 𝑞" 𝑞# 𝑞$ 𝑞%

𝑞!& 𝑞"& 𝑞#& 𝑞$& 𝑞%&

1 3 8 11 13 17

𝑞'&

𝑞'
14

TimeNetwork
CPU

(a)

𝑞! 𝑞" 𝑞#𝑞$ 𝑞%
𝑞!& 𝑞"& 𝑞#&𝑞$& 𝑞%&

1 3 6 11 13 14

𝑞'&

𝑞'
15

TimeNetwork
CPU

(b)

Fig. 7. An example of our scheduling algorithm. (a) Our
contention-free schedule (s1,s2,s3,s4,s5,s6). (b) The optimal
schedule (s1,s2,s4,s3,s5,s6).

Our contention-free scheduler is 2-approximate

for perfectly parallel stage scheduling. It is 3/2-

approximate if the data fetching and the data pro-

cessing phases of all stages have a unit length. The

2-approximation ratio is trivial. The insight is that

our scheduler would not leave both resources idle. For-

mally, let τ∗ denote the optimal makespan. Then, we

have τ∗ ≥ max{
∑

si
li,

∑
si
l′i} since even if the optimal

scheduler could perfectly pipeline all phases, it cannot

compress the essential computation or communication

time consumption. Our contention-free scheduler would

not leave both resources idle. Therefore, our makespan

τ ≤ (
∑

si
li +

∑
si
l′i) ≤ 2max{

∑
si
li,

∑
si
l′i} ≤ 2τ∗.

Theorem 2 shows the 3/2-approximation ratio for the

unit-length case.

Theorem 2. Our contention-free scheduler is 3/2-

approximate if li = l′i = c,∀si ∈ S, where c is a con-

stant.

Proof. The key property used in the proof is that

the total resource idle time of our schedule would

not exceed the optimal makespan τ∗. Let Φ =

{φ1, . . . , φk, . . . } denote the set of idle slots in the

scheduling. For example, in Fig.7(b), φ1 represents

the CPU idle time before processing q′1. For each

φk ∈ Φ, we can find a corresponding stage phase νk

which is in execution during φk, since two types of re-

source would not be idle simultaneously. In Fig.7(b),

10 J. Comput. Sci. & Technol.

ν1 = q1. We will show that for φk ∈ Φ (k ̸= 1, k ̸=

|Φ|), their corresponding νk cannot be pipelined when

li = l′i = c,∀si ∈ S. For any two adjacent φk and

φk+1, we have νk ≺ νk+1 meaning there is a partial

order relation between νk and νk+1. If it is not the

case, νk and νk+1 should run simultaneously by shift-

ing νk+1 ahead to occupy φk. Therefore, there is a

chain ν2 ≺ ν3 ≺ · · · ≺ ν|Φ|−1. Similar to the concept of

the critical path, the makespan of this chain cannot be

reduced, even in the optimal schedule. It means that

the idles of φk for 2 ≤ k ≤ |Φ| − 1 cannot be avoided

even in the optimal schedule. The head φ1 and tail

φ|Φ| cannot be avoided either. Therefore, in the op-

timal schedule, its total idle time is greater or equal

to
∑|Φ|

k=1 φk. Besides, the optimal makespan τ∗ must

be greater or equal to its total idle time. Therefore,

τ∗ ≥
∑|Φ|

k=1 φk.

We notice that τ = 1
2 (
∑

si
li +

∑
si
l′i +∑|Φ|

k=1 φk). We have shown that (
∑

si
li +

∑
si
l′i) ≤

2max{
∑

si
li,

∑
si
l′i} ≤ 2τ∗ and

∑|Φ|
k=1 φk ≤ τ∗. Hence,

τ ≤ 1
2 (2τ

∗ + τ∗) = 3
2τ

∗. The 3/2-approximation ratio

holds. ■

4 Scheduling for Three-phase Stages

Besides scheduling for stages with two phases, we

further investigate a contention-free scheduler for three-

phase stages. Specifically, we notice that some stages

in a Spark job may contain more than one operation.

For example, the ShuffleMapStage contains two oper-

ations — map and filter. In theory, we can split the

computation phase into multiple parts and extend our

pipeline scheme accordingly. As shown in the previ-

ous subsection, the computation phase of a stage may

be blocked until its precedent communication phase is

finished. The size of the idle block may not be large

enough to insert a computation phase from another

stage. It causes an inevitable idle time of computation

resources and reduces the overall resource utilization.

If we can break the computation phase into multiple

segments, the smaller parts are more likely to be al-

located to those idle blocks. Ideally, if we can divide

the computation phase into infinite segments like pre-

emptive scheduling, the idle slots with arbitrary lengths

can be easily fulfilled. However, preemptive scheduling

would introduce additional overhead for storing and re-

covering the computation status. Therefore, we con-

sider dividing the computation phase instead of follow-

ing the preemptive scheduling approach. Moreover, dif-

ferent types of computation parts usually have different

speedup ratios when executing in parallel, which pro-

vides additional scheduling opportunities. Motivated

by the observations, we investigate the scheduling prob-

lem for stages with three phases, i.e., the original com-

putation phase is further divided into two parts. We

can hardly find a realistic application in which a stage

contains more than two types of operations. Therefore,

the more general case where the computation phase is

divided into more than two parts is not discussed.

Comm1
Map1

Filter1

Comm2
Map2

Filter2

Comm1
Map1

Filter1

Comm2
Map2

Filter2

Time

Time

Fig.8. Scheduling for three phase tasks.

An illustration of three-phase stages is shown in

Fig.8. The figure compares the makespan of two dif-

ferent scheduling sequences. In the example, there are

two stages s1 and s2 with no precedence restrictions.

Each stage has three phases: communication, map, and

filter. These phases have to be executed in sequence.

The number i labeled after each phase indicates that

the phase belongs to stage si. If we execute s2 first and

then s1, the total makespan is suboptimal as shown in

Fig.8. To improve the resource utilization and reduce

Accelerating DAG-Style Job Execution 11

the makespan, the optimal schedule for this example is

to process s1 and then s2. It is necessary to carefully

decide the processing schedule of three-phase stages if

we hope to minimize the makespan. Fig.8 shows that

the execution of communication, map-, and filter-phase

in the same stage is not overlapped. It is worth noting

that even each stage has three phases as shown in Fig.8,

there are still two types of resources. Map and filter op-

erations are executed using computation resources.

The extended scheduling problem for three-phase

stages is NP-hard. Similar to the proof of Theorem 1,

we can show the NP-hardness of the extended problem

by a reduction from the job shop problem with three

machines, which is NP-hard. The only difference in

the proof is that we need to group three operations

in a job shop scheduling into a stage. Three-phase

stages provide more scheduling opportunities. Explic-

itly exploring all possible operation sequences cannot

be completed in polynomial time. Therefore, we inves-

tigate another heuristic for the scheduling problem for

three-phase stages as an extension of our contention-

free scheduler.

To formulate the scheduling problem for three-phase

stages, we need to extend our notations. For stage si,

we use qi, q′i, and q′′i to denote its three phases, re-

spectively. Among them, qi and q′i are computation

phases after partition, and q′′i represents the communi-

cation phase. Notably, the meaning of q′i in three-phase

stages is different from that in regular two-phase stages.

In two-phase stages, q′i represents the communication

phase, while it stands for the second computation phase

in three-phase stages. We update the meaning of q′i

for three-phase stages to emphasize the processing se-

quence of phases, i.e., qi is processed before q′i which

is executed before q′′i . Let li, l
′
i, and l′′i denote the

length of qi, q
′
i, and q′′i , respectively. We still use ti and

t′i to denote the start time and the completion time of

the stage si. The difference that the formulation of t′i

is changed to t′i = ti + li + l′i + l′′i . The duration of the

whole DAG-style job is still denoted as τ , which is the

time length between the start of the first stage and the

completion of the last stage. For the extended problem,

our objective is still to minimize the makespan τ of the

whole DAG-style job.

We cannot directly apply Johnson’s rule to solve

the three-phase stage scheduling problem. The major

challenge is that we can no longer cluster computa-

tion or communication stages based on relative lengths

of computation and communication phases. Following

the idea of Johnson’s rule, we investigate an approach

that adaptively merges the middle phase q′i with qi or

q′′i . Specifically, the insight behind Johnson’s rule is

to greedily minimize the resource idle time. In two-

phase stage scheduling, the computation resources are

blocked by communication. Hence, for communication-

heavy stages, Johnson’s rule assigns higher priority to

the stages with shorter computation phases, which aims

to start communication phases as soon as possible. For

computation-heavy stages, Johnson’s rule chooses to

execute stages with longer communication phases to

maximize the overlap between usages of CPU and net-

work resources. Following similar design principles, we

focus on relative lengths of the first and last phases in a

stage. If the length of the first phase qi is shorter than

the length of the last phase q′′i , then we merge the mid-

dle phase q′i with qi. For a set of such stages, we sort

them for ascending order of li + l′i. The reason is that

the bottleneck phase should start as early as possible.

For other stages where li >= l′′i , we merge q′i with q′′i

and sort them in descending order of l′i+l′′i . In this way,

we adaptively merge the middle phases for three-phase

stages. Our contention-free scheduler is extended ac-

cordingly. Note that merging the middle phases is only

used to determine the scheduling of phases. It is a sym-

12 J. Comput. Sci. & Technol.

bolic step. In real execution, there is no phase merging

and each phase is processed separately.

Algorithm 2 Extended Scheduling Algorithm for
Three-phase Stages

Input: The DAG G=(S,E)
Output: The scheduling for DAG stages in S
1: Initialize the schedule list L← ∅
2: while S is not empty do
3: Ready-to-go stage set S′←{si∈S|(sj ,si) /∈E,∀sj ∈

S}
4: S1 ← {si ∈ S′|li > l′′i }, S2 ← {si ∈ S′|li ≤ l′′i }
5: L1 ← Sort si ∈ S1 for descending order of l′i + l′′i
6: L2 ← Sort si ∈ S2 for ascending order of li + l′i
7: L← L||L2||L1

8: S ← S \ S′

9: return L

The procedures of the extended algorithm are shown

in Algorithm 2. We first initialize the scheduling list L

as an empty set in line 1. Then, we iteratively sched-

ule ready-to-go stages in the following loop. The set

S′ that contains current ready-to-go stages is updated

in line 3. Line 4 splits set S′ according to the relative

lengths of the first and last phases of stages in the set.

Lines 5 and 6 adaptively merge the middle phases and

sort the merged stages based on Johnson’s rule. For

stages in S1 where li > l′′i , they are sort decreasingly

based on the value l′i + l′′i in line 5. For stages in S2

where li ≤ l′′i , line 6 sorts them increasingly based on

the value of li + l′i. Line 7 updates the schedule L by

appending lists L2 and L1 after L. L1 is concatenated

after L2. Line 8 updates the DAG by removing the

stages that have been scheduled. Finally, L is returned

as the final schedule for the three-phase stages.

Our major observations for designing the

contention-free scheduler can be summarized as fol-

lows. Firstly, we notice that there are no benefits to

simultaneously run multiple perfectly parallel stages.

Therefore, we propose to allocate all resources to one

stage at a time. Then, following the list scheduling

approach, our contention-free scheduler determines the

processing priority of each stage before executing the

DAG-style job. To set processing priorities, we ap-

ply Johnson’s rule on two-phase stages. To deal with

the precedence constraints in the DAG, we define the

ready-to-go stage set inspired by the topological sort.

Combining these ideas, our contention-free scheduler is

3/2-approximate for stages with equal-length phases.

5 Scheduling for General Stages

From the analysis in previous sections, we notice

that the parallelism level is critical in scheduling. In

ideal cases, the parallelism level should be set as large

as possible. However, in real-world applications, allo-

cating more computation resources does not lead to a

linear increase in the speedup ratio. It means that we

need to adaptively adjust the parallelism level of each

stage for general DAGs.

When scheduling general stages, contention-free

scheduling is no longer optimal. For general DAG

stages, their speedups are no longer proportional to the

units of resources allocated to them, especially for the

data processing phase. When the number of executors

allocated to a stage exceeds a threshold, adding more

executors to the stage would barely reduce its execution

time any further. For these stages, allocating all execu-

tors to a ready-to-go stage as the contention-free sched-

uler is a waste. The scheduler should adaptively adjust

the parallelism level of each stage. The parallelism level

can be controlled by setting an upper bound on the

parallelism level of each stage. If the limitations are

properly set, simultaneously executing multiple stages

and controlling their competition within a reasonable

level could improve resource utilization and reduce the

makespan. RL is a useful tool to adaptively adjust the

scheduling policy on the fly. In this section, we first

show the non-linear speedup of general DAG stages.

Then, we introduce a RL-based scheduler for general

Accelerating DAG-Style Job Execution 13

stage scheduling and present the design details of the

RL agent.

5.1 Speedup of General Jobs

We first test the speedup of general DAG stages on

the Spark server. Fig.9 shows the speedup of two dif-

ferent jobs from the TPC-H dataset1. From Fig.9, we

can observe the non-linear speedup and the parallelism

level threshold. For example, for the Q2 job, allocating

more than 32 executors would barely further improve

the speedup or even might reduce it. Therefore, it is a

waste that allocating more than 32 executors and the

scheduler should set a parallelism limitation mi. When

the available executors are more than the limitation, the

scheduler should allocate the extra executors to other

stages. The contention-free scheduler is no longer opti-

mal.

2 4 32 648 16

Number of Executors

0

10

20

30

S
pe

ed
up

Q2 Queries
Q9 Queries

Fig.9. Speedups of two different jobs on the Spark cluster.

It is difficult to theoretically model the speedup

in practice. Although the Amdahl’s law [11] shows a

speedup model, the percentage of the sequential parts

in each DAG stage is not clear. According to the Am-

dahl’s law, the execution time of sequential parts is

fixed, and the speedup of the parallel part is propor-

tional to the number of executors. However, determin-

ing the percentage of sequential parts is hard to imple-

ment in practice. Therefore, it is not reasonable to de-

termine a fixed parallelism level for all DAG stages. In

contrast, we adapt a RL-based scheduler to adaptively

adjust the parallelism level for different DAG stages and

maintain the resource contention at a reasonable level.

5.2 A RL-based Scheduler for General Stage
Scheduling

We adapt the RL framework in [12] to generate

schedules for general stages. Different from the RL

agent in [12], we consider to control the resource con-

tention by adjusting the start time ti of each stage si.

The framework of the RL-based scheduler is shown in

Fig.10. It consists of a RL agent and the environment.

The agent observes the state from the environment and

generates the schedule as an action. The environment

is the Spark engine running on the data center cluster.

RL Agent Environment

7/11/2019 ³PQJWUHH³VHUYHU_37640.VYJ

ÀOH:///UVHUV/OHRSaUG/DRZQORaGV/³PQJWUHH³VHUYHU_37640.VYJ 1/1

Spark
Cluster

Reward
(𝑡!"# − 𝑡!)

Action
(𝑚$, 𝜌$, 𝛿$)

State
(DAG, Available Resources)

 DAG

Graph
Neural

Network

Policy
Network

𝑚!

𝜌!

𝛿!

Fig.10. The RL framework for general stage scheduling.

The RL-based scheduler mainly consider three as-

pects to improve the resource utilization and optimize

the makespan. Specifically, the action space of the

RL agent contains three dimensions. Because of the

non-linear speedup ratios of general stages, we need to

adaptively adjust the parallelism level for general DAG

stages. We use parameter mi to denote the parallelism

level limitation for stage si. Our RL-based scheduler

also follows the list scheduling approach. We use pa-

rameter ρi to denote the priority of si. The priority is

used to adjust the scheduling sequence of DAG stages.

Moreover, we need to reduce the communication con-

tention to minimize the makespan. As shown in [13],

delay scheduling can reduce the communication con-

tention level by interleaving the usage of network re-

sources. Therefore, we propose to insert delay time

1Available online: http://www.tpc.org/tpch/

14 J. Comput. Sci. & Technol.

before each stage. The RL agent uses parameter δi to

adjust the delay time of each stage si.

The scheduler needs to determine the parallelism

level limitation mi and the starting time ti for each

stage si ∈ S. The possible values of mi are discrete and

bounded by the total number of executors P . Formally,

mi ∈ {1, 2, . . . , P}. We can use a neural network with

softmax layers to calculate the probability of choosing

each potential value in {1, 2, . . . , P}. Determining the

value of ti is more challenging since its value is contin-

uous and there is no fixed upper bound of its possible

value. Searching the optimal value for ti ∈ R+ without

closed-form formulations is intractable. Therefore, we

discretize ti by exploiting ideas of list scheduling and

delay scheduling[13].

In the list scheduling, stages are ordered by as-

signing with priorities. During execution, ready-to-go

stages are repeatedly selected based on their priorities

when there are available resources. Based on this idea,

we let the RL agent set discrete priorities to stages in-

stead of directly learning their start time. We use ρi

to denote the priority of si. However, simply setting

priorities is not sufficient to control the resource con-

tention. When the available executors are sufficient to

execute multiple stages, these stages should not start

simultaneously. Otherwise, similar to the motivation

example shown in Fig.2(a), it would cause the network

resource contention and enlarge the finish time of these

stages.

Unlike computational resources, it is not convenient

to set bandwidth limitations. Inspired by the delay

scheduling [13], we interleave the usage of network re-

sources by delaying the start of some stages. The RL

agent needs to learn the length of delay time δi for each

stage si. After a stage si is selected by the scheduler

based on its priority, a timer with length δi is associ-

ated with the stage. The stage si would not start until

its timer is out. To reduce the action space, we set an

upper bound for each δi and discretize its value. The

delay length should not exceed the longest stage length

lmax that the scheduler has seen so far. The lmax is

sliced into ∆ pieces, where ∆ is a hyperparameter. For-

mally, δi ∈ {0, lmax/∆, 2 · lmax/∆, . . . , lmax}. Then, to

determine the delay length, the RL agent only needs

to choose a value from {0, 1, 2, . . . ,∆} by using neural

networks with softmax layers.

To adaptively adjust the schedule, we frequently in-

voke the RL agent when there are available resources

and unprocessed stages. Specifically, we call the RL

agent at following trigger events: a stage starts and

there are unused resources; a stage completes and re-

leases its resource. At each trigger event, the RL agent

would update the (mi, ρi, δi) for each unprocessed stage

si. Then, from all ready-to-go stages, one is selected

based on their priorities. After its timer expires, the

selected stage is allocated with executors whose num-

ber would not exceed its parallelism limitation. The

remaining challenge is how to encode the DAG and the

dependent relationships indicated by the DAG.

To capture dependent relationships, the Graph Neu-

ral Network (GNN) [14] is used to encode the DAG.

GNN encodes the dependencies by aggregating DAG in-

formation from children to parent nodes along the DAG

edges. By aggregating stage information along paths in

DAG, GNN could convert the DAG into a fixed-length

feature vector. Along with the features describing the

system workload, i.e., the resource utilization informa-

tion, the state used by our RL agent is formed.

Given a state, the goal of the RL agent is to generate

an action that could maximize the expected future re-

ward (or minimize the expected future penalty). We use

rk to denote the reward of its k-th action. rk is quanti-

fied by the negation of the time interval length between

the k−1-th and the k-th action. Let tk denote the wall-

Accelerating DAG-Style Job Execution 15

clock time at the k-th action. Then, rk = −(tk− tk−1).

The negation is used to show that the term (tk − tk−1)

is actually a penalty. With this formulation, the ex-

pected future penalty is E[
∑

k(tk−tk−1)] = E[tT−tk−1],

where tT is the time of the last action. The E[tT −tk−1]

shows the expected time consumption for executing the

remaining stages. Therefore, minimizing this penalty

function could help to reduce the makespan.

Our major observations for scheduling general

stages are summarized as follows. Firstly, we notice

that we should set a parallelism limitation for general

stages since they have non-linear speedup ratios. Also,

we need to adaptively adjust the parallelism level of

each stage on the fly. To achieve these, we adapt a

RL-based scheduler to schedule general DAG stages.

6 Experiment

6.1 Dataset

In the experiment, we use the Alibaba trace data

v20182 to evaluate our contention-free scheduler and

the RL-based scheduler. The Alibaba dataset contains

job traces sampled from their production clusters. Most

of the jobs in the dataset have DAG structures. Besides,

we also construct a synthetic dataset. We choose the

CosineSimilarity job which is available in Spark MLlib

and has five stages.

Before the experiment, we first illustrate the per-

centage of parallel stages in the Alibaba dataset. Fig.11

shows the cumulative distribution function (CDF) of

the Alibaba dataset. Fig.11(a) shows the distribution

of the number of stages in a job. In total, the dataset

contains 2,775,025 jobs. From Fig.11(a), we can find

that most of these jobs have more multiple stages. More

than 80% of these jobs have more than one stage. Be-

sides, we use topological sort to analyze the number of

parallel stages in each job, and find that more than 68%

of jobs have parallel stages. It shows the importance of

efficiently scheduling parallel stages. Fig.11(b) shows

the distribution of stage duration that executes in the

production clusters. It shows the distribution of stage

sizes to some extent.

100 101 102

Stage Number

0

0.2

0.4

0.6

0.8

1

C
D

F

Number of stages
Number of parallelizable stages

(a)

100 101 102 103 104

Duration

0

0.2

0.4

0.6

0.8

1

C
D

F

(b)

Fig.11. Cumulative distribution function of the Alibaba dataset.
(a) The stage number distribution. (b) The stage duration dis-
tribution.

6.2 Experiment Setting

We evaluate our contention-free scheduler and the

RL-based scheduler on a real Spark cluster and in sim-

ulations. The Spark cluster is set up on the Amazon

Elastic Compute Cloud (EC2). We use 10 m4.xlarge

instances. Each instance has four Intel Xeon E5-2676

vCPU cores, 32GB RAM, 750MB maximum band-

width. When setting up the Spark clsuter, the default

parameter configuration is kept for simplicity.

Besides using the EC2 cluster, we use a local PC

to train our RL-agent. The local PC has an Intel i7-

8700 CPU, a 32GB RAM, and a single Nvidia GTX

1080 GPU. We use the REINFORCE policy gradient

algorithm [15] to train the RL agent, and we subtract

the baseline performance from the reward function in

each iteration of the parameter updating. Specifically,

the baseline is used to reduce the variance of the pol-

icy gradient. Details of the explanation on subtracting

baselines can be found at [16]. On our local PC, each

training iteration takes about five seconds on average.

Considering the initial policy of the RL agent is ran-

2Avaiable online: https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md

16 J. Comput. Sci. & Technol.

domly generated, its performance is not good enough to

handle a heavy workload. Therefore, we first use small

job batches to train the RL agent and then gradually

enlarge the job batch size. A well-trained RL agent is

deployed on the EC2 cluster.

6.3 Experiment Result

100 101 102 103

Duration (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

DelayStage
Contention-free
RL-based

(a)

20 40 60 80 100
Job Batch Size

0.1

0.2

0.3

0.4

0.5

0.6

S
ch

ed
ul

in
g

O
ve

rh
ea

d
(s

)

DelayStage
Contention-free

(b)

Fig.12. Performance evaluation on the Alibaba dataset. (a) The
stage duration distribution. (b) Comparison on the overhead.

We first compare the stage execution time obtained

by different schedulers. We compare our contention-free

strategy and RL-based scheduler with the DelayStage

scheduler in [17]. We execute the same job batch with

different schedulers on the Spark cluster and record the

duration of each stage. The distribution of the stage du-

ration is shown in Fig.12(a). Lines on the left have bet-

ter performance. From Fig.12(a), we can find that the

stage duration distributions achieved by the contention-

free scheduler and the DelayStage scheduler are simi-

lar. The DelayStage scheduler slightly outperforms the

contention-free scheduler. It is because that perfectly

parallel assumption of the contention-free scheduler is

strong and can hardly be satisfied in real-world work-

loads. However, the overhead of the contention-free

scheduler is smaller. The RL-based scheduler signifi-

cantly outperforms other schedulers. It could efficiently

reduce the duration of long stages. The main reason is

that the RL-based scheduler could set parallelism limi-

tations for stages, which further avoids the waste of the

computational resources.

Fig.12(b) shows the comparison of the scheduling

overheads. In this set of experiments, we vary the job

batch size (therefore vary the number of stages), and

record the time consumption of the contention-free and

the DelayStage scheduler. The overhead of the RL-

based scheduler is not shown since it frequently updates

its schedule during the job execution. From Fig.12(b),

we can find that the contention-free scheduler has

smaller overheads and the contention-free scheduler is

more efficient. The reason is that the contention-free

scheduler partitions the DAG into multiple subsets of

ready-to-go stages and only need to sort stages in each

subset. This partitioning approach reduces the average

time complexity of the contention-free scheduler.

0 100 200 300 400 500 600

Time (s)

0

50

100

C
P

U
 U

til
iz

at
io

n
(%

)

RL-based
Default

Fig.13. The CPU utilization of a worker node.

We then investigate whether our RL-based sched-

uler could improve resource utilization. We use the syn-

thetic dataset for this experiment since the jobs from

the synthetic dataset have relatively simple DAG struc-

tures. We compare our RL-based scheduler with the

default Spark scheduler. From this experiment, we can

have a closer look at the resource utilization and have

a better understanding of the RL-based scheduler. The

experiment result is shown in Fig.13. From Fig.13, we

can find that the RL-based scheduler could start using

the CPU earlier than the default Spark scheduler. The

reason is that the default scheduler starts all ready-

to-go stages simultaneously and causes network con-

gestion. The RL-based scheduler could interleave the

network resources. It delays the start of some paral-

lel stages and the stage in execution could be allocated

Accelerating DAG-Style Job Execution 17

with a larger bandwidth. In addition, we also find that

the RL-based scheduler could achieve a higher CPU uti-

lization. Specifically, the default scheduler has several

time intervals during which the CPU utilization is low,

but the RL-based scheduler could keep a high resource

utilization. These factors make the RL-based scheduler

finish the job batch in 361s. It is much faster than the

default Spark scheduler which needs 560s to finish the

job batch.

The resource utilization achieved by different sched-

ulers is compared in Table 2. In the comparison, we use

a job batch from the Alibaba dataset and record the

average CPU and the network resource utilization of a

worker node. Compared with the previous experiment,

the workload is increased and the dependency relation-

ships among stages become more complex. The utiliza-

tion is shown in Table 2. From Fig.13, we can find that

the RL-based scheduler could improve both CPU and

network utilization. Compared with the default Fuxi

scheduler used in the Alibaba clusters, the RL-based

scheduler can improve the CPU utilization by 33.0%

and improve the network utilization by 29.7%, respec-

tively. It also outperforms the DelayStage scheduler.

Table 2. The Average Resource Utilization

Default DelayStage RL-based

CPU 37.9% 46.1% 50.4%
Network 43.5% 54.5% 56.4%

7 Related Work

Based on different schedule granularity, existing

DAG schedulers could be divided into three major

groups: job-level schedulers, stage-level schedulers, and

task-level schedulers. The job-level schedulers arrange

the sequence of job execution and the typical objective

is to reduce the job response time. Besides the classi-

cal first-in-first-out (FIFO) or Fair scheduling, Hu et.

al.[18] proposed to use multiple level priority queues

to schedule the jobs without knowing their sizes in ad-

vance. The stage-level schedulers consider the execu-

tion of stages, including the parallelism level, resource

allocation, and dependence relations of stages. Mao et.

al.[12] followed a RL approach to determine the par-

allelism level and priority of each stage. For resource

allocation, Grandl et. al.[2] proposed to greedily match

the stage resource demands with available resources.

They further defined the concept of troublesome stages

in [5]. Troublesome stages would be considered first

on the resource plane. Our paper focus on stage-level

scheduling. Different from existing schedulers, we no-

tice that the interleave usage of resources could help

reduce job makespan and improve resource utilization.

[19] and [17] also proposed to interleave resources. To

improve resource utilization, [20, 21, 22] discussed so-

lutions for private datacenters. [23] further considered

the public dataset. Different from them, we develop

a scheduler based on RL to adaptively interleave re-

sources for general DAG stages. Each stage in a DAG

consists of a set of parallel tasks. A task scheduler

such as Monotasks[24] considered fine-grained paral-

lelization of tasks. However, it needs to modify the

Spark API while our scheduler could be easily imple-

mented on Spark.

The core challenge of designing a stage-level sched-

uler is brought by the precedence constraints in DAGs.

Existing theoretical analyses [25, 26] usually focused

on simple cases. The state-of-the-art theoretical result

is given in [25]. However, we cannot directly apply

these theoretical results to our problem since we also

consider the precedence relation between two phases in

each stage. Scheduling these phases is also no trivial,

and it can be viewed as a shop scheduling problem [8].

It has been proven that the job shop problem is hard

to approximate [27]. Shmoys et. al.[28, 29] showed sev-

18 J. Comput. Sci. & Technol.

eral RNC-approximation algorithms for shop schedul-

ing. Although their algorithms are polynomial-time in

theory, they are inefficient. Zheng et. al.[30] considered

the shop scheduling problem in the MapReduce frame-

work. There is no DAG structure in their problem for-

mulation. We jointly consider the DAG scheduling and

the shop scheduling problems.

There are many other important studies [31, 32,

33, 34, 35, 36] that improves the scheduling algorithms

in different evaluation metrics. Grandl et. al.[31] fo-

cused on the fairness issues in scheduling and discusses

the trade-off between fairness and job completion time.

Their scheduling can maintain long-term fairness and

improve the job completion time by sacrificing the

short-time fairness. [32] discussed the job miss ratios.

Their scheduler can reduce the deadline miss rate by

providing guarantees on job latency. [33] showed the

approximation bounds of scheduling algorithms for on-

line arrival jobs. [34] presented a scheduler that mini-

mizes the total weighted response time for online jobs

in edge-cloud computing scenarios. [35] analyzed the

worst-case makespan of a conditional DAG task under

list scheduling. [36] illustrated a learning algorithm for

the distributed DAG scheduling problem.

8 Conclusion

In this paper, we considered the stage scheduling

problem for DAG-style jobs. We noticed that inter-

leaving resource usage could reduce the makespan and

improve cluster resource utilization. Our theoretical

analysis for scheduling perfectly parallel stages can be

used to calculate approximation ratios for DAG shop

scheduling problems. The contention-free scheduler

proposed in this paper can be used to schedule perfectly

parallel stages. We also noticed that the practical jobs

usually have very few perfectly parallel stages, and the

contention-free scheduling might waste computational

resources. For the general stage scheduling, our RL-

based scheduler can dynamically control the resource

contention level by adaptively setting parallelism limi-

tations and delaying the start time of some stages. We

used the real-world dataset to evaluate our contention-

free and RL-based scheduler. The content-free sched-

uler can achieve a 3/2 approximate ratio with relatively

small time complexity. With proper training, the RL-

based scheduler can achieve higher resource utilization

compared with default and contention-free schedulers.

References

[1] Isard M, Prabhakaran V, Currey J, Wieder U, Talwar K,

Goldberg A. Quincy: fair scheduling for distributed com-

puting clusters. In Proc. the ACM SOSP, October 2009,

pp.261–276.

[2] Grandl R, Ananthanarayanan G, Kandula S, Rao S, Akella

A. Multi-resource packing for cluster schedulers. ACM SIG-

COMM Computer Communication Review, 2014, 44(4):

455–466.

[3] Zhang Z, Li C, Tao Y, Yang R, Tang H, Xu J. Fuxi: a fault-

tolerant resource management and job scheduling system at

internet scale. In Proc. the VLDB Endowment, September

2014, pp.1393–1404.

[4] Vulimiri A, Curino C, Godfrey P B, Jungblut T, Padhye J,

Varghese G. Global analytics in the face of bandwidth and

regulatory constraints. In Proc. the USENIX NSDI, May

2015, pp.323–336.

[5] Grandl R, Kandula S, Rao S, Akella A, Kulkarni J.

GRAPHENE: Packing and dependency-aware scheduling

for data-parallel clusters. In Proc. the USENIX OSDI,

November 2016, pp.81–97.

[6] Hu Z, Li B, Chen C, Ke X. Flowtime: Dynamic scheduling

of deadline-aware workflows ad-hoc jobs. In Proc. the IEEE

ICDCS, July 2018, pp.929–938.

[7] Duan Y, Wang N, Jie W. Reducing Makespans of DAG

Scheduling through Interleaving Overlapping Resource Uti-

lization. In Proc. the IEEE MASS, December 2020, pp.392–

400.

[8] Brucker P. Scheduling algorithms. Springer, 2007.

[9] Wang H, Sinnen O. List-scheduling versus cluster-

scheduling. IEEE Transactions on Parallel, Distributed

Systems, 2018, 29(8): 1736–1749.

Accelerating DAG-Style Job Execution 19

[10] Johnson S M. Optimal two-and three-stage production

schedules with setup times included. Naval Research Lo-

gistics Quarterly, 1954, 1(1): 61–68.

[11] Amdahl G M. Validity of the single processor approach to

achieving large scale computing capabilities. In Proc. the

Spring Joint Computer Conference, April 1967, pp.483–

485.

[12] Mao H, Schwarzkopf M, Venkatakrishnan S B, Meng Z, Al-

izadeh M. Learning scheduling algorithms for data process-

ing clusters. In Proc. the ACM SIGCOMM, August 2019,

pp.270–288.

[13] Zaharia M, Borthakur D, Sen S J, Elmeleegy K, Shenker S,

Stoica I. Delay scheduling: a simple technique for achieving

locality, fairness in cluster scheduling. In Proc. the ACM

EuroSys, April 2010, pp.265–278.

[14] Khalil E, Dai H, Zhang Y, Dilkina B, Song L. Learning com-

binatorial optimization algorithms over graphs. In Proc. the

NeurIPS, December 2017, pp.6348–6358.

[15] Williams R J. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

Learning, 1992, 8(3-4): 229–256.

[16] Weaver L, Tao N. The optimal reward baseline for

gradient-based reinforcement learning. arXiv:1301.2315,

2013. https://arxiv.org/abs/1301.2315, Jan 2013.

[17] Shao W, Xu F, Chen L, Zheng H, Liu F. Stage Delay

Scheduling: Speeding up DAG-style Data Analytics Jobs

with Resource Interleaving. In Proc. the IEEE ICPP, Au-

gust 2019, pp.1–11.

[18] Hu Z, Li B, Qin Z, Goh R S M. Job scheduling without

prior information in big data processing systems. In Proc.

the IEEE ICDCS, June 2017, pp.572–582.

[19] Liu S, Wang H, Li B. Optimizing shuffle in wide-area data

analytics. In Proc. the IEEE ICDCS, June 2017, pp.560–

571.

[20] Delimitrou C, Kozyrakis C. Paragon: QoS-aware schedul-

ing for heterogeneous datacenters.ACM SIGPLAN Notices,

2013, 48(4): 77–88.

[21] Vavilapalli V K, et al. Apache hadoop yarn: Yet another re-

source negotiator. In Proc. the ACM SoCC, October 2013,

pp.1–5.

[22] Delimitrou C, Kozyrakis C. Quasar: resource-efficient, QoS-

aware cluster management. ACM SIGARCH Computer Ar-

chitecture News, 2014, 42(1): 127–144.

[23] Zhang W, Zheng N, Chen Q, Yang Y, Song Z, Ma T, Leng J,

Guo M. URSA: Precise Capacity Planning, Fair Scheduling

Based on Low-Level Statistics for Public Clouds. In Proc.

the ACM ICPP, August 2020, pp.1–11.

[24] Ousterhout K, Canel C, Ratnasamy S, Shenker S. Mono-

tasks: Architecting for performance clarity in data analyt-

ics frameworks. In Proc. the ACM SOSP, October 2017,

pp.184–200.

[25] Agrawal K, Li J, Lu K, Moseley B. Scheduling parallel

DAG jobs online to minimize average flow time. In Proc.

the ACM-SIAM SODA, January 2016, pp.176–189.

[26] Chekuri C, Goel A, Khanna S, Kumar A. Multi-processor

scheduling to minimize flow time with ε resource augmen-

tation. In Proc. the ACM STOC, June 2004, pp.363–372.

[27] Mastrolilli M, Svensson O. Acyclic job shops are hard to

approximate. In Proc. the IEEE FOCS, October 2008,

pp.583–592.

[28] Shmoys D B, Stein C, Wein J. Improved approximation al-

gorithms for shop scheduling problems. SIAM Journal on

Computing, 1994, 23(3): 617–632.

[29] Zheng H, Wu J. Joint Scheduling of Overlapping MapRe-

duce Phases: Pair Jobs for Optimization. IEEE Transac-

tions on Services Computing, 2018, : 1–1.

[30] Zheng H, Wan Z, Wu J. Optimizing mapreduce framework

through joint scheduling of overlapping phases. In Proc. the

IEEE ICCCN, August 2016, pp.1–9.

[31] Grandl R, Chowdhury M, Akella A, Ananthanarayanan G.

Altruistic scheduling in multi-resource clusters. In Proc. the

USENIX OSDI, November 2016, pp.65–80.

[32] Ferguson R D, Bodik P, Kandula S, Boutin E, Fonseca R.

Jockey: guaranteed job latency in data parallel clusters. In

Proc. the ACM EuroSys, April 2012, pp.99–112.

[33] Im S, Kell N, Kulkarni J, Panigrahi D. Tight bounds for on-

line vector scheduling. In Proc. the IEEE FOCS, October

2015, pp.525–544.

[34] Tan H, Han Z, Li X-Y, Lau F CM. Online job dispatching,

scheduling in edge-clouds. In Proc. the IEEE INFOCOM,

May 2017, pp.1–9.

[35] Marchetti-Spaccamela A, Megow N, Schlöter J, Skutella M,

Stougie L. On the Complexity of Conditional DAG Schedul-

ing in Multiprocessor Systems. In Proc. the IEEE IPDPS,

May 2020, pp.1061–1070.

[36] Jinhong L, Xijun L, Mingxuan Y, Jianguo Y, Jia

Z. Learning to Optimize DAG Scheduling in Het-

erogeneous Environment. arXiv:2103.06980, 2021.

https://arxiv.org/abs/2103.06980, March 2021.

Yubin Duan received his B.S. degree
in mathematics and physics from Uni-
versity of Electronic Science and Tech-
nology of China, Chengdu, China, in
2017. He is currently a Ph.D. candidate
in the Department of Computer and In-
formation Sciences, Temple University,
Philadelphia, Pennsylvania, USA. His

current research focuses on scheduling algorithms for dis-
tributed systems and parallel computing.

Ning Wang is currently an assis-
tant professor in the Department of
Computer Science at Rowan University,
Glassboro, NJ. He received his Ph.D. de-
gree in the Department of Computer and
Information Sciences at Temple Univer-
sity, Philadelphia, PA, USA, in 2018.
He obtained his B.E. degree in School
of Physical Electronics at University of
Electronic Science and Technology of
China, Chengdu, Sichuan, China, in

2013. He currently focuses on communication and compu-
tation optimization problems in Internet-of-Things systems
and operation optimization in Smart Cities applications. He
has published nearly thirty papers in high-impact network-
ing conferences and journals, such as, IEEE ICDCS, IEEE
INFOCOM, IEEE/ACM IWQoS, IEEE Transactions on Big
Data, Journal of Parallel and Distributed Computing, etc.
He has served as a program committee member for top in-
ternational conferences such as IEEE ICDCS, IEEEWCNC,
etc., and reviewers for premier journals such as IEEE TPDS,
TWC, TMC. TITS, TOIT, TITS, TSC, etc.

Jie Wu is the Director of the Center
for Networked Computing and Laura H.
Carnell professor at Temple University.
He also serves as the Director of Interna-
tional Affairs at College of Science and
Technology. He served as Chair of De-
partment of Computer and Information
Sciences from the summer of 2009 to
the summer of 2016 and Associate Vice
Provost for International Affairs from
the fall of 2015 to the summer of 2017.

Prior to joining Temple University, he was a program direc-
tor at the National Science Foundation and was a distin-
guished professor at Florida Atlantic University. His cur-
rent research interests include mobile computing and wire-
less net- works, routing protocols, cloud and green com-
puting, network trust and security, and social network ap-
plications. Dr. Wu regularly publishes in scholarly jour-
nals, conference proceedings, and books. He serves on sev-
eral editorial boards, including IEEE Transactions on Ser-
vice Computing and the Journal of Parallel and Distributed
Computing. Dr. Wu was general co-chair for IEEE MASS
2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM Mobi-
Hoc 2014, ICPP 2016, and IEEE CNS 2016, as well as pro-
gram co-chair for IEEE INFOCOM 2011 and CCF CNCC
2013. He was an IEEE Computer Society Distinguished Vis-
itor, ACM Distinguished Speaker, and chair for the IEEE

Technical Committee on Distributed Processing (TCDP).
Dr. Wu is a CCF Distinguished Speaker and a Fellow of the
IEEE. He is the recipient of the 2011 China Computer Fed-
eration (CCF) Overseas Outstanding Achievement Award.

