
Zhang S, Qian ZZ, Wu J et al. Service-oriented resource allocation in clouds: pursuing flexibility and efficiency.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY Vol.x No.x: 1–x Month 2014

Service-Oriented Resource Allocation in Clouds: Pursuing Flexibility

and Efficiency

Sheng Zhang1,2 (张 胜), Student Member, CCF, IEEE, Zhu-Zhong Qian1,2,∗ (钱柱中), Member, CCF,

IEEE, Jie Wu3 (吴 杰), Fellow, IEEE, and Sang-Lu Lu1,2 (陆桑璐), Member, CCF, IEEE

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China
2Department of Computer Science and Technology, Nanjing University, Nanjing, 210023, China
3Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.

E-mail: zhangsheng@dislab.nju.edu.cn; {qzz,sanglu}@nju.edu.cn; jiewu@temple.edu

Received December 24, 2013

Abstract The networking-oblivious resource reservation model in today’s public clouds cannot guarantee the

performance of tenants’ applications. Virtual networks that capture both computing and networking resource

requirements of tenants have been proposed as better interfaces between cloud providers and tenants. In this paper,

we propose a novel virtual network model that could specify not only absolute and relative location requirements

but also time-varying resource demands. Building on top of our model, we study how to efficiently and flexibly

place multiple virtual networks in a cloud, and we propose two algorithms, MIPA and SAPA, which focus on

optimizing resource utilization and providing flexible placement, respectively. The mixed integer programming-

based MIPA transforms the placement problem into the multi-commodity flow problem through augmenting the

physical network with shadow nodes and links. The simulated annealing-based SAPA achieves resource utilization

efficiency through opportunistically sharing physical resources among multiple resource demands. Besides, SAPA

allows cloud providers to control the trade-offs between performance guarantee and resource utilization, and between

allocation optimality and running time, and allows tenants to control the trade-off between application performance

and placement cost. Extensive simulation results confirm the efficiency of MIPA in resource utilization and the

flexibility of SAPA in controlling trade-offs.

Keywords Resource allocation, virtual network embedding, opportunistic resource sharing

1 Introduction

The paradigm of cloud computing has expe-

rienced serious growth in recent years, attract-

ing increasing attention from academic and in-

dustrial communities [1]. Today’s public clouds

(e.g., Amazon EC2 and Microsoft Azure) adopt

Regular Paper

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61202113 and

61321491, the Key Project of Jiangsu Research Program under Grant No. BE2013116, the Natural Science Foundation of

Jiangsu under Grant No. BK2011510, EU FP7 IRSES MobileCloud Project under Grant No. 612212, and HUAWEI under

Project No. YBIN2011056.

*Corresponding Author

c⃝2014 Springer Science+Business Media, LLC & Science Press, China

2 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

a networking-oblivious resource reservation model,

which only allows tenants to specify computing re-

source demands, and ignores networking complete-

ly. That is, almost all current clouds offer just

best-effort networking service. The performance

of tenants’ applications are influenced by various

factors, such as virtual machine (VM) placement

and clouds workload. Considering the scarcity and

the common oversubscription of cloud bandwidth

resources, this reservation model makes a tenan-

t’s application performance very unpredictable [2].

The unpredictability further leads to two major

consequences. First, tenants’ expenses are in-

creased, since cloud providers charge tenants based

on the duration of an application, which depends

on both computing and networking resources; sec-

ond, cloud providers’ revenues are decreased, since

unpredictability impacts cloud applicability, and

further limits the adoption of clouds [3, 4].

Recent works [3, 5, 6, 7, 8] noticed this lack of

bandwidth guarantee in clouds, and proposed a

service-oriented approach [9] that allows a tenan-

t to specify his/her demand in a virtual network

(VN), where nodes represent VMs with CPU de-

mands, and edges represent bandwidth demands

between VMs. Such resource demands are then en-

forced in clouds through source routing [5] or rate

limiting [3, 6]. Albeit these works make a good s-

tart, there are still some limitations. For example,

virtual networks only have star or tree topologies

in [3, 6]; fixed resources are reserved throughout a

virtual network’s lifetime in [5, 7, 8].

In this paper, we introduce RLVN, a novel

virtual network model that could specify not on-

ly absolute and relative location requirements, but

also time-varying resource demands. Many virtu-

al networks have time-varying resource demands,

as evidenced in existing profiling experiments [6].

Thus, provisioning fixed resources for virtual net-

works throughout their lifetimes is clearly wasteful.

Besides, many applications want to have location

constraints on VMs. For example, VMs for content

distribution services should be deployed in clouds

as widely as possible to obtain a broad geograph-

ical footprint; VMs for parallel computing should

be near each other to mitigate the impact of net-

working latency on task makespan; and the backup

VMs should be placed in different failure regions

to avoid geographically correlated region failures.

Building on top of our model, we study how

to efficiently and flexibly place multiple virtual

networks in a cloud, and we propose two algo-

rithms, MIPA and SAPA, which focus on opti-

mizing resource utilization and providing flexible

placement, respectively. To maximize physical re-

source utilization, we design the mixed integer

programming-based MIPA. The main idea of MI-

PA is transforming the placement problem into the

multi-commodity flow problem [10], and construct-

ing a mixed integer programming-based formula-

tion through augmenting a physical network with

shadow nodes and links.

To provide flexible and efficient virtual

network placement, we design the simulated

annealing-based SAPA. To efficiently utilize phys-

ical resources while retaining a performance guar-

antee, SAPA opportunistically shares physical re-

sources between multiple virtual network demand-

s. To flexibly control the trade-off between place-

ment optimality and running time of the place-

ment algorithm, we adopt simulated annealing [11]

as our optimization framework. The motivation

of providing such a trade-off is that, different vir-

tual networks have different requirements on re-

sponse time. For example, a virtual network re-

quest for supporting the real-time VoIP service

should be deployed as quickly as possible, irrespec-

tive of whether the placement is optimal; on the

contrary, for a virtual network request without re-

quirements on response time, the cloud provider

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 3

should focus on placement optimality. We show

through extensive simulations that, MIPA and S-

APA accepts up to 8.18% and 6.05% more virtual

networks than two state-of-the-art allocation algo-

rithms [7, 12], and the flexibility of SAPA in con-

trolling several trade-offs is well confirmed.

The contributions of this paper are threefold.

First, to the best of our knowledge, we are the

first to study placing virtual networks with both

location constraints and time-varying resource de-

mands. We provide a generic VN model for tenants

to flexibly trade off between application perfor-

mance and placement cost. Second, through aug-

menting the physical network with shadow-nodes,

we provide a Mixed Integer Programming-based

algorithm, which gives us an upper bound on re-

source utilization. Third, we design a simulated

annealing-based practical algorithm, which aims at

providing flexible placements.

The remainder of this paper is organized as

follows. The RLVN model is introduced in Sec-

tion 2. The problem definition is described in Sec-

tion 3. Local resource sharing in a single physical

machine is given in Section 4. We present MIPA

and SAPA in Sections 5 and 6, respectively. We

conduct performance evaluations in Section 7. Be-

fore concluding the paper in Section 9, we go over

related work in Section 8.

2 Virtual Network Model with Time-

Varying Resource and Location Require-

ment (RLVN)

In this section, we first present the tradition-

al virtual network and the RLVN models, then we

present a simple model generation strategy for R-

LVN, finally we show the advantages of the pro-

posed model.

2.1 Traditional Virtual Network Model

We focus mainly on CPU and bandwidth re-

sources in this paper, which has typically been the

case in most of the prior studies [7,8,12,13]. With-

out loss of generality, the physical network is as-

sumed to be based on time division multiplexing,

where time is partitioned into multiple frames of

equal length, and each frame is further divided in-

to equal time slots. Both CPU and bandwidth

resources are measured in time slots.

A traditional virtual network request is denot-

ed by a weighted undirected graph Gv = (V v, Ev),

where V v is the set of virtual machines (VMs), and

Ev is the set of virtual links (VLs). Each VM nv ∈
V v is associated with a CPU demand Rcpu(n

v)

in time slots, and each VL evuv = (nv
u, n

v
v) ∈ Ev

is associated with a bandwidth demand Rbw(e
v
uv)

in time slots. Each VN has a lifetime L, indicat-

ing how long the requested resources should be re-

served in a cloud. Fig. 1(a) shows an example,

where the corresponding resource demand of each

VM or VL is written next to the respective node

or link that represents it.

2.2 The RLVN Model

We find that most of the prior studies do

not take dynamic resource demands of virtual net-

works or physical location constraints of virtual

machines into account. On one hand, cloud ten-

ants usually lease physical resources from cloud

providers for installing their applications and ser-

vices, which are accessed by end users. The ran-

domness of end users and the dynamics of appli-

cations make the amount of physical resources ac-

tually utilized by virtual networks fluctuate over

time, as shown in prior measurements [6, 14]. On

the other hand, cloud tenants usually would like to

restrict the physical locations of virtual machines

for security, backup, coverage, or some other pur-

4 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

poses. Combining them together motivates us to

design RLVN that captures both time-varying re-

source and physical location requirements.

One can potentially derive some complicat-

ed functions, e.g., high-order polynomials, to cap-

ture the actual resource demands in a very precise

way [6]. However, such smooth functions compli-

cate the representation and provisioning of phys-

ical resources in clouds. To strike a balance be-

tween modeling precision and implementation dif-

ficulties, as well as to initiate a tractable study, we

resort to a simple probabilistic model.ac b
8.0

10.0 10.04.04.0 6.0 ac b
(6.0, 2.0, 0.1) (3.0, 1.0, 0.1)(4.0, 2.0, 0.2)(8.0, 2.0, 0.2)(8.0, 2.0, 0.2)(3.0, 1.0, 0.1)(a) (b)

Fig. 1: In our RLVN model, the resource de-

mand of a node nv (resp. link ev) is denot-

ed by a tuple (R1
cpu(n

v), R2
cpu(n

v), p(nv)) (resp.

(R1
bw(e

v), R2
bw(e

v), p(ev))), and the preferable physi-

cal locations of a node nv is denoted by a set Rloc(n
v). (a)

Traditional VN model. (b) The RLVN model.

We assume that the computing resource de-

mand of a VM nv is the probabilistic combina-

tion of two parts: a basic part R1
cpu(n

v), which

exists throughout the lifetime of the virtual net-

work, and a variable part R2
cpu(n

v), which ex-

ists with a probability of p(nv). That is, the

variable part R2
cpu(n) follows a Bernoulli distri-

bution. Here, Rcpu(n
v) = R1

cpu(n
v) + R2

cpu(n
v).

We denote the resource demands of a VM nv

and a VL ev by tuples (R1
cpu(n

v), R2
cpu(n

v), p(nv))

and (R1
bw(e

v), R2
bw(e

v), p(ev)), respectively. Tak-

ing Fig. 1(b) for example, the demand of VM a is

(6.0, 2.0, 0.1), which means that, in a time slot, this

VM requires 6 and 8 units of computing resources

with probabilities of 0.9 and 0.1, respectively.

Since a cloud tenant may have requirements

on the physical locations where his/her VMs are

deployed, the RLVN model allows cloud tenants to

specify two types of location constraints, i.e., ab-

solute and relative constraints. The absolute con-

straint of a VM nv is denoted by a set Rloc(n
v),

which contains the physical machines that nv

should be placed on. For the relative location con-

straint, we assume a cloud physical network con-

sists of multiple disjoint failure regions; that is, the

failure regions form a partition of the physical net-

work. For example, the physical network in Fig. 3

has three failure regions, as indicated by gray ar-

eas. If Rloc(a) = {A,B,C}, then VM a should be

placed on one of the three physical machines; if

Rloc(b) ∩ Rloc(c) = ∅, then these two VMs should

be placed in different failure regions.

2.3 Model Generation Strategy

This subsection presents a simple strategy

which can be used by a cloud tenant to generate

model parameters for each VM and VL in his/her

virtual network request. It contains two steps.

First, a cloud tenant must get the computing

and networking usage traces and guarantee them

to be consistent with the realistic deployment in

clouds. We envision that cloud providers offer pro-

filing runs for tenants to obtain their resource us-

age traces. That is, a cloud tenant can tentatively

deploy its VN request in a cloud for a relatively

short time period; the cloud system collects the

computing and networking usages over time, and

feeds them back to the tenant.

Second, given the usage traces, a tenant needs

to generate an appropriate tuple for each VM and

VL. Here we provide here a strategy for a tenant to

flexibly control the trade-off between application

performance and cost through tuning R1
cpu. It is

better to illustrate the strategy using the example

in Fig. 2, where the solid black curve shows the

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 5

computing resource demand of a VM over time,

while the dashed red curve represents our model.

As mentioned in previous studies [6,15], the actual

resource demands of virtual networks often exhib-

it cyclic patterns. In this example, we assume the

cycle is T . Given R1
cpu and the peak demand, i.e.,

(R1
cpu +R2

cpu), we have p = (t4−t3)+(t2−t1)
T .

TimePhysical Resource
Resource Demand Profile(R1cpu, R2cpu, p) Model

t0 t1 t2 to+T
R2cpu

t3 t4 R1cpu
Fig. 2: An example of the generation strategy.

2.4 The Advantages of RLVN

RLVN has several desirable properties. First

and foremost, previous VN models can be seen as

special cases of our model. It ensures that our sys-

tem is compatible with existing VN models, e.g.,

virtual cluster [3], and virtual data center [5].

Second, we provide great flexibility for tenants

to trade off between application performance and

rent cost. At one extreme, if a tenant has a large

amount of funds, and only cares about applica-

tion performance, the tenant can request physical

resources that are equal to the peak resource de-

mand (i.e., let the variable part be zero in RLVN),

though some of the requested physical resources

are not utilized most of the time. At the other

extreme, if a tenant only cares about placemen-

t costs, the tenant can let the basic part be zero

in RLVN. In general, a tenant can adjust model

parameters to best suit his/her objective.

Finally, our model is also a trade-off between

modeling complexity and precision. When the

number of parts in our model (currently 2) in-

creases, the model precision increases, and hence,

can represent realistic resource demands more ac-

curately. However, the complexity in generating

parameters for RLVN, not surprisingly, increases

as well, which may complicate the interactions be-

tween cloud providers and tenants.

One limitation of RLVN is that, modeling gen-

eration incurs some profiling overheads. However,

this overhead can be drastically reduced if tenants

have to reserve resources for the same type of VNs

repeatedly and lastingly. For example, about 40%

of applications are recurring in Bing’s production

data center [16]. For the same type of VNs, the

cloud provider only needs to offer one profiling

run, and the same results could be fed back to ten-

ants who want to deploy that type of VN. Thus,

the profiling overhead for cloud providers would be

greatly reduced.

3 Problem Statement

The cloud physical network is modeled as a

weighted undirected graph, G = (V,E), where V

denotes the set of physical machines (PMs), and

E denotes the set of physical links (PLs). The

amount of available CPU resources in a PM n ∈ V

is denoted by Acpu(n). A PL eij connects two PM-

s ni and nj , i.e., eij = (ni, nj). The amount of

available bandwidth resources in a PL eij ∈ E is

denoted by Abw(eij). PMs on the same rack are

considered to be in the same failure region. In

Fig. 3, the physical network consists of three dis-

joint failure regions. We use P (ni, nj) to represent

the set of loop-free physical paths between ni and

nj . We also denote by P the set of all loop-free

paths in the physical network. In Fig. 3, there are

four loop-free paths between PMs B and J . The

physical network is assumed to be fixed; for fault-

tolerant resource allocation in clouds, please refer

to [17,18,19].

Placing a RLVN request can be decomposed

6 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.xA
H

C
F E

20
20
B

15
15 20

302030 DJ
30

3020 1520 2520151520
a bc e f ggfe(5.0,2.0,0.2) (7.0,2.0,0.3)(1.0,1.0,0.2) (5.0,2.0,0.2)(1.0,1.0,0.2)ac b

(6.0, 2.0, 0.1) (3.0, 1.0, 0.1)(4.0, 2.0, 0.2)(8.0, 2.0, 0.2)(8.0, 2.0, 0.2)(3.0, 1.0, 0.1) (a) (b) (c)
Fig. 3: An example of RLVN placement. The physical network consists of three failure regions (indicated by gray areas).

The resource demand/capacity of each node or link is written next to the respective node or link that represents it. The

dashed red lines give a possible placement of the two RLVNs. (a) RLVN Gv
1 . (b) RLVN Gv

2 . (c) Physical network G.

into two phases, namely, VM mapping and VL

mapping. The VM mapping phase provides the

placement results of VMs, and it can be seen

as an mapping MV from V v to V . We have,

∀nv
i , n

v
j ∈ V v:

MV(n
v
i) ∈ V,

Acpu(MV(n
v
i)) ≥ Rcpu(n

v
i),

MV(n
v
i) = MV(n

v
j) ⇔ nv

i = nv
j .

The second condition ensures that a VM must

be placed on a PM that has enough physical re-

sources. The third condition guarantees that dif-

ferent VMs must be placed on different PMs, as in

previous studies [7, 8, 12].

The VL mapping phase provides the place-

ment results of VLs, and it can be seen as an map-

ping ME from Ev to P , where ∀evuv = (nv
u, n

v
v) ∈

Ev: 
ME(e

v
uv) ⊂ P (MV(n

v
u),MV(n

v
v)),∑

p∈ME(evuv)
Abw(p) ≥ Rbw(e

v
uv).

The available bandwidth of a path p is defined

as the minimum of the bandwidths of all phys-

ical links along the path. That is, Abw(p) =

mine∈pAbw(e).

Taking Fig. 3 for example, the VM mapping

for RLVN Gv
1 is {a → A, b → B, c → J}, and

the VL mapping is {(a, b) → {(A,B)}, (b, c) →
{(B, J)}, (c, a) → {(J,A)}}. The VM mapping

for RLVN Gv
2 is {e → B, f → C, g → D}, and

the VL mapping is {(e, f) → {(B,C)}, (f, g) →
{(C,D)}}.

Different VNs from different tenants usually

offer different services, so it is reasonable to assume

that the resource demands from different VNs are

mutually independent. To provide efficient physi-

cal resource utilization, we propose the opportunis-

tic sharing of physical resources among multiple

variable resource parts from different VNs. How-

ever, when more than one variable part of resource

demand occurs simultaneously, a capacity viola-

tion happens. To provide probabilistic performance

guarantee, a cloud provider must provide an upper

bound on the collision probability. We denote the

upper bound by pth. For example, in Fig. 3, VM b

from Gv
1 and VM e from Gv

2 are placed on the same

PM. If resource sharing is not exploited as in prior

studies, these two VMs would occupy a total of 17

units of computing resources on PM B. Howev-

er, when opportunistic resource sharing is allowed,

these two VMs would occupy a total of only 15 u-

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 7

nits of resources on PM B. For example, let pth

be 0.1, since p(b) × p(e) = 0.2 × 0.1 = 0.01 < pth,

we only have to allocate 2 units of resources to the

variable resource parts of VMs b and e.

This paper focuses on placing multiple RLVNs

that arrive and depart over time in a given physi-

cal network. Upon the arrival of a RLVN request,

a decision must be made to determine whether or

not to accept the request. Here, we assume that

RLVN requests arrive one by one, and batch pro-

cessing is not the focus of this paper. The goal

is to maximize a cloud provider’s revenue through

efficiently utilizing physical resources, and in the

meanwhile, to provide flexibility for both tenants

and providers. Following prior studies [7, 8, 12], a

cloud provider’s revenue R(Gv
i) from embedding

Gv
i is proportional to the amount of allocated re-

sources and its lifetime Li. That is,

R(Gv
i) = [α

∑
nv∈V v

Rcpu(n
v)+β

∑
ev∈Ev

Rbw(e
v)]×Li,

where a cloud provider can adjust α and β to en-

sure that, neither CPU nor bandwidth becomes a

bottleneck. In our simulation, both of α and β are

set to 1. The total revenue of a cloud provider can

be denoted by
∑

Gv
i
R(Gv

i), where G
v
i is an accept-

ed RLVN request.

We denote by acceptance ratio the ratio of the

number of accepted RLVN requests to the num-

ber of all requests; denote by node utilization ratio

the ratio of the amount of allocated computing re-

sources to that of overall computing resources in

a physical network; denote by link utilization ratio

the ratio of the amount of allocated networking re-

sources to that of overall networking resources in

a physical network. For example, in Fig. 3, after

successfully placing RLVNs Gv
1 and Gv

2, the accep-

tance ratio is 2/2 = 1, the node utilization ratio is

(8+ 10+10+7+9+7)/200 = 0.255, and the link

utilization ratio is (4+4+6+2+2)/180 = 0.1. It

is easy to see that, maximizing a cloud provider’s

revenue is equal to maximizing the acceptance ra-

tio, node utilization ratio, or link utilization ratio.

We formally define the problem below.

Problem 1. (RLVN Placement Problem)

Given a physical network G = (V,E) and a series

of RLVN requests Gv
i = (V v

i , E
v
i), find a placement

for these requests to maximize the acceptance ra-

tio while providing flexibility for both tenants and

providers.

Determining whether a virtual network re-

quest could be placed in a given physical network is

proven to be NP-hard [20], and thus, placing mul-

tiple RLVNs in a cloud network to maximize the

acceptance ratio is also NP-hard. In this paper, we

design two heuristic yet efficient algorithms, MIPA

and SAPA, which focus on optimizing physical re-

source utilization and providing flexible allocation,

respectively.

4 Local Resource Sharing

Before we present MIPA and SAPA in the

next two sections, in this section, we first introduce

how to share physical resources between multiple

variable parts of resource demands from different

VNs in a single PM. The technique developed in

this section serves as a basic component for MIPA

and SAPA.

Recall that both computing and networking

resources are measured in time slots. In this sec-

tion, we only present the technique for local re-

source sharing in a PM, and the result can be used

in a PL without any major changes.

4.1 The Time Slot Assignment Problem

The number of time slots in a frame of each

PM is proportional to the physical capacity of the

respective PM. Consider the following time slot as-

signment problem: based on the placement gener-

ated by MIPA or SAPA, a set of m VMs are placed

8 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

on a PM. The resource demand of the i-th VM nv
i

is < R1
cpu(n

v
i), R

2
cpu(n

v
i), p(n

v
i) >. For the basic

parts of resource demands, we have no choice but

to allocate the respective amount of physical re-

sources to them; for the variable parts of resource

demands, we propose the opportunistic sharing of

physical resources among them. Given an upper

bound on the collision threshold pth, the objective

is to find a sharing solution that minimizes the

amount of time slots used.

ts1 frame
1 p(n2)=0.3 pth=0.1p(n1)=0.3 p(n3)=0.2 p(n4)=0.42 1 2 1 2 1 2ts2 ts3 ts4 ts5 ts6 ts7 tsN33

Fig. 4: An example of resource sharing among multiple

variable parts of resource demands. The collision threshold

serves as the “capacity” of a time slot.

We illustrate the idea of opportunistic re-

source sharing with the example in Fig. 4. Four

VMs are placed on the same PM. VMs n1, n2,

n3 and n4 require 3, 2, 3 and 2 time slots with

probabilities of 0.3, 0.3, 0.2 and 0.4, respectively.

The objective is to minimize the time slots occu-

pied by the four VMs. Fig. 4 also shows a possible

sharing solution, which occupies a total of 5 time

slots. In this solution, ts1 is shared between n1

and n2, because they collide with a probability of

0.3× 0.3 = 0.09, which is less than pth; ts1 cannot

be shared among n1, n2, and n3, because their col-

lision probability is 0.174, which is larger than pth.

More formally, the collision probability of a set S

of variable parts of resource demands is defined as

P (S) = 1−
∏
ni∈S

(1− p(ni))

−
∑
ni∈S

(p(ni)
∏

nk∈S,k ̸=i

(1− p(nk))).

4.2 The Benefit of Resource Sharing

This subsection provides some insights into

the benefit of local resource sharing. In gen-

eral, local resource sharing produces a win-win

situation—cloud tenants’ costs are lowered, and

cloud providers’ revenues are increased.

Consider a cloud provider CP1 that has a

physical link with a bandwidth capacity equal to

20 time slots, and there are three cloud tenants,

CT1, CT2 and CT3. Each of them wants to lease 8

time slots in the substrate link. Without resource

sharing, it is clear that CP1 can only accept two

requests (8 × 3 = 24 > 20). If CP1 charges one

dollar for one slot per hour, then CP1 can get 16

dollars per hour, and each tenant pays 8 dollars

per hour to CP1.

However, each tenant may find that his/her

resource demand is composed of a basic part of

6 time slots and a variable part of 2 time slots,

which occurs with a probability of 0.3. With re-

source sharing, CP1 could accept all of the three

requests in the following way. CP1 assigns 18 dedi-

cated slots to the basic parts, and lets the variable

parts share the remaining 2 slots. The collision

probability in each of the two sharing slots is

1− 0.8× 0.8× 0.8− 3× 0.8× 0.8× 0.2 = 0.104.

Since there are collisions for the variable parts of

resource demands, CP1 may charge 0.1 dollar for

one sharing slot per hour. Thus, the cost of an

accepted request is (6+0.1+0.1) = 6.2 dollars per

hour, which is smaller than the previous amount,

and CP1 gets (6+0.1+0.1)× 3 = 18.6 dollars per

hour, which is larger than the previous one.

We see that local resource sharing enables bet-

ter utilization of physical resources, and hence, in-

creases the revenues of cloud providers, and de-

creases the costs of cloud tenants. We believe

that local resource sharing can benefit all parties

through reasonable pricing. We will not discuss

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 9

how to set prices in this paper, as it is out of this

paper’s scope and deserves separate study.

4.3 First-fit-based Sharing Algorithm

The time slot assignment problem has been

proven to be NP-hard in the strong sense [12]. We

observed that it is similar to the classic bin packing

problem [21], which is to find a packing in unit-

sized bins for a set of items with sizes that are

less than one, so that the number of bins used is

minimized. First-fit is an approximation algorithm

with a factor of two for the bin packing problem.

First-Fit-Based Sharing (FFS)

1: input: R2
cpu(ni) and p(ni) for i = 1 to m

2: for i = 1 to m

3: count← 0, j ← 1

4: while count < R2
cpu(ni) do

5: if tsj can accommodate ni then

6: place ni in tsj
7: count← count+ 1

8: j ← j + 1

9: end while

10: end for

Fig. 5: Pseudocode for the first-fit-based sharing algorithm.

It handles the micro-level time slot assignment, serving as

a basic component for MIPA and SAPA.

We design FFS, a first-fit-based sharing algo-

rithm, as shown in Fig. 5. For the i-th variable part

of resource demand characterized by R2
cpu(ni) and

p(ni), FFS attempts to place it in the first time

slot that can accommodate it; if this is not possi-

ble, FFS moves to the next time slot. FFS keeps

on finding another time slot in which the i-th vari-

able part of resource demand can be placed, until

the number of these slots is equal to R2
cpu(ni). By

“accommodate” we mean that the collision prob-

ability is not larger than the threshold pth. FFS

can be executed in an on-line fashion, and has a

low time complexity.

The arrows in Fig. 4 show the results after

applying FFS to the example. FFS firstly tries to

place the variable parts of resource demands from

n1, and places them in the first three time slots;

when FFS checks whether ts1 could accommodate

n2, since p(n1)× p(n2) < pth, FFS places the vari-

able parts of resource demands of n2 in the first

two time slots, and so on.

We summarize this section by providing two

final notes. First, in Section 3, we assume that dif-

ferent VMs from the same VN should be placed on

different PMs. This assumption is made for brevi-

ty. The proposed algorithms can naturally adapt

to the scenario when a tenant wants to deploy mul-

tiple VMs (e.g., n1, n2, ..., nk) on one PM. In this

case, we can treat these k VMs as one large VM

nk
1. Since resource demands from VMs in the same

VN are usually correlated, we cannot simply sum

up the variable parts of resource demands. The

resource demand of nk
1 consists of (k + 1) parts:

one basic part, i.e.,
∑

1≤i≤k R
1
cpu(ni), and k vari-

able parts, where the i-th variable part R2
cpu(ni)

occurs with a probability of p(ni). In FFS, we just

have to ensure that the variable parts of resource

demands from the same VM cannot share physical

resources.

ts1 frame
1 p(n2)=0.3 pth=0.1p(n1)=0.3 p(n3)=0.2 p(n4)=0.42 1 2 1 2 1 2ts2 ts3 ts4 ts5 ts6 ts7 tsN33

Fig. 6: Extending FFS to the scenario when a tenant wants

to deploy multiple VMs on one PM.

Fig. 6 shows an example. Suppose that a ten-

ant wants to treat n1 and n2 as one VM n2
1, and

another tenant wants to treat n3 and n4 as one

VM n4
3. When we use FFS to deal with time slot

assignment, the variable parts of resource demands

from n2
1 cannot share physical resources. The ar-

rows show the final assignment.

10 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

Second, while MIPA and SAPA generate the

mapping from VMs (resp. VLs) to PMs (re-

sp. loop-free physical paths), FFS determines the

micro-level time slot assignment in a single PM or

PL, and is a basic procedure in both MIPA and

SAPA.

5 Mixed Integer Programming-based Al-

gorithm (MIPA)

In this section, we first present the MIP-based

algorithm for the case where all physical location

requirements of VMs are in the form of a set of

preferable PMs, then we show how to deal with

the other cases.

5.1 Augmented Physical Network

The main idea of MIPA is to transform the

placement problem into the multi-commodity flow

problem. Given a RLVN request Gv, we can ex-

tend the physical network G to construct an aug-

mented physical network G′ by exploiting the ab-

solute location requirements of Gv.

A
H

C
F E

20
20
B

15
15 20

302030 DJ
30

3020 1520 2520151520
a

c b
Fig. 7: The augmented physical network for placing RLVN

Gv
1 in physical networkG (see Fig. 3 for details ofGv

1 andG).

The location requirements of Gv
1 are Rloc(a) = {A,B,C} ,

Rloc(b) = {C,D}, and Rloc(c) = {A, J,H}.

The augmented physical network can be con-

structed as follows. For each nv ∈ V v, we create a

corresponding shadow-node ϑ(nv) (or nv without

causing confusions), and we connect nv with all the

PMs belonging to Rloc(n
v) using shadow-links with

infinite bandwidth capacities. Denote the aug-

mented network of G = (V,E) by G′ = (V ′, E′),

which is the combination of G, shadow-nodes, and

shadow-links. We have

V ′ = V ∪ {nv|nv ∈ V v},

E′ = E ∪ {(nv, n)|nv ∈ V v, n ∈ Rloc(n
v)}.

Fig. 7 shows an example, where the loca-

tion requirements of Gv
1 are Rloc(a) = {A,B,C}

, Rloc(b) = {C,D}, and Rloc(c) = {A, J,H}. The

shadow-links with infinite bandwidths connect a

shadow-node to the physical nodes that belong to

the respective set of preferable locations.

5.2 MIP-based Formulation

Based on the augmented network, we can take

a virtual link evij = (nv
i , n

v
j) ∈ Ev as a commodity

flow starting from nv
i and ending at nv

j . By forcing

all flows starting from and ending at each shadow-

node nv to go through the same neighbor of nv

in G′, we effectively oblige nv to connect to only

one active physical machine in Rloc(n
v). In doing

so, we have the result of VM mapping, that is, we

can place nv on that active PM. More formally, we

present the MIP-based formulation below.

MIP-RLVN-Placement:

Unknown decision variables: h(nv, n), the in-

dicative binary variable, which is 1 if nv is mapped

to n; otherwise, it is 0; f(evij , euv): the amount of

flow from virtual link evij in the u → v direction of

physical link euv.

Objective:

min
∑

nv∈V v

Rcpu(n
v)+

∑
evij∈Ev

∑
euv∈V

f(evij , euv) (1)

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 11

Capacity constraints:

h(nv, n)×Rcpu(n
v) ≤ Acpu(n), ∀nv ∈ V v, ∀n ∈ V ′

(2)

f(evij , euv) ≥ 0, ∀euv ∈ E′, ∀evij ∈ Ev (3)∑
evij∈Ev

(f(evxy, euv) + f(evij , evu))

≤ Abw(euv), ∀euv ∈ E

(4)

Shadow-node constraints:

h(nv, n) ∈ {0, 1}, ∀nv ∈ V v, n ∈ V ′ (5)∑
nv∈V v

h(nv, n) ≤ 1, ∀n ∈ V ′ (6)

∑
n∈Rloc(nv)

h(nv, n) = 1, ∀nv ∈ V v (7)

∑
n/∈Rloc(nv)

h(nv, n) = 0, ∀nv ∈ V v (8)

∑
evij∈Ev

(f(evij , envw) + f(evij , ewnv)) ≤ h(nv, nw)

×Abw(envw), ∀nv ∈ V v,∀nw ∈ Rloc(n
v)

(9)

Flow constraints:∑
nu∈V ′

f(evij , euv) =
∑

nw∈V ′

f(evij , evw),

∀nv ∈ V ′ \ {nv
i , n

v
j}

(10)

∑
nw∈V ′

f(evij , env
i w

) =
∑

nu∈V ′

f(evij , eunv
i
)

+Rbw(e
v
ij), ∀evij ∈ Ev

(11)

∑
nw∈V ′

f(evij , e
s
nv
jw

) =
∑

nu∈V ′

f(evij , eunv
j
)

−Rbw(e
v
ij), ∀evij ∈ Ev

(12)

There are two kinds of unknown decision vari-

ables that correspond to VM and VL mappings,

respectively. Recall that our goal is to maximize

the cloud provider’s revenue by utilizing physical

resources efficiently; therefore, we use the objective

function (Eq. (1)) to minimize the total physical

resources that are allocated to the RLVN request.

Eqs. (2)-(4) provide the capacity constraints.

If nv is placed on n, then the available CPU re-

source of n must be no less than the resource de-

mand of nv (Eq. (2)). All flows must be positive

(Eq. (3)), and the flows going through a physical

link must not exceed the bandwidth capacity of

that link (Eq. (4)).

Eq. (6) ensures that no more than one VM is

placed on a PM. Eqs. (7) and (8) makes sure that

the location requirements are respected. Remem-

ber that, for a shadow-node nv, there is only one

PM nw in Rloc(n
v) that satisfies h(nv, nw) = 1,

therefore, Eq. (9) forces all of the flows starting

from nv and ending at nv to pass the same neigh-

bor nw. Eqs. (10)-(12) are flow-related constraints.

Solving an MIP is NP-hard; in our algorithm,

we adopt LP relaxation and randomized round-

ing [22]. After we get the macro-level mapping

solution, for each PM and PL, we invoke FFS to

handle the micro-level time slot assignment.

5.3 How to Deal With the Other Cases

We have shown how to construct an augment-

ed physical network for embedding a RLVN re-

quest that only has absolute location requirements.

We now provide remarks on how to deal with the

other cases, i.e., relative and no location require-

ments.

If a VM nv does not have any location require-

ments, we just assume Rloc(n
v) contains all PMs in

the physical network, i.e., Rloc(n
v) = {n|n ∈ V }.

If there are relative location requirements, the aug-

mented network is constructed as follows. For each

physical failure region, we create a corresponding

region-head-node, and we connect a region-head-

node with all the PMs belonging to the respective

region using region-links with infinite bandwidth-

s. We further connect a shadow-node with these

region-head-nodes using shadow-links with infinite

bandwidths.

12 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

Fig. 8 shows an example, where the location

requirements of Gv
1 are Rloc(a) = {A,B,C}, and

Rloc(b) ∩Rloc(c) = ∅. By forcing all flows starting

from and ending at b to pass the same region-head-

node (e.g., f1) and the same PM (e.g., C), we ef-

fectively select a PM (e.g., C) for b. By forcing a

region-head-node to be an active neighbor of only

one shadow-node, we ensure that b and c are not

placed in the same region.

A
H

C
F E

20
20
B

15
15 20

302030 DJ
30 3020 1520 2520151520

a
c
bf1

f2
f3

Fig. 8: The augmented physical network for placing Gv
1 ,

where the location requirements are Rloc(a) = {A,B,C},
and Rloc(b) ∩ Rloc(c) = ∅. The region-links with infinite

bandwidths connect a region-head-node to the physical n-

odes belonging to the respective region.

Based on this augmented network, we can de-

fine a similar MIP-based formulation as before,

and solve it by LP-relaxation and randomized

rounding. The details are omitted due to space

limitations, and are left to the reader.

6 Simulated Annealing-based Practical

Algorithm (SAPA)

Based on previous expositions, this section

presents a practical meta-heuristic-based algorith-

m. We first introduce the main idea of our algo-

rithm, then we explains several key functions in

the algorithm.

Determining whether a virtual network re-

quest could be placed in a given physical network is

proven to be NP-hard [20]. We resort to simulated

annealing to cope with its intractability. Simulated

annealing was originally developed for very large s-

cale integration design, and is now widely adopted

in optimization problems [23, 24]. Simulated an-

nealing is chosen for its simplicity; we believe that

more complex methods would hinder the scalabil-

ity, while gaining only incremental returns. While

simulated annealing is a well-known technique, our

contribution lies in the choice of appropriate ener-

gy and neighboring generation functions to ensure

rapid convergence to a near-optimal allocation.

The main idea is to search through a solu-

tion state space to find a near-optimal solution by

iteratively improving a candidate solution with re-

gard to a given measure of energy. Fig. 9 shows

the pseudocode of our algorithm. Given a physical

network G, and a RLVN request Gv, SAPA return-

s a near-optimal solution MB. We first generate

the initial solution and temperature; the function

CalculateEnergy defines the energy of a solution.

Variables MB and ϵB are used to record the best

solution so far, and its energy.

SAPA

1: input: G, Gv, N , ρ

2: M← an initial solution for Gv

3: T ← an initial temperature

4: ϵ← CalculateEnergy(M)

5: MB ←M, ϵB ← ϵ

6: for n = 1 to N do

7: M# ← GenerateNeighbor(M)

8: ϵ# ← CalculateEnergy(M#)

9: if ϵ# < ϵB then

10: MB ←M#, ϵB ← ϵ#
11: if Random() < p(M,M#, T) then

12: M←M#, ϵ← ϵ#
13: T ← ρT

14: end for

15: returnMB

Fig. 9: The pseudocode of SAPA.

In each iteration, we move to a slightly-

different neighboring solution with a certain prob-

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 13

ability p, depending on the energies of the current

solution, the neighboring solution, and the temper-

ature. The temperature is decreased by a factor of

ρ after each iteration. ρ is typically a value be-

tween 0.95 and 1 [11,23,24]. Allowing the solution

to move to a higher energy solution helps us to

avoid local minima.

To better understand the algorithm, the read-

er could imagine the solution state space as a

graph, where the individual solutions are vertices.

Two solutions have a edge between them if and

only if we can get one of them from the other

through GenerateNeighbor. Our algorithm is like

a walk on this graph. In each iteration, we ran-

domly choose a neighbor solution, and move to it

with a probability p, which is determined by the

energies of the current solution, the neighbor so-

lution, and the temperature. We may move to a

higher energy solution, which helps us avoid local

minima. But the probability of moving to a high-

er energy solution is decreased as the temperature

goes down. The larger the iteration count N is,

the better the final solution is. Therefore, we can

use N to control the trade-off between solution op-

timality and running time.

Note that, after we get the mapping solution

from SAPA, we then invoke FFS to reduce the

amount of occupied resources in each PM and PL,

and thus improve the physical resource utilization.

6.1 Initial Solution and Temperature

We generate the initial solution using the fol-

lowing greedy approach. We first sort PMs and

VMs in the order of decreasing available resources

and resource demands, respectively. For each VM

in this order, we place it on the first PM that has

not been used before. This kind of “maximum-

first” mapping fashion is beneficial for future re-

quests that may require some bottleneck resources.

We then map each virtual link to the shortest path

with sufficient bandwidth between the correspond-

ing PMs.

The moving probability p(M,M#, T) for

transition from the current solution M (with an

energy of ϵ) to the neighboring solution M# (with

an energy of ϵ#) is defined as

p(M,M#, T) =


1 if ϵ# < ϵ,

e−
ϵ#−ϵ

T o.w.

The initial temperature T should be set to a

value that makes the average moving probability

to be 0.8 for “bad” transitions from the initial so-

lution, according to the suggestions in [11]. By

“bad” we mean that we generate a higher ener-

gy neighbor solution from the initial solution us-

ing the function GenerateNeighbor. We can get

T in the following way: we randomly generate M

energy-increasing neighbor solutions from the ini-

tial solution and compute the average increase in

energy ϵ̄ =
∑

(ϵ#−ϵ)
M ; let p(M,M#, T) = e−

ϵ̄
T =

0.8, we have T = − ϵ̄
ln(0.8) .

6.2 Generating Neighboring Solutions

The function GenerateNeighbor finds a

slightly-different solution in the neighborhood of

the current candidate solution in each iteration.

This function should be simple, otherwise it would

cost more running time. A well-crafted neigh-

bor generating function intrinsically avoids deep

local minima. Fig. 10 shows the pseudocode of

GenerateNeighbor. We first randomly select a

VM nv ∈ V v, and denote by n1 the PM on which

nv is placed in M. We then use a breadth-first

search starting from n1 to find another PM n2 that

satisfies the capacity and location requirements,

and place nv on n2 in M#.

Denote by M(mv, nv) the physical path that

(mv, nv) is placed on in M. For each affected vir-

tual link, i.e., (mv, nv) ∈ Ev: if n2 belongs to the

14 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

physical path M(mv, nv), we just place (mv, nv)

on a part of the path in M#; otherwise, we extend

M(mv, nv) in M# by adding the shortest path be-

tween n1 and n2. The randomness we employed in

generating neighboring solutions helps us to walk

uniformly within the solution state space and avoid

local minima.

GenerateNeighbor

1: input: M
2: M# ←M
3: randomly select a VM nv ∈ V v

4: n1 ←M(nv)

5: find another PM n2 using breadth-first

search starting from n1

6: M#(nv)← n2

7: for each (mv, nv) ∈ Ev

8: if n2 ∈M(mv, nv) then

9: M#(mv, nv)← the segment from

n2 toM(mv) inM(mv, nv)

10: else

11: find a path segment ps

connecting n1 and n2

12: M#(mv, nv)←M(mv, nv) + ps

13: end if

14: end for

15: returnM#

Fig. 10: The pseudocode of GenerateNeighbor.

6.3 Calculating Energy

The energy of a solution ϵ(M) must satisfy

the following properties: (i) If a solution M oc-

cupies less physical resources than another solu-

tion M′, then ϵ(M) < ϵ(M′); (ii) If a solution

does not meet the resource demands of a RLVN

request, then it has a higher energy than any oth-

er solution that meets the demands; (iii) For two

solutions, both of which do not meet the resource

demands of a RLVN request, the solution that in-

curs more unsatisfied resource demands must have

a higher energy.

For a solution M, the amount of unsatisfied

resource demands can be defined as

∆(M) =
∑

nv∈V v

(Rcpu(n
v)− c(nv,M(nv)))

+
∑

evij∈Ev

(Rbw(e
v
ij)−

∑
M(nv

i)=nu

f(evij , euv)),

where c(nv,M(nv)) and f(evij , euv) denote the

amounts of resources that are allocated for nv in

M(nv), and allocated for evij in euv, respectively.

The energy of a solution is defined as

ϵ(M) =



∑
nv∈V v

Rcpu(n
v) +

∑
evij∈Ev

∑
euv∈E

f(evij , euv)

if M meets the demands of Gv,

ϵM +∆(M) o.w.

Here, ϵM is a sufficiently large energy, e.g., ϵM

could be defined as the sum of all the physical re-

sources in the physical network.

It is straightforward to see that the definition

of energy satisfies the above three properties. We

note that, the energy can be defined in different

ways to achieve different purposes, e.g., a defini-

tion that prefers load balancing is provided in [25].

6.4 Summary

Based on the RLVN model, opportunistic re-

source sharing, and simulated annealing, SAPA

achieves high resource utilization through oppor-

tunistically sharing physical resources among mul-

tiple resource demands. The flexibility of S-

APA is reflected in several aspects: allowing ten-

ants to control the trade-off between application

performance and placement cost; allowing cloud

providers to control the trade-offs between perfor-

mance guarantee and resource utilization, and be-

tween allocation optimality and running time; and

so on.

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 15

7 Performance Evaluation

This section describes our evaluation results of

the proposed algorithms. The simulations settings

are similar to those in prior studies [7, 8]. There

are two types of settings in our evaluation: small-

setting, and large-setting. The small topology set-

ting is designed for MIPA, due to its high compu-

tational complexity; the large topology setting is

used in the evaluations without involving MIPA.

In the large-setting, the physical network is

configured to have 50 physical machines that are

randomly connected with a probability of 0.5.

Both of the CPU resource capacity of every phys-

ical machine and the bandwidth resource capacity

of every physical link are generated uniformly from

a range of integers from 50 to 100. The threshold of

collision probability is set to 0.1, and the annealing

parameter ρ is set to 0.99 according to [11,23,24].

The number of failure regions in the physical net-

work is set to 5, and we randomly partition phys-

ical machines into five nonempty sets.

For each RLVN request, the number of VMs is

uniformly generated from a range of integers from

2 to 10 and each pair is connected with a proba-

bility of 0.5. We check whether a virtual network

is connected; if not, we regenerate it until we get a

connected one. The arrivals of RLVN requests are

modeled as a Poisson process with an average rate

of two requests per minute. The lifetime of each

request is assumed to be exponentially distributed

with an average of ten minutes. The CPU resource

demand of each VM is uniformly generated from a

range of integers from 1 to 20, and the bandwidth

resource demand of each VL is uniformly generated

from a range of integers from 1 to 50. The ratio of

the variable part of resource demand to the overall

resource demand of each VM or VL is uniformly

generated from a range of real values from 0.1 to

0.2. For the location requirements, we randomly

choose two or four VMs from each request and as-

sume them to have relative location requirements;

the rest of the VMs are assumed to have absolute

location requirements.

In the small-setting, simulation parameters

are the same as those in the large-setting, excep-

t that the physical network is configured to have

ten machines, and the number of VMs in a RLVN

request is uniformly generated from a range of in-

tegers from 2 to 5.

7.1 Efficiency in Resource Utilization

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1000 2000 3000 4000 5000 6000

A
cc

ep
ta

n
ce

 R
at

io

Time (s)

 MIPA
SAPA

G-ORS
 G-SP

Fig. 11: Comparison results of MIPA, SAPA, G-ORS, and

G-SP in the small-setting.

 0

 500

 1000

 1500

 2000

 10 15 20 25 30 35 40 45 50

R
u
n

n
in

g
 T

im
e

(m
s)

Number of PMs

 MIPA
 SAPA

Fig. 12: Running time with varying number of PMs.

The proposed algorithms are compared

with G-ORS [12] (greedy node mapping with re-

source sharing) and G-SP [13] (greedy node map-

16 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

Fig. 13: Comparison results of SAPA, G-ORS, and G-SP in the large-setting. (a) Acceptance ratio over time. (b) CDF of

node utilization ratios. (c) CDF of link utilization ratios.

ping with the shortest path-based link mapping).

The performance metrics include acceptance ratio,

node utilization ratio, and link utilization ratio.

Fig. 11 shows the comparison results on the

acceptance ratio of the four algorithms in the

small-setting. We note that, MIPA outperform-

s the other three algorithms, and SAPA achieves

the second-highest acceptance ratio. Specifically,

the average acceptance ratios of MIPA, SAPA, G-

ORS, and G-SP after the first 1,200 seconds are

38.29%, 34.98%, 33.00%, and 30.11%, respective-

ly, which means that MIPA accepts up to 8.18%

more requests than G-SP. SAPA performs better

than G-ORS and G-SP, as it employs simulated

annealing as its optimization framework and takes

local resource sharing into account.

Fig. 12 shows the comparison results on the

running time of MIPA and SAPA. In this evalu-

ation, we keep the number of VMs fixed at five,

and set the iteration count in SAPA to be 1,000.

We note that, due to the high time complexity of

MIP formulation, the running time of MIPA goes

up quickly as the number of physical machines in

a cloud increases. For instance, MIPA costs about

two seconds when the physical network contains 50

PMs. SAPA has a much smaller time complexity,

and has an almost linear running time.

Figs. 13(a), 13(b), and 13(c) show the com-

parison results on the acceptance ratio, node u-

tilization ratio, and link utilization ratio, respec-

tively, of SAPA, G-ORS, and G-SP in the large-

setting. In Fig. 13(a), the average acceptance ra-

tio of these three algorithms after the first 2,000

seconds is around 0.37, which is larger than 0.35

in Fig. 11. The main reason is that, the physi-

cal network in the large-setting has a much higher

diversity than that in the small-setting, and such

a kind of diversity will further enable the phys-

ical network in the large-setting to accept more

virtual network requests. The average acceptance

ratios of SAPA, G-ORS, and G-SP after the first

1,200 seconds are 38.35%, 36.14%, and 32.30%, re-

spectively, which implies that SAPA accepts up to

6.05% more virtual network requests than G-SP.

Figs. 13(b) and 13(c) show the cumulative distri-

bution function (CDF) of node and link utiliza-

tion ratios, respectively. We notice that, the node

and link utilization ratios in SAPA are, on average,

higher than those in the other two algorithms. The

average node utilization ratios of SAPA, G-ORS,

and G-SP are 29.51%, 28.31%, and 26.12%, respec-

tively; that is, SAPA utilizes up to 3.39% more

physical computing resources than G-SP.

7.2 Flexibility in Providing Tradeoffs

In this subsection, we present simulation re-

sults on the ability of SAPA in providing flexi-

ble resource allocations. In Fig. 14(a), we show

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 17

Fig. 14: Evaluations on the flexibilities of SAPA. (a) Tradeoff between performance guarantee and resource utilization. (b)

Tradeoff between application performance and placement cost. (c) Tradeoff between placement optimality and running time.

the acceptance ratio of SAPA under three differ-

ent values of collision threshold, i.e., pth. We no-

tice that, SAPA with a larger pth accepts more R-

LVN requests than SAPA with a smaller pth. The

main reason behind this phenomenon is that, when

a cloud provider increases the collision threshold,

more variable parts of resource demands could co-

exist in a single physical time slot, which improves

physical resource utilization. Therefore, a cloud

provider can control the trade-off between perfor-

mance guarantee and resource utilization through

adjusting the collision threshold.

In Fig. 14(b), we present the acceptance ratio

of SAPA under three different settings of RLVN re-

quests. We denote by “R1/(R1+R2)” the average

percentage of the basic part in the total resource

demand. When the percentage increases from 0.8

to 1.0, more variable parts of resource demands

turn into basic parts, which do not permit local

resource sharing. Therefore, the acceptance ratio

of SAPA decreases. Since a cloud provider charges

a tenant a smaller amount of rent for variable part-

s of resource demands than that for basic parts, a

tenant then can control the trade-off between ap-

plication performance and placement cost through

adjusting the percentage.

Fig. 14(c) shows the acceptance ratio of SAPA

with different iteration counts. Generally, more it-

erations make SAPA perform better. That is, S-

APA can generate better allocation results at the

expense of time efficiency. It is worth noting that,

the performance gain becomes smaller as the num-

ber of iterations increases. The cloud providers can

control the trade-off between placement optimality

and running time through modifying the number

of iterations.

In summary, simulation results confirm the re-

spective advantages of both MIPA and SAPA. We

wish that the proposed algorithms would provide

some potential insights into the future research in

this direction.

8 Related Work

This is a rich heritage of studies in cloud re-

source allocation and virtual network placement

that has informed and inspired our work. We de-

scribe a subset of these efforts below.

The ability to provide scalable resource on de-

mand is central to cloud computing. Server and

network virtulization multiplexes and shares phys-

ical resources between cloud tenants, which finally

translates into increased provider revenue and de-

creased tenant cost. A large amount of related

solutions have been proposed in the past. Want et

al. [26] considered bin packing-based virtual ma-

chine consolidation with dynamic bandwidth de-

mands. Meng et al. [27] focused on network-aware

18 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

virtual machine placement that minimizes average

traffic latency incurred by network infrastructures.

Zhang et al. [28] proposed a heterogeneity-aware

resource management system for dynamic capacity

provisioning in cloud environments. Wei et al. [29]

investigated a QoS (i.e., deadline and budget) con-

strained resource allocation problem and designed

an evolutionary mechanism from the perspective

of game theory. Zhang et al. [30] proposed a bid-

ding language and an online auction mechanism

for cloud resource allocations where users with het-

erogeneous demands come and leave on the fly. To

improve cloud task execution performance, Di and

Wang [31] studied the problem of minimizing cloud

task makespan under a budget with possible pre-

diction errors and proposed the ODRA algorith-

m. They also investigated the problem of opti-

mizing multi-attribute resource allocation in self-

organizing clouds [32]. Some other researchers in-

vestigated resource allocation problems in mobile

cloud computing [33, 34, 35]. Different from these

research efforts, our work aims to provide an ef-

ficient and flexible resource allocation algorithm

with probabilistic performance guarantee.

Energy efficiency is an important issue in da-

ta centers. Gao et al. [36] noted the location-

specific carbon footprint and electricity price of

data centers, and proposed to dynamically con-

trol the fraction of user-generated traffic direct-

ed to each geographically-distributed data center.

Wang et al. [37] explored several unique features

of data centers, e.g., topology regularity, applica-

tion characteristics, and so on, to improve the en-

ergy efficiency in data center networks. In order

to provide balanced and scalable data center ar-

chitectures, recent studies [2, 38, 39, 40] have pro-

posed several novel architectures, e.g., VL2, Fat-

tree, DCell, and BCube. Zhou et al. [41] pro-

posed augmenting physical cloud networks with

60 GHz wireless links. Ballani et al. [42] stud-

ies pricing strategies for cloud resources. Ghazar

and Samaan [15] designed incentive mechanisms

for cloud tenants to proactively regulate their re-

source demands through exploiting the resource u-

tilization fluctuation in data centers and the delay-

tolerant nature of many applications. These stud-

ies are complementary to our design, and can be

used together with our proposed algorithms to pro-

vide better performance.

Virtual network placement is the key chal-

lenge in network virtualization environments. To

cope with its NP-hardness [20], Ricci et al. [43]

designed a meta-heuristic-based algorithm. Zhu

and Ammar [13] studied how to achieve load bal-

ance in placing virtual networks in a physical net-

work with unlimited resources. Yu et al. [7] envi-

sioned substrate support for path splitting. Lisch-

ka and Karl [44] designed a subgraph isomorphis-

m detection-based virtual network placement algo-

rithm. Chowdhury et al. [8] proposed the ViNE-

Yard framework, where only a special case of loca-

tion constraint was taken into account. Cheng et

al. [45] incorporated topology-awareness into em-

bedding virtual networks, and designed a Markov

chain-based node ranking algorithm.

To cope with physical node or link failure,

Koslovski et al. [17] and Yeow et al. [18] de-

signed methods for improving virtual network re-

liability through reserving redundant physical re-

sources. Based on column generation and p-cycle

techniques, Jarray and Karmouch [19] proposed

augmenting virtual networks with redundant n-

odes and links to achieve fault-tolerant virtual net-

work embedding. Comparatively, our work takes

time-varying resource demands and location con-

straints into consideration, and focuses on flexible

and efficient resource allocation.

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 19

9 Conclusions

In this paper, we study how to efficiently

and flexibly place virtual networks with dynam-

ic resource demands and physical location require-

ments in a cloud. We first propose a novel virtual

network model that allows cloud tenants to bet-

ter specify their resource demands; we then pro-

pose two algorithms with different designing goal-

s. MIPA focuses on optimizing physical resource

utilization, while SAPA concentrates on provid-

ing flexible resource allocation. Simulations re-

sults demonstrate the advantages of the proposed

algorithms. In our future work, we plan to de-

sign incentive mechanisms for cloud providers to

make tenants proactively regulate their resource

demands.

References

[1] Armbrust M, Fox A, Griffith R et al. A view

of cloud computing. Communications of the

ACM, 2010, 53(4): 50–58.

[2] Greenberg A, Hamilton J R, Jain N et al.

VL2: a scalable and flexible data center net-

work. In Proc. ACM SIGCOMM 2009 Con-

ference, Aug. 2009, pp.51–62.

[3] Ballani H, Costa P, Karagiannis T et al.

Towards predictable datacenter networks. In

Proc. ACM SIGCOMM 2011 Conference,

Aug. 2011, pp.242–253.

[4] Xu F, Liu F, Jin H et al. Managing perfor-

mance overhead of virtual machines in cloud

computing: a survey, state of the art, and

future directions. Proceedings of the IEEE,

2014, 102(1): 11–31.

[5] Guo C, Lu G, Wang H et al. Secondnet: a

data center network virtualization architec-

ture with bandwidth guarantees. In Proc. the

6th ACM International Conference on emerg-

ing Networking EXperiments and Technolo-

gies, Nov. 2010, pp.15–26.

[6] Xie D, Ding N, Hu Y C et al. The on-

ly constant is change: incorporating time-

varying network reservations in data centers.

In Proc. ACM SIGCOMM 2012 Conference,

Aug. 2012, pp.199–210.

[7] Yu M, Yi Y, Rexford J et al. Rethinking virtu-

al network embedding: substrate support for

path splitting and migration. ACM SIGCOM-

M Computer Communication Review, 2008,

38(2): 17–29.

[8] Chowdhury M, Rahman M, Boutaba R.

ViNEYard: Virtual network embedding algo-

rithms with coordinated node and link map-

ping. IEEE/ACM Transations on Network-

ing, 2012, 20(1): 206–219.

[9] Duan Q, Yan Y, Vasilakos A V. A survey

on service-oriented network virtualization to-

ward convergence of networking and cloud

computing. IEEE Transactions on Network

and Service Management, 2012, 9(4): 373–

392.

[10] Ahuja R K, Magnanti T L, Orlin J B. Net-

work flows: theory, algorithms, and applica-

tions. Prentice hall, 1993.

[11] Kirkpatrick S. Optimization by simmulated

annealing: quantitative studies. Journal of S-

tatistical Physics, 1984, 34(5/6): 975–986.

[12] Zhang S, Qian Z Z, Wu J et al. Virtual net-

work embedding with opportunistic resource

sharing. IEEE Transactions on Parallel and

Distributed Systems, 2014, 25(3): 816–827.

[13] Zhu Y, Ammar M. Algorithms for assigning

substrate network resources to virtual net-

work components. In Proc. the 25th Annual

20 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

IEEE International Conference on Computer

Communications, Apr. 2006, pp.1–12.

[14] Vogels W. Beyond server consolidation. ACM

Queue, 2008, 6(1): 20–26.

[15] Ghazar T, Samaan N. Pricing utility-based

virtual networks. IEEE Transactions on Net-

work and Service Management, 2013, 10(2):

119–132.

[16] Agarwal S, Kandula S, Bruno N et al. Re-

optimizing data-parallel computing. In Proc.

the 9th USENIX Symposium on Networked

Systems Design and Implementation, Apr.

2012, pp.281–294.

[17] Koslovski G, YeowW L, Westphal C et al. Re-

liability support in virtual infrastructures. In

Proc. the 2nd IEEE International Conference

on Cloud Computing Technology and Science,

Nov. 2010, pp.49–58.

[18] Yeow W L, Westphal C, Kozat U C. Design-

ing and embedding reliable virtual infrastruc-

tures. ACM SIGCOMM Computer Communi-

cation Review, 2011, 41(2): 57–64.

[19] Jarray A, Karmouch A. Cost-efficient map-

ping for fault-tolerant virtual networks. IEEE

Transactions on Computers, 2014, PrePrints.

[20] Andersen D G. Theoretical approaches to n-

ode assignment. Technical Report of Comput-

er Science Department, Carnegie Mellon Uni-

versity, Dec. 2002.

[21] Vijay V V. Approximation Algorithms.

Springer, 2003.

[22] Mitzenmacher M, Upfal E. Probability and

computing: Randomized algorithms and

probabilistic analysis. Cambridge University

Press, 2005.

[23] Anagnostopoulos A, Michel L, Hentenryck P

V et al. A simulated annealing approach to

the traveling tournament problem. Journal of

Scheduling, 2006, 9(2): 177–193.

[24] Osman I H. Metastrategy simulated anneal-

ing and tabu search algorithms for the vehi-

cle routing problem. Annals of Operations Re-

search, 1993, 41(4): 421–451.

[25] Zhang S, Qian Z Z, Guo S et al. FELL: a flexi-

ble virtual network embedding algorithm with

guaranteed load balancing. In Proc. the 47th

IEEE International Conference on Communi-

cations, Jun. 2011, pp.1–5.

[26] Wang M, Meng X, Zhang L. Consolidating

virtual machines with dynamic bandwidth de-

mand in data centers. In Proc. the 30th An-

nual IEEE International Conference on Com-

puter Communications, Apr. 2011, pp.71–75.

[27] Meng X, Pappas V, Zhang L. Improving the s-

calability of data center networks with traffic-

aware virtual machine placement. In Proc. the

29th Annual IEEE International Conference

on Computer Communications, Apr. 2010,

pp.1–9.

[28] Zhang Q, Zhani M F, Boutaba R et al. Har-

mony: Dynamic heterogeneity-aware resource

provisioning in the cloud. In Proc. the 33rd In-

ternational Conference on Distributed Com-

puting Systems, Jul. 2013, pp.510–519.

[29] Wei G, Vasilakos A V, Zheng Y et al. A game-

theoretic method of fair resource allocation for

cloud computing services. The Journal of Su-

percomputing, 2010, 54(2): 252–269.

[30] Zhang H, Li B, Jiang H et al. A framework for

truthful online auctions in cloud computing

with heterogeneous user demands. In Proc.

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 21

the 32nd Annual IEEE International Con-

ference on Computer Communications, Apr.

2013, pp.1510–1518.

[31] Di S, Wang C L. Minimization of cloud task

execution length with workload prediction er-

rors. In Proc. the 20th International Confer-

ence on High Performance Computing, Dec.

2013, pp.69–78.

[32] Di S, Wang C L. Dynamic optimization

of multiattribute resource allocation in self-

organizing clouds. IEEE Transactions on Par-

allel and Distributed Systems, 2013, 24(3):

464–478.

[33] Rahimi M R, Ren J, Liu C H et al. Mobile

cloud computing: a survey, state of art and

future directions. Mobile Networks and Appli-

cations, 2013, 19(2): 133–143.

[34] Rahimi M R, Venkatasubramanian N, Mehro-

tra S et al. Mapcloud: mobile applications on

an elastic and scalable 2-tier cloud architec-

ture. In Proc. the 5th IEEE/ACM Interna-

tional Conference on Utility and Cloud Com-

puting, Nov. 2012, pp.83–90.

[35] Rahimi M R, Venkatasubramanian N, Vasi-

lakos A V. Music: Mobility-aware optimal ser-

vice allocation in mobile cloud computing. In

Proc. the 6th IEEE International Conference

on Cloud Computing, Jun. 2013, pp.75–82.

[36] Gao P X, Curtis A R, Wong B et al. It’s not

easy being green. In Proc. ACM SIGCOMM

2012 Conference, Aug. 2012, pp.211–222.

[37] Wang L, Zhang F, Aroca J A et al. GreenD-

CN: a general framework for achieving ener-

gy efficiency in data center networks. IEEE

Journal on Selected Areas in Communication-

s, 2014, 32(1): 4–15.

[38] Al-Fares M, Loukissas A, Vahdat A. A scal-

able, commodity data center network archi-

tecture. In Proc. ACM SIGCOMM 2008 Con-

ference, Aug. 2008, pp.63–74.

[39] Guo C, Wu H, Tan K et al. Dcell: a scalable

and fault-tolerant network structure for data

centers. In Proc. ACM SIGCOMM 2008 Con-

ference, Aug. 2008, pp.75–86.

[40] Guo C, Lu G, Li D et al. Bcube: a high per-

formance, server-centric network architecture

for modular data centers. In Proc. ACM SIG-

COMM 2009 Conference, Aug. 2009, pp.63–

74.

[41] Zhou X, Zhang Z, Zhu Y et al. Mirror mir-

ror on the ceiling: flexible wireless links for

data centers. In Proc. ACM SIGCOMM 2012

Conference, Aug. 2012, pp.443–454.

[42] Ballani H, Costa P, Karagiannis T et al. The

price is right: Towards location-independent

costs in datacenters. In Proc. the 10th ACM

Workshop on Hot Topics in Networks, Nov.

2011, pp.23–28.

[43] Ricci R, Alfeld C, Lepreau J. A solver for

the network testbed mapping problem. ACM

SIGCOMM Computer Communication Re-

view, 2003, 33(2): 65–81.

[44] Lischka J, Karl H. A virtual network mapping

algorithm based on subgraph isomorphism de-

tection. In Proc. the 1st ACM workshop on

Virtualized infrastructure systems and archi-

tectures, Mar. 2009, pp.81–88.

[45] Cheng X, Su S, Zhang Z et al. Virtual

network embedding through topology-aware

node ranking. ACM SIGCOMM Computer

Communication Review, 2011, 41(2): 38–47.

22 J. Comput. Sci. & Technol., Month. 2014, Vol.x, No.x

Sheng Zhang received

his BS and PhD degrees from

Nanjing University in 2008 and

2014, respectively. Currently,

He is an assistant lecturer in

the Department of Computer

Science and Technology, Nan-

jing University. He is also a

member of the State Key Labo-

ratory for Novel Software Tech-

nology. His research interests include network vir-

tualization, cloud computing, and mobile network-

s. To date, he has published more than 15 papers,

including those appeared in IEEE Transactions on

Parallel and Distributed Systems, IEEE Transac-

tions on Computers, ACM MobiHoc, and IEEE

INFOCOM. He received the Best Paper Runner-

Up Award from IEEE MASS 2012.

Zhu-Zhong Qian is an

associate professor at the De-

partment of Computer Science

and Technology, Nanjing Uni-

versity. He is also a member

of the State Key Laboratory

for Novel Software Technology.

He received his PhD. Degree in

computer science in 2007. Cur-

rently, his research interests in-

clude cloud computing, distributed systems, and

pervasive computing. He is the chief member of

several national research projects on cloud com-

puting and pervasive computing. He has published

more than 30 research papers in related fields. He

is a member of CCF and IEEE.

Jie Wu is the chair and

a Laura H. Carnell professor

in the Department of Com-

puter and Information Sciences

at Temple University. He is

also an Intellectual Ventures

endowed visiting chair profes-

sor at the National Laborato-

ry for Information Science and

Technology, Tsinghua Univer-

sity. Prior to joining Temple University, he was a

program director at the National Science Founda-

tion and was a Distinguished Professor at Florida

Atlantic University. His current research interests

include mobile computing and wireless network-

s, routing protocols, cloud and green computing,

network trust and security, and social network ap-

plications. Dr. Wu regularly publishes in schol-

arly journals, conference proceedings, and book-

s. He serves on several editorial boards, includ-

ing IEEE Transactions on Service Computing and

the Journal of Parallel and Distributed Comput-

ing. Dr. Wu was general co-chair/chair for IEEE

MASS 2006, IEEE IPDPS 2008, and IEEE ICDC-

S 2013, as well as program co-chair for IEEE IN-

FOCOM 2011 and CCF CNCC 2013. Currently,

he is serving as general chair for ACM MobiHoc

2014. He was an IEEE Computer Society Distin-

guished Visitor, ACM Distinguished Speaker, and

chair for the IEEE Technical Committee on Dis-

tributed Processing (TCDP). Dr. Wu is a CCF

Distinguished Speaker and a Fellow of the IEEE.

He is the recipient of the 2011 China Computer

Federation (CCF) Overseas Outstanding Achieve-

ment Award.

Sang-Lu Lu received her

Ph.D. degree in computer sci-

ence from Nanjing Universi-

ty in 1997. She is current-

ly a professor in the Depart-

ment of Computer Science and

Technology and the State Key

Laboratory for Novel Software

Technology. Her research inter-

Sheng Zhang et al.: Service-Oriented Resource Allocation in Clouds 23

ests include distributed com-

puting, wireless networks, and pervasive comput-

ing. She has published over 80 papers in referred

journals and conferences in the above areas. She

is a member of CCF and IEEE.

