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Abstract Sustaining an operational wireless sensor network (WSNs) is challenging due to the persistent need
of the battery-powered sensors to be charged from time to time. The procedure of exploiting mobile chargers
(MCs) that traverse to the fixed sensors of the network and wirelessly transfer energy in an efficient matter has
been considered widely as a promising way to tackle that challenge. An optimization problem, called the mobile
charger coverage problem, arises naturally to keep all of the sensors alive with an objective of determining both
the minimum number of MCs required meeting the sensor recharge frequency and the schedule of these MCs.
It’s shown that this optimization problem becomes NP-hard in high-dimensional spaces. Moreover, the special
case of homogeneous recharge frequency of the sensors has already been proven to have a tractable algorithm
if we consider the 1-dimensional space, whether that space is a line or a ring. In this work, we seek to find a
delicate border between the tractable and intractable problem space. Specifically, we study the special case of
heterogeneous sensors that take frequencies of 1’s and 2’s (lifetimes of 1 and 0.5 time units) on a line, conjecture
its NP-hardness, propose a novel brute-force optimal algorithm, and present a linear-time greedy algorithm that
gives a 1.5-approximation solution for the problem. Afterwards, we introduce the energy optimization problem
of the MCs with minimized number and solve it optimally. Comprehensive simulation is conducted to verify the
efficiency of using our proposed algorithms that minimize the number of MCs.

Keywords Cooperative charging, linear networks, energy optimization, mobile chargers, wireless charging, wireless sensor

networks.

1 Introduction

The employment of wireless sensor networks

(WSNs) that utilize mobile chargers (MCs) for sustain-

ing the sensors alive in the network has been growing

in recent years. The recent advancement of the tech-

nologies used for wireless charging makes if practical to

utilize MCs in order to sustain the sensors alive. One of

the problems that face WSNs is the mobile charger cov-

erage problem. This is the optimization problem that

has the objective of minimizing the number of MCs

used to charge the sensors in the network so that spe-

cific requirements, including the sensors’ charging re-

quirements, with other constraints are satisfied. The

solution of this optimization problem needs to include

the trajectories of these MCs.

In this work, we study the mobile charger coverage

problem for a 1-dimensional (1-D) line specific heteroge-

neous WSN, construct an optimal solution, and propose

an approximation algorithm for it. There is a specific

frequency of time for each one of the sensors at which

the sensor needs to be charged by having an MC visit

it. We assume an instant full-charging of the sensors
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once the MC visits the sensor’s location. Moreover, the

speed of the MC may not exceed a certain limit, which

is the maximum speed vmax. The MCs are assumed to

have limitless capability of charging.

Formalizing the general mobile charger coverage

problem, we consider a multi-dimensional space with

a distribution of sensor nodes S = {si} with an as-

signed fixed location xi for every sensor si. We will

denote the sensors interchangeably by their names si

and their locations xi. Each one of these sensor nodes

xi needs to be visited by an MC node from the set of

deployed MC = {MCi} at a given frequency fi, i.e. xi

has to be visited by one of the MCs no more than 1/fi

after the previous visit occurred at xi. An optimiza-

tion problem arises to determine the minimum number

of MCs needed to satisfy the charging requirement of

the sensors, the MCs’ coverage areas, and their veloci-

ties at every moment. A homogeneous mobile charger

coverage problem is the problem where the frequencies

are equal for all of the sensors. Heterogeneous mobile

charger coverage problem is the name of all other mo-

bile charger coverage problems.

Fig.1. Toy example for the problem showing an optimal MC-
solution.

Figure 1 shows an example of a heterogeneous WSN

problem with allowed frequencies of 1’s and 2’s. The

sensors of frequency 1 and frequency 2 are denoted as

boxed 1’s and 2’s. We will call these sensors 1-sensors

and 2-sensors, respectively. In the example, we see an

optimal solution for a linear WSN of eleven sensors dis-

tributed at the locations shown in the figure.

Wu et al. [1] have come up with an optimal solution

for the homogeneous mobile charger coverage problem

for both the 1-D ring and 1-D line distributions of sen-

sors. Furthermore, they showed that the solution for

a line distribution has at most one MC more than the

number of MCs in the solution of the same distribution

on a ring. Hence, we focus our efforts in this work to

consider 1-D line distributions of sensors. Their optimal

solution to solve the homogeneous line problem is done

by simply scheduling k MCs to cover non-overlapping

fixed intervals of length 0.5 so that all of the sensors

are covered, assuming, without loss of generality, the

maximum speed of the MCs to be one unit distance

per unit, and the frequencies of the sensors to be 1.

In addition to that, they have started the investigation

of the heterogeneous problem by proposing an approx-

imation algorithm with a factor of 2 that solves the

problem for a line distribution of sensors with frequen-

cies fi ∈ {1, 2, . . . , k} by greedily assigning MCs with

non-overlapping coverage areas that go back and forth

as far as possible at maximum speed while completely

supplying the demand of all of the sensors in their cov-

erage areas.

Here, we raise a concern about the delicate border

in the mobile charger coverage problem between the

intractable and tractable solution for it and try to fill

this gap by studying the 1-D linear heterogeneous WSN

problem with frequencies of 1’s and 2’s, we will call

this heterogeneous distribution of sensors (1 , 2 )-WSN.

In order to consider general frequencies, all frequen-

cies bounded by the frequency 2i (i = 0, 1, 2, ...) can

be grouped together. This means that frequencies in

the range [2i, 2i+1] can be considered to form a virtual

independent network i as discussed in [2].

Furthermore, the energy consumption of mobile

charging poses many challenges in the context of WSNs

[3]. The most impactful factor on energy consump-

tion is the control of the speed of the MC in its tra-

jectory. Since in this work we only consider the case

where the MCs need to fully maintain the sensors to

be always charged, i.e., so that they never run out of

battery. Hence, given a specific coverage area for each

MC, the speed of it would be the important part to con-
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sider in order to minimize the energy consumption of a

WSN. The hardness of the problem of minimizing the

energy consumed from the motion of the MCs comes

from the possible non-uniform general distributions of

sensors throughout the network combined with the dif-

ferent possible trajectories and coverage areas of the

MCs. This results in the need of determining whether

the MC should move faster or slower at a specific loca-

tion and time in order to minimize the total energy con-

sumed from the motion of the MCs in the whole WSN

while maintaining the sensors alive all of the time.

Our results are summarized as follows:

• An optimal solution for (1 , 2 )-WSNs’ mobile

charger coverage problem. This solution exhausts

a set of solutions with specific properties and

chooses the optimal one from them. Also, we con-

jecture the NP-hardness of this problem.

• An approximation solution with an improved ap-

proximation ratio of 1.5 for (1 , 2 )-WSNs, an en-

hancement to this solution, and an analytical ex-

tension for the previous approximation solution.

• An optimal trajectory for the minimized num-

ber of MCs that guarantees minimum energy con-

sumption by the motion of the MCs in the WSN.

• A comprehensive simulation to verify the close-

ness of our approximation solutions to the opti-

mal one in different distributions of sensors. The

distributions were chosen to model different real-

life scenarios.

The remainder of the work is organized as follows.

In Section II, some related works are reviewed. In Sec-

tion III, the optimal solution for the (1 , 2 )-WSN prob-

lem is proposed, and the NP-hardness of the problem

is conjectured. In Section IV, a greedy algorithm with

an approximation ratio of 1.5 for the (1 , 2 )-WSN is

proposed, an enhancement for this solution is demon-

strated, and an analytical expansion for the previ-

ously proposed 2-approximation general algorithm is

performed. Section V shows the optimal trajectory

of the minimized number of MCs that minimized the

energy consumption by their motion. In Section VI,

simulation results are presented to compare the differ-

ent proposed solutions. Finally, Section VII gives the

conclusion.

2 Related Work

The breakthrough of the employment of strong mag-

netic resonances in wireless energy transfer technology

[4] gave a reliable way to provide the sensors in WSNs

with power [5]. The wireless energy transfer technol-

ogy has many commercial applications [6]. Research

has been conducted on wireless energy charging by ap-

plying MCs to charge sensors in WSNs [7]. Wu et al.

[8] have formulated the mobile charging problem which

allows cooperative charging of sensors by MCs in a way

that guarantees none of the sensors will eventually run

out of energy, which is the same constraint we have in

our work.

The same problem has been formulated with many

variable parameters: considering the MCs with limited

energy capacity or with unlimited energy capacity so

that the MCs themselves need to be recharged periodi-

cally [9, 1, 10], considering the demand of the sensors to

be deadline-based or frequency-based [11, 12], and con-

sidering the charging of the sensors to be instant once

they are visited or gradual in which a charging time is

needed [13, 14]. In our model, we consider the MCs to

have an infinite amount of energy, charging instantly

once they visit the sensors that demand their charg-

ings on a frequency base. We assume the charging time

takes zero time. If the actual charging time takes t units

of time, it can be converted to our proposed model by

adding distance based on the maximum velocity of the

charging unit, as discussed in [14].
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The objective function to be optimized has some

variances in the literature too. Some studied the prob-

lem trying to minimize the total distance a constant

number of MCs travel [15]; others tried to minimize

the maximum distance traveled by any one of the MCs

[16]; while others studied minimizing the total power

consumed [8], and others studied the case in which max-

imizing the charging throughput itself is concerned [17]

. In our work, our objective is to minimize the number

of MCs needed to keep the sensors alive, similar to the

model Wu et al. have studied [8].

While we consider an instant full charging of the

sensors as some did [12], some have considered the prob-

lem of charging the sensors to a partial capacity with

a charging rate constraint [18, 19]. Finally, it is worth

mentioning that even though 1-D [1], 2-D [20, 21, 22],

and 3-D [23] WSNs have been studied for this prob-

lem, our work of studying the 1-D case remains novel

since we try to investigate the NP-hardness boundary of

the problem. For multi-dimensional instances of sensor

distributions, we can use various dimension reduction

processes, e.g., from 2-D to 1-D by constructing a span-

ning tree and then finding a Hamiltonian path around

the tree.

Regarding the energy consumption of the WSN con-

sideration, research has been conducted in order to ex-

plore how we can optimize the energy consumption of

the network. Wu et al. [12] considered a more gen-

eral model regarding energy that the MCs collaborate

with each other in order to recharge not only the net-

work’s sensors, but also recharge each other in a way

that relatively larger WSNs, where the base station

is far from the sensors, could be completely served.

Furthermore, Wang et al. [24] have conducted re-

search with the aim of minimizing the traveling en-

ergy cost of multiple MCs while satisfying the charging

requirement of all of the sensors in the WSN. Dai et

al. [25] have studied the minimum number of possible

MCs that are energy-constrained with their recharg-

ing trajectories while maintaining the sensors alive all

of the time. Madhja et al. [26] investigated appro-

priate MC-coordination techniques with the consider-

ation of energy-efficient techniques by demonstrating

some novel protocols for energy-efficient charging co-

ordination processes that are central and distributed.

Shu et al. [3] have worked on evaluating the optimal

velocity control to charge sensors of the WSN in an

energy-efficient way considering the energy consump-

tion of the sensors. In contrast, we propose the optimal

energy-efficient trajectories of the minimized number of

MCs that ensure the lowest cost of the traveling MCs

given a simple quadratic energy model. This work is an

extension to our previous paper [27].

3 Optimal Solution for (1 , 2 )-WSN

We approach the (1 , 2 )-WSN problem with the as-

sumption that the maximum speed of MCs is one unit

distance per unit time.

3.1 Subspace reduction

In this subsection, we reduce the search space for

the MC-solution into one that has at least one optimal

solution by imposing some restrictions for the possible

solution. We will call our target optimal solution O.

The restrictions on the search space are:

• In the optimal solution O, the trajectories of the

MCs are end-to-end. This property holds after

reducing any optimal solution to O. This reduc-

tion can be made by replacing any detour by an

extension of the MC‘‘s trajectory to one side of its

coverage area. A detour is when an MC traverses

from point A to point B in a time more than the

minimum possible time such that the MC does

not visit point B more than once or reach the

end of its coverage area.

To prove this, we call the difference in time be-

tween the detour and the minimum possible time
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τ . By replacing this detour by a maximum-speed

trajectory and traversing by τ time after one of

the edges of the coverage area without detouring

nor violating the frequency requirement of any

sensor, an equivalent optimal solution will be ob-

tained from the previous one.

• The MCs never go to the left of the leftmost sen-

sor in O; if there is an optimal solution in which

the MCs cover an area to the left of the leftmost

sensor, it can be reduced to another optimal so-

lution in which the trajectories of the MCs are

bounded from the left by the leftmost sensor.

• The MCs never meet each other. First, we per-

form a reduction in which the MCs never pass

each other. This reduction can be made simply

by swapping the velocities (direction and speed)

of any two MCs passing each other. After that,

if any two MCs meet, we simply apply a shift in

time to the trajectory of one of them so that they

do not meet.

Applying these restrictions to our search space guar-

antees that there will be at least one optimal solution

O in the reduced search space. The optimal solution O
has the following properties:

Property 1: The optimal solution O has the leftmost

uncovered sensor completely supplied by exactly one

MC.

This is a direct corollary from reducing any optimal

solution to one (O) in which MCs never meet under the

imposed restrictions. Hence, we can not make two MCs

supply the leftmost uncovered sensor without meeting.

Property 2: No sensor is supplied by more than two

MCs in the optimal solution O.

Since every MC will be deployed mainly to fully sup-

ply the demand of the leftmost sensor of the remaining

distribution of sensors, the maximum length of any cov-

erage area of any MC will not exceed 0.5, which requires

supplying every sensor in the coverage area with energy

at least once every unit of time. This means we would

not need more than two MCs to supply any sensor of

frequency 1 or 2.

Property 3: An MC‘‘s starting point is always more

than 0.25 away from the starting point of the previous

MC in O.

We know from property 1 and property 2 that the

optimal solution O has all of the sensors in the first 0.5

distance units completely supplied by at most two MCs.

Thus, alleviating the resulting problem as much as pos-

sible will be achieved by making the next MC able to

reach as distant away as possible away, and that only

happens if the starting point of the coverage area of

the next MC is after at least 0.25 distance units of the

starting point of the coverage area of the previous MC.

This means that the next MC will not visit the sensors

in the first 0.25 distance units.

3.2 Algorithm overview

In this subsection, we show the high-level of an al-

gorithm that searches for all of the solutions in the re-

duced search space with the restrictions, then picks the

one of them that uses the least number of MCs, which

is O.

Constructing all of the solutions with these prop-

erties for our (1 , 2 )-WSN, where the leftmost uncov-

ered sensor location is x1, will be as follows: First,

deploy an MC that completely supplies the sensors in

[x1, x1+0.25]. Completely supplying them directly im-

plies that 1) the start point of the coverage area of

the MC is x1, and that 2) the endpoint of the cover-

age area of the MC is in [x1 + 0.25, ylast] where ylast is

0.25 + the location of the first 2-sensor in [x1, x1+0.25]

if there is any, or ylast = x1 +0.5 if there is no 2-sensor

in [x1, x1 + 0.25]. The exact possible locations of the

endpoint are discussed in the next subsection. Second,

eliminate all of the completely supplied sensors, and

then repeat the process for the new distribution of sen-

sors calling the leftmost uncovered sensor x1. We will
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call the visited 2-sensors in (x1 + 0.25, ylast] partially-

supplied sensors, since they are not completely supplied

and will be addressed collaboratively with the next MC

in an overlapping region.

What makes this problem hard is what we will call

the constraint of overlaps, which states that if two MCs

supply a 2-sensor collaboratively in their overlapping

region, then the coverage areas of the two MCs have

to be equal. This natural constraint arises from the

fact that if the two coverage areas are not equal, then

the time gap between their visits to the 2-sensor in the

overlapping area will keep changing until it eventually

reaches more than 0.5, which would mean that the con-

cerned 2-sensor in the overlapping area is not supplied

properly.1

Determining the endpoint of the coverage area of

any new deployed MC is the hardest part. We find that

the possible locations of the best endpoint are limited:

if there is no 2-sensor in (x1+0.25, ylast], then choosing

the endpoint to be ylast will always be the best, but

if there exists at least one 2-sensor in (x1 + 0.25, ylast]

and x1 is not a partially-supplied sensor, we will be left

with two options:

• Option 1: Have all of the 2-sensors in (x1 +

0.25, ylast] supplied collaboratively with the next

MC by having them in an overlap region between

the two MCs.

• Option 2: 1) Define ypartition to be a point

in [yfirst, ylast], where yfirst is the first 2-sensor

in (x1 + 0.25, ylast], 2) have the 2-sensors in

[yfirst, ypartition] supplied collaboratively with the

next MC by having them in an overlap region

between them, and 3) have the 2-sensors in

(ypartition, ylast] supplied completely by the next

MC.

Fig.2. Deploying an MC with no previously ’visited’ sensors.

Figure 2 shows the two options of the endpoints

when deploying an MC in the case where the sensor

x1 is not partially-supplied.

Considering the constraint of overlaps, the always-

best choice for the endpoint under option 1 will be

ylast and the always-best choice under option 2 will

be ypartition, where ypartition = max(xi) − lcovered, xi

is a 2-sensor location in [x1 + 0.25, ylast] that satis-

fies the following condition: There is no 2-sensor in

(xi−lcovered, xi), and lcovered = yfirst−(x1+0.25). How-

ever, if max(xi) = yfirst, then we set ypartition = yfirst,

and if there is no 2-sensor in (x1 + 0.25, ylast], we set

ypartition = ylast.

If the sensor x1 is partially-supplied, then the end-

point of the next MC’s coverage area will lie under two

other options:

• Option 3: The endpoint is x1+0.25 (we will not

make use of the overlap.)

• Option 4: The endpoint is x1 + l, where l is the

coverage area of the previous MC (we will make

use of the overlap.)

Fig.3. Deploying an MC with previously visited sensors.

Figure 3, which illustrates the partially-supplied

sensors in the red color, shows these two options. This

1The time gap eventually becomes greater than 0.25 by reaching min{2×Area1, 2×Area2} if Area1
Area2

is rational. If the ratio of their

coverage areas is not rational, then it reaches min{2×Area1, 2×Area2} − δ, 0 < δ < ϵ ∀ϵ > 0.
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means that when we deploy a new MC, there will be

only one possible start point of its coverage area, which

is the leftmost uncovered sensor, and a maximum of

two possible options of its endpoint: option 1 and op-

tion 2 if there is no partially-supplied in the remaining

distribution, or option 3 and option 4 if x1 is partially-

supplied.

Furthermore, in the case of having partially-

supplied 2-sensors in the remaining distribution, choos-

ing option 4 in the special case where there is a non-

visited 2-sensor in (x1, x1 + l − 0.25) will result in a

solution that does not have property 3. Hence, we ex-

clude option 4 in this case.

Fig.4. An illustration of criterion C of how to determine the
endpoints.

Now, we have everything set up to define a criterion,

C, to choose the set of possible endpoints for the MC

from three cases: if x1 is not partially-supplied, there

will be two possible endpoints (option 1 and option 2),

if x1 is partially-supplied and there is a nonvisited 2-

sensor in (x1, x1 + l− 0.25), then there will be one pos-

sible endpoint (option 3), and lastly, there will be two

possible endpoints (option 3 and option 4) if there is no

2-sensor in (x1, x1 + l− 0.25). Figure 4 shows criterion

C.

Algorithm 1 produces the set of the possible end-

points for any new MC to be deployed to cover an area

starting from the leftmost remaining uncovered sensor

x1.

3.3 Algorithm design

At this point, we tackled the hardness of the prob-

lem: Where should the endpoint of the coverage area

of the next MC be determined? Even though we know

for sure where the MC’s coverage area starts (it will

start from the leftmost uncovered sensor), determining

where the previous one ends remains hard. Algorithm

1 is designed so that the produced MC-solutions hold

the properties of our reduced search space.

The main question that holds and forces us to ex-

haust all possible MC-solutions is how can we make our

next deployed MC contribute in supplying the other sen-

sors in the (1 , 2 )-WSN in a way that makes the remain-

ing distribution of sensors need as less MCs as possible?

Algorithm 2 exhausts all of the possible MC-solutions

with properties 1‘‘3.

The MC-solution in S, which is produced by Algo-

rithm 2, with the least number of MCs is the optimal

solution O and has a time complexity of O(d× 16L).

Proof. Algorithm 2 does nothing but exhaust all of

the MC-solutions with properties 1‘‘3 in our subspace.
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Since O has these properties, choosing the MC-solution

with the least number of MCs from all of the generated

solutions with these properties gives us O.

We conjecture that the (1 , 2 )-WSN problem is an

NP-hard problem. Analysing the complexity of our

brute-force algorithm (Algorithm 2) shows that the re-

cursive call inside the loop is equivalent to a maxi-

mum number of nested loops of L/0.25, where every

loop has a maximum of two iterations. Each iteration

takes O(n/0.25) to find max(xi) in order to calculate

ypartition, where n is the number of sensors in the search

region of max(xi). This search region is bounded by

0.25. This means that in the worst-case scenario, the

algorithm takes O(d×2L/0.25) = O(d×16L) time, where

d is the maximum sensor-density of any region of length

0.25 in the given linear WSN. d is bounded by n/0.25.

4 Approximation Solutions for (1 , 2 )-WSN

In this section, we propose our new greedy approx-

imation algorithm and an enhancement for it in the

first part. In the second part, we perform an analytical

expansion for a previous general approximation algo-

rithm.

4.1 A novel approximation algorithm

First, we will set up a lower bound for the optimal

solution O. The lower bound is going to be determined

by seeking the optimal solution Ω of the problem after

lifting the constraint of overlaps. We will assume that

2-sensors are now satisfied if they are supplied collab-

oratively by two MCs of different coverage areas, these

coverage areas shall not exceed 0.5. Then we will pro-

pose an approximation solution for the original problem

which produces a number of MCs that is bounded by

1.5 of the lower bound produced by Ω.

Even after lifting the constraint of overlaps, the op-

timal solution of the resulting alleviated problem Ω still

has the properties 1‘‘3. The optimal solution Ω is pro-

duced as follows: deploying an MC covering the area

starting from the leftmost sensor and ending as far as

possible while completely supplying the sensors in the

first 0.25 distance. We may treat the 2-sensors visited

by this sensor but not completely supplied (the visited

2-sensors after the 0.25 distance) as 1-sensors for the

next MC. Continuing to deploy the MCs at this man-

ner produces the lower bound of the optimal solution

Ω.

The MC-solution, which is produced by Algorithm

3, is an approximation solution with a ratio of 1.5 and

has a time complexity of O(L).

Proof. After producing Ω, simply addressing the

sensors in the overlapping regions (i.e., considering the

the constraint of overlaps again) by deploying addi-

tional MCs for them gives us the 1.5-approximation so-

lution. Algorithm 3 produces this solution; lines 1-6 of

it produce Ω and line 7 generates the additional MCs

that address any possible overlap. The number of these

additional MCs cannot exceed half the number of MCs

in Ω. This confirms our approximation ratio of 1.5.

Analysing the time complexity of Algorithm 3

shows that its run-time is linearly proportional to

L/0.25 as the number of iterations is upper-bounded

by O(L/0.25) = O(L), where L is the whole length of

the linear WSN.
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We may enhance the solution produced by Algo-

rithm 3 by deploying the additional MCs only when

needed instead of deploying them for all even-numbered

MCs. That may be done by making the last line of

the algorithm produce additional MCs to only cover

the overlaps of different-lengths coverage areas. Even

though this improvement generally reduces the num-

ber of additional MCs, the approximation factor of the

solution remains 1.5.

Fig.5. The lower bound of the optimal, the 1.5-approximation
algorithm, and the enhanced 1.5-approximation algorithm.

Figure 5 shows the MCs generated by lines 1-6 of

the approximation algorithm (Ω), the additional MCs

added by line 7 (1), and the additional MCs added by

the enhanced approximation algorithm which only as-

signs MCs to address the overlaps between two coverage

areas of different length (2).

4.2 New analysis for the 2-approximation so-

lution

Wu [1] have proposed Algorithm 4 as an approxima-

tion algorithm to generate an MC-solution for hetero-

geneous WSNs with any frequencies. They have proved

that this algorithm produces a solution with an approx-

imation ratio of 2. In this section here, we prove that

this approximation ratio becomes tighter as it reaches

1.5 for (1 , 2 )-WSNs.

Fig.6. The optimal solution O and Algorithm 4’s approxima-
tion solution.

The MC-solution, which is produced by Algorithm

4, is an approximation solution with a ratio of 1.5 when

applied to the (1 , 2 )-WSN and has a time complexity

of O(L).

Proof. Considering the optimal solutionO, we know

from property 2 that the optimal solution O may have

overlaps between the coverage areas of no more than

two MCs. It is trivial to show that if, for some distri-

bution of sensors, O has no overlaps, then Algorithm 4

(as well as Algorithm 3) produces the same optimal so-

lution. However, when the optimal solution O has two

MCs with an overlapping region as shown in Figure 6,

Algorithm 4 produces exactly three MCs in order to be

able to cover the same region the two overlapping MCs

cover.

The three MCs will be produced by Algorithm 4 in

the following order: the first MC will be deployed to

cover the sensors in the region [a, b), then the second

one will be deployed to cover the sensors in the region

[b, b + 0.25]. The third MC will cover any remaining

sensor in the region (b+ 0.25, c].

In the worst-case scenario, when the optimal solu-

tion O has each MC to cover a region with an overlap

with exactly one other MC, where this region is signif-

icantly far from other coverage areas, Algorithm 4 pro-

duces three MCs for each two overlapping MCs. Hence,

an approximation ratio of 1.5.

The run-time of the algorithm has an upper-bound

of L/0.25; for any WSN with sensors of frequencies of
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1’s and 2’s and a given length L, the number of itera-

tions will not exceed ∗L/0.25, even for a dense distribu-

tion of 2-sensors. This upper bound of the worst-case

scenario gives us a fairly tight upper bound for the time

complexity of Algorithm 4, which is O(L).

5 Optimizing Energy

In this section, we optimize the trajectories taken

by the minimized number of MCs that the previous al-

gorithms produce for the objective of minimizing the

energy consumed.

5.1 Energy Model and The Basic Optimization

Problem

It is clear that the MCs and their trajectories pro-

duced by the optimal solution and the approximation

solutions do waste energy in their trajectories most of

the time, that is due to the fact that their speed is fixed

to the maximum all of the time. However, having the

degree of freedom of varying the speed at which each

MC performs would enable us to optimize the energy

by consumed by the motion of the MCs. In this con-

text, we do not consider the energy consumed by the

batteries of the sensors because the rate of consuming

energy of the sensors, and hence the rate of the energy

required for charging them does not change with any of

the variables that are under our control (i.e., the num-

ber of used MCs and their trajectories).

When we mention the term trajectory in this con-

text, we mean both the set of locations, i.e. the interval,

the the MC covers and the velocity (speed and direc-

tion) of the MC at each point. We allow sudden changes

in the speed or/and direction.

The mathematical model for the energy consump-

tion by the motion of the MCs that we will use in

this optimization problem is the simple practical model

that is commonly used for moving vehicles which comes

mainly from the consideration of the friction force. Our

simplified mathematical model of the rate of energy

consumption and the energy consumption of an MC

traversing at a constant speed v, a specific distance d,

and at the corresponding time t = d
v are shown in Equa-

tions (1-2), which considers the most dominant term of

the general high-degree polynomial that describes the

energy consumption rate in terms of speed [28]. In spite

of that, the final result of this section would be valid

too for any strongly-convex function that describes the

rate of energy consumption.

P = αv2 (1)

E = αv2 × d

v
= α

d2

t
(2)

where α is a characteristic constant related to the

mass of the MC, friction, and other surrounding fac-

tors. E is the total energy consumed by the MC where

|dEdt | = |P |.

Fig.7. The illustration of the division of distance and time in
the optimization problem, the MC travels in N constant speed
values on N regions.

To this extent, we define our energy consumption

optimization problem for an MC that has to cover a

distance D at time of at most T , where the maximum

speed vmax ≥ D
T , in Equations (3-6).

min
d1,...,dN ,t1,...,tN

α
∑N

i=1

d2i
ti

(3)

s.t. ∑N

i=1
di = D (4)∑N

i=1
ti = T (5)

di
ti

≤ vmax ∀i ∈ [1, N ], i ∈ N (6)

where each distance segment di is traversed in time ti

at a constant speed vi = di

ti
. Figure 7 illustrates the

division specified in the optimization problem.
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The solution of this optimization problem is sim-

ple; which equivalent to satisfying the conditions under

the premise of minimizing the maximum speed the MC

travels by. Hence, the direct solution of the optimiza-

tion problem is shown in Equation (7).

di
ti

=
D

T
∀i ∈ [1, N ], i ∈ N (7)

The most energy-efficient trajectory for an MC with

specific sensors to cover is the trajectory whose max-

imum speed value on any interval is minimized while

satisfying the constraints.

Proof. The result follows directly from the opti-

mization problem solution in Equation (7) after con-

sidering all sub-intervals as the whole coverage area at

which the energy is optimized.

The solution is to have the MC traveling into a

uniform speed that is equal to the minimum allowed

speed under the condition. For example, if an MC with

vmax = 1 speed unit needs to travel a distance of 10

distance units in at least a time of 20 time units, the

optimized-energy solution is to travel at speed of 0.5

speed units rather than, for example, traveling at the

maximum speed then resting at zero speed for the re-

maining time.

5.2 Optimizing Energy With No Overlaps

Now, we consider an MC that is covering a set of

sensors with different frequencies such that no sensor

is charged collaboratively with an another MC, i.e., no

overlaps.

We will use the result from the previous subsection

to apply it to the MC covering an area of sensors with

no overlaps. In order to do that, we need to restrict

ourselves to the following three conclusions from the

previous subsection:

1. Our objective will be to make the MC travel in

the slowest speed possible given that the MC com-

pletely satisfies the charging requirements of all of

the sensors within its area. Follows directly from

Theorem 4.

2. It is always more energy-efficient to shrink the

area of coverage of the MC to cover as little as

possible, i.e., exactly from the leftmost to the

rightmost sensors with no additional area more

than that.

3. The empty area between any two adjacent sen-

sors must be traveled by a uniform speed that is

the minimum possible one so that all of the con-

straints are satisfied. Follows directly from The-

orem 4.

Now, we have everything needed to introduce the al-

gorithm for determining the most energy-efficient speed

values of an MC covering a set of sensors without an

overlap. We will do that by going through the example

illustrated in Figure 8.

Starting from Figure 8 (a), an MC that covers five

sensors with five different frequencies (the solution in

this subsection is valid for any frequency values) is il-

lustrated. From conclusion 3, we know that each one of

the areas between different sensors will be covered on

a constant speed, and since we try to minimize those

uniform speed values, we consider the individual case

for each sensor so that each one of them is having the

MC traveling at the minimum possible speed so that it

visits the edges of the whole interval. This results into

the case where for each sensor, the minimum uniform

speed that the MC can use while going back and forth

to the edge of the coverage area, whether to the left or

to the right side, uses the maximum allowed value of

time away from each sensor, which is basically 1
fi
.

For example, if we consider sensor s2, to the right

side, we will have a total distance of 2
∑4

i=2 di, and

a maximum allowed time of 1
f2
. Hence, we will have

the minimum possible speed of the MC to traverse uni-

formly to the right of sensor s2 is (2
∑4

i=2 di)/(
1
f2
) =
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2f2
∑4

i=2 di. Applying the same procedure to deter-

mine the minimum possible speed to the left and right

of each sensor gives us the values in Figure 8 (a).

Fig.8. An example of the problem of optimizing speed. (a)
shows the initial settings, where each sensor has its minimum
possible speed on each region determined. (b) shows the first
assignment of the bottleneck speed which is the maximum of all
speed values in the table. It also shows the updated loosened
minimum possible values for the other sensors in green. (c) shows
the assignment of the second bottleneck speed which turns out
to cover more than one region. (d) shows the last step at which
the last bottleneck speed value was assigned to the last region.

The next step after constructing the table in Figure

(8) will be to determine the bottleneck sensor, which is

the sensor at the current phase of the solution which

has the highest value of minimum possible speed. we

call the maximum value of all of the minimum possible

speed values in the table the bottleneck speed. There

may be more than one bottleneck sensor in the same

time when the same maximum value in the table ap-

pears for different sensors.

In our example here, the maximum value in Figure

(a) is 2f4d4. After determining this maximum value, we

will have the case that the highest speed was used at a

specific region, which may give more time for other sen-

sors (exclusively to the right or to the left to the sensor

depending on where the highest speed was determined)

in a way that can further reduce their corresponding

minimum speeds. For example, after determining the

bottleneck sensor to be s4 at the first step, the MC will

spend a total time of 1
f4

on d4. This, in our example,

would give us a reduction in sensor s2 values. Instead

of requiring to travel the distance (back and forth) of

2
∑4

i=2 di to the right of it in maximum time of 1
f2
,

the requirement now will be to travel the remaining

distance to the right, which equals 2
∑3

i=2 di in a maxi-

mum total time of 1
f2

− 1
f4
, this will result in an update

of the minimum possible speed values of sensors s2 in

the table so that we will have a new smaller possible

speed which is 2
∑3

i=2 di/(
1
f2

− 1
f4
) as shown in Figure

8 (b).

In our example here, the maximum value in Figure

(a) is 2f4d4. After determining this maximum value, we

will have the case that the highest speed was used at a

specific region, which may give more time for other sen-

sors (exclusively to the right or to the left to the sensor

depending on where the highest speed was determined)

in a way that can further reduce their corresponding

minimum speeds. For example, after determining the

bottleneck sensor to be s4 at the first step, the MC will

spend a total time of 1
f4

on d4. This, in our example,

would give us a reduction in sensor s2 values. Instead
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of requiring to travel the distance (back and forth) of

2
∑4

i=2 di to the right of it in maximum time of 1
f2
,

the requirement now will be to travel the remaining

distance to the right, which equals 2
∑3

i=2 di in a maxi-

mum total time of 1
f2

− 1
f4
, this will result in an update

of the minimum possible speed values of sensors s2 in

the table so that we will have a new smaller possible

speed which is 2
∑3

i=2 di/(
1
f2

− 1
f4
) as shown in Figure

8 (b).

The same process is done again by picking the high-

est minimum possible speed value of the remaining val-

ues in the table after the update, which is in our ex-

ample 2
∑3

i=2 di/(
1
f2

− 1
f4
). This will set the MC to

traverse in this speed on both region d2 and region d3.

Now, in order to update the other values, we, again,

just consider the speed values to the same side of the

sensor which has a portion of the region in it deter-

mined. This means, for example, that sensor s1 will

have its value at d1 updated because it is on the right

of the sensor, the same side at which a new speed was

determined.

Evaluating the update again, consider sensor s3,

nowm to the left of the sensor, the MC must traverse

a total distance of 2
∑2

i=1 di in a maximum time of

1
f3
. However, after setting the MC to move at speed

2
∑3

i=2 di/(
1
f2

− 1
f4
) on region d2, which takes time of

2d2/(2
∑3

i=2 di/(
1
f2

− 1
f4
)) = d2∑3

i=2 di
( 1
f2

− 1
f4
). Hence,

for sensor s3, the region d1 now has to be traveled with

a maximum total time of 1
f3

− ( d2∑3
i=2 di

( 1
f2

− 1
f4
)), which

means that the minimum possible updated speed for

region d1 in order to satisfy the charging requirement

of sensor s3 will be 2d1/(
1
f3

− d2∑3
i=2 di

( 1
f2

− 1
f4
)). Figure

8 (c) shows the updates at this step of the solution.

Figure 8 (d) shows the last step of determining the

speed at the last region, which is d1 in our example,

considering the highest minimum possible value to be

2f2d1 between the remaining updated possible speed

values for region d1.

Algorithm 5 shows the general way of determining

the energy-efficient trajectory of an MC that covers the

sensors in its region alone. It’s worth mentioning that

this algorithm works for any range of frequencies.

The MC trajectory produced by Algorithm 5 is

an energy-optimal trajectory. The time complexity is

O(L× d2).

Proof. Algorithm 5 guarantees that three conclu-

sions from the previous subsection are satisfied while

maintaining the smallest possible speed for each region

applied while delivering the charging requirement of all

of the sensors. Since the algorithm focuses on satisfying

the charging requirement of the bottleneck sensor while

loosening the minimum possible speed values for all of

the sensors afterwards, that guarantees that each region

di will have the minimum possible speed after guaran-

teeing that the maximum speed assigned so far on the

trajectory is minimized as much as the constraints al-

low, then the second maximum speed, then the third

one, and so on. Which proves the theorem as a result

of Theorem 4.

Analysing the time complexity of Algorithm 5 shows

that it scans at most all of the regions between the sen-

sors where for each one of those scans, it performs a

number of operations that is equal to the number of

sensors in that region to calculate their minimum pos-

sible speed values. The number of those operations for

each scan is upper-bounded by O(d). On the other
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hand, the number of those scans is upper-bounded by

O(L×d), where L is the whole length of the linear WSN

and d is the maximum density of sensors on a region

of length vmax

2fmax
. Hence, the total time complexity of

Algorithm 5 will be O(L× d2)

5.3 Optimizing Energy With Overlaps

Unlike the previous subsection, this subsection dis-

cusses the optimal energy trajectory where the WSN

consists of only 1-sensors and 2-sensors. Furthermore,

the overlaps in the MC-solutions that we are trying to

optimize their trajectories energy consumption are be-

tween no more than two MCs.

In order to discuss this problem, we focus our dis-

cussion on at least three MCs, where the second one

overlaps with both the first and third one in order to

satisfy the charging requirement of the cooperatively-

maintained 2-sensors in the overlapping areas. The toy

example in Figure 1 is a good illustration for our focus.

The solution of three overlapping MCs can be extended

to any number of overlapping MCs.

The solution of this problem is simple; we first relax

the problem by lifting the constraint of overlaps. Hence,

we can consider each MC individually without worry-

ing about satisfying the condition that the time spend

on one cycle of an MC has to be exactly the same as

the adjacent one. This allows us to consider the range

of covered sensors of the MC just like the previous sub-

section after reducing the charging requirement of the

cooperatively-maintained 2-sensors to treat them as 1-

sensors.

After determining the energy-optimal trajectory for

each MC in the group of MCs that are overlapping

with each other, we need to make all of the MCs take

the same time for each cycle to satisfy the constraint

of overlaps. Thus, we simply calculate the total time

taken by the energy-optimal trajectory of each MC in

the group of MCs that are overlapping with each other,

and then we determine the one that takes the least time,

then we make all of the other MCs take the exact same

minimum time by increasing the speed values applied

on some regions.

To this extent, we need to determine how exactly

to adjust the speed values of the MC that is taking an

energy-optimal trajectory so that the total time is de-

creased to equal the time determined by the MC that

takes the least time. Following Theorem 3, the least

energy-costly increase of the speed values of the MCs

are the ones that are applied to the regions with least

speed values. Hence the process will be simply to in-

crease the speed taken by the MC on the region that

uses the minimum speed until either the new reduced

total time is reached or until the speed value of this

minimum region equals the speed value of the region

with the second minimum speed. In the latter case, we

repeat again by increasing the speed value of regions

that use the new minimum speed value and so on.

By that, we guarantee that decreasing the time an

MC takes to finish its cycle costs as less energy as possi-

ble to reach the required minimized total time that does

satisfy the constraint of overlaps. The process does not

break any constraint since we start from the beginning

with a solution, i.e., charging requirements of all sensors

are satisfied by the MCs covering them.

6 Simulation

In this section, we conduct simulations to evalu-

ate the effectiveness of the algorithms discussed in this

work. It is worth mentioning that the energy con-

sumption of the solutions produced by the proposed

algorithms do not need a simulation because all of

them keep the MCs run at constant maximum speed.

Hence, the energy consumption rate is constant that

can be evaluated directly under our simplified model

P = αv2max.
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6.1 Experimental Settings

In our simulations, the frequencies of the sensors

(fk) follow the Bernoulli distribution with a certain

probability for each of the two possible frequencies to

occur. The distribution of the locations of the sensors

was considered to follow one of three different scenarios.

The first scenario distributes the sensors uniformly on

the given line segment of length l after placing a sen-

sor on each edge of the line segment. We will call this

distribution the uniform distribution of sensors.

The second distribution of the locations is a clus-

ter distribution, where k sensors are distributed uni-

formly as the centers of the clusters, then two sensors

are placed on the two edges of the line WSN of length

l, then the remaining sensors are divided equally into k

groups (if there is a shortage in the remaining number

of sensors to be divided equally into k groups, all of

the shortage is applied to one random cluster). The re-

maining sensors are distributed around the k center of

clusters on a normal distribution N(xcluster, σ
2), where

each group of sensors has its own xcluster as the mean

of their locations, and a certain standard deviation σ.

We will call this distribution the cluster distribution of

sensors.

The third distribution is a mixture between the lat-

ter two distributions, where a certain percentage of sen-

sors are distributed to follow the uniform distribution,

while the rest of them are distributed to follow the clus-

ter distribution. We will call this distribution the mixed

distribution of sensors.

Our choice to choose such distributions comes

from their practical emulation of real-world situations,

whether for WSNs or border patrolling applications.

This gives us a vast number of parameters: the first

one is the percentage of the 2-sensors; the second one

is the probability distribution which the locations of

the sensors follow. Each one of those distributions has

its own additional parameters. The uniform distribu-

tion has an additional two parameters: the length of

the WSN and the total number of sensors. The clus-

ter distribution has an additional four parameters: the

length of the WSN, the total number of sensors, the

number of clusters, and the standard deviation of the

sensors in the clusters. The mixed distribution has an

additional five parameters: the length of the WSN, the

total number of sensors, the number of clusters, the

standard deviation of the sensors in the clusters, and

the percentage of the uniformly distributed sensors.

6.2 Algorithm Comparison

We consider various settings to compare the per-

formance of the four algorithms: the algorithm that

produces the optimal solution O, our proposed 1.5-

approximation greedy algorithm (Algorithm 3), the en-

hanced version of our 1.5-approximation algorithm, and

Wu‘‘s greedy algorithm for general line heterogeneous

WSNs (Algorithm 4). Because of the exponential time-

complexity of our optimal algorithm, we include small-

scale scenarios of limited lengths and numbers of sen-

sors.

6.3 Experimental Results

We can observe from the first three plots in Fig-

ure 9 that for the uniform distribution, fixing all of the

parameters but the length of the WSN shows that the

number of MCs grows almost linearly with the increase

of the length of the WSN. The enhanced algorithm and

the Wu’s 2-approximation general algorithm both give

results very close to the optimal solution under a con-

stant number of sensors. Furthermore, it is clear that

the dominance by 1-sensors favors the enhanced 1.5-

approximation algorithm over the 2-approximation al-

gorithm.

Observing the last three plots in Figure 9, in which

the density of the sensors varies under a fixed length

of the WSN, we see that the 2-approximation algo-

rithm behaves very closely to the optimal algorithm

with different percentages of 2-sensors as opposed to
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Fig.9. The results of the algorithms under the uniform distribution with various percentages of 2-sensors. s is the number of sensors,
p is the percentage of the 2-sensors, and L is the length of the WSN.

the enhanced algorithm that depends significantly on

the percentage of the 2-sensors deployed.

Fig.10. The behavior of the algorithms with uniform distri-
bution under varying percentage of 2-sensors and fixed other
parameters.

Figure 10 shows how the different algorithms behave

for a fixed number of sensors and a fixed length of the

WSN. At the two edges where we have homogeneous

WSN, the enhanced and 2-approximation algorithms

give exactly the same result as the optimal solution. In

general, the 2-approximation algorithm performs bet-

ter under these settings and very close to the optimal

algorithm. However, for the settings where we have

1-sensors dominate the 2-sensors, the enhanced algo-

rithm very closely beats the 2-approximation algorithm.

The normal 1.5-approximation algorithm performs very

closely to its upper bound due to the blind deployment

of the additional MCs to address the overlaps whether

they are needed or not.

We may observe from Figure 11 that the behavior of

the algorithms under the cluster distribution, the first

three plots show that, under low standard deviation

(dense clusters), the enhanced and the 2-approximation

general algorithms perform very closely to the optimal

algorithm. As the clusters become more loose, the en-

hanced algorithm performs more poorly than the 2-

approximation algorithm which does not get affected

heavily by the standard deviation parameter. The third

plot shows behavior close to the behavior in uniform

distribution due to the high standard deviation.

The second three plots in Figure 11 show how the

number of clusters affects the needed number of MCs

under different standard deviations; the tighter the

clusters are (have lower standard deviation), the more

their number correlates more strongly with the needed

number of MCs. For low standard deviation, the num-

ber of MCs increases almost-linearly with the number

of clusters under fixed other parameters. With a higher

standard deviation, an increase in the number of clus-
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Fig.11. The results of the algorithms under the cluster distribution with various standard deviations. p is the percentage of the
2-sensors, σ is the standard deviation, L is the length of the WSN, k is the number of clusters, and s is the number of sensors.

ters affects the needed number of MCs less. For very

high standard deviation values, the number of clusters

does not affect the outcome of the algorithms. Further-

more, it is clear that the 2-approximation algorithm

outperforms the enhanced 1.5-approximation algorithm

under the cluster distribution. The last line of the plots

in Figure 11 shows again how the 2-approximation al-

gorithm performs very closely to the optimal solution.

This is due to the fact that this algorithm is actually

exactly the same as the first six lines of Algorithm 3

(which produce the lower bound of the optimal solu-

tion Ω) except that in line 6, it does not subtract 1

from the 2-sensors in (x+ 0.25, x+ 0.5].

Fig.12. The behavior of the algorithms with cluster distribution
under varying standard deviation with fixed other parameters.

Figure 12 shows how the number of MCs, for a fixed

number of clusters with fixed length of WSN and num-

ber of sensors, correlates directly with the standard de-

viation, and how under various standard deviations, the

2-approximation algorithm remains very close to the

optimal solution.

In Figure 13, the behavior of the algorithms un-

der the mixed distribution is shown. The first plot
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Fig.13. The results of the algorithms under the mixed distribution with different settings, u is the percentage of uniformly-distributed
sensors, p is the percentage of the 2-sensors, σ is the standard deviation, L is the length of the WSN, k is the number of clusters, and
s is the number of sensors.

shows that the length of the WSN affects the number

of MCs almost as linearly as the previous two distri-

butions. From the different distributions and various

parameters settings, the previously proposed general

2-approximation algorithm outperforms the enhanced

1.5-approximation algorithm by around 10%, where the

original 1.5-approximation algorithm produces a solu-

tion that is always close to the upper bound of 1.5.

The 2-approximation algorithm remains very close to

the optimal solution in all of the observed scenarios

due to its closeness to the algorithm that produces the

optimal solution’s lower bound.

7 Conclusion

In this work, we establish an investigation for the

NP-hardness boundaries between the tractable and in-

tractable solutions of the mobile charger coverage prob-

lem. The schedule of the least possible number of mo-

bile chargers for heterogeneous line wireless sensor net-

works, with sensors of frequencies 1’s and 2’s, is stud-

ied. We obtain the optimal solution for this problem

by exhausting all of the possible solutions with spe-

cific properties, and conjecture the NP-hardness of it.

A 1.5-approximation algorithm, an enhancement of this

approximation, and an analytical expansion for a previ-

ously proposed general 2-approximation algorithm are

done. Simulation results compare the optimal solution

with our approximation algorithms and the previous

general approximation algorithm. Furthermore, we in-

troduce a polynomial-time algorithm to determine the

energy-optimal trajectories that the MCs of a WSN

with any sensor charging frequencies may have, with

another one designed for our specific problem. The sim-

ulation shows that in practical set-ups, our enhanced

algorithm performs 10% less than the 2-approximation

algorithm, which remains very close to the optimal so-

lution. In future work, we will try to study different

line WSNs of different frequency ranges, prove the NP-

hardness of this problem, and come up with better ap-

proximations.
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