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Abstract—In recent years, spatiotemporal data has played
a crucial role in weather, transportation, and disease trans-
mission within the context of the Internet of Things (IoT).
However, due to cost constraints and sensor failures, many
regions lack observational data and remain unmonitored. This
poses a challenge to the generalization of the model which
is often addressed by spatiotemporal completion methods.
However, most existing interpolation and completion methods
are limited to the data distribution of the training regions
and struggle to generalize to out-of-distribution scenarios. This
paper addresses the challenge of generalization, particularly in
scenarios that require inference from regions that have never
been observed before. To overcome this limitation, we propose
an inductive generative model for spatiotemporal extrapola-
tion. Our approach is based on a denoising diffusion proba-
bilistic model, incorporating attention mechanisms guided by
non-local features and dynamic topology information. This
enables our model to generalize to previously unseen regions.
Empirical evaluations of three datasets in real-world and cross-
city evaluations demonstrate the superior performance of our
approach over state-of-the-art methods.

Index Terms—Spatiotemporal Extrapolation, Climate Sci-
ence, Diffusion Probabilistic Models, Dynamic Graph informa-
tion, Context, Geology

I. Introduction

PATIOTEMPORAL data, characterized by inherent

spatial and temporal patterns, plays a crucial role
in numerous real-world applications within the realm
of the Internet of Things (IoT), such as air quality
monitoring [1]-[4], traffic status forecasting [5], [6], social
network [7]. Traditionally, the collection of spatiotemporal
data relies heavily on fixed sensor networks. Although
mobile sensing technologies, such as Mobile CrowdSens-
ing [8]-]10], have emerged in recent years, data collection
remains limited by both the distribution of fixed sensors
and the mobility of sensing participants. Note that spa-
tiotemporal data is often sparse and unevenly distributed
across space and time, with no sensor network—fixed or
mobile—capable of fully covering all regions. This has led
to significant research focused on leveraging spatiotempo-
ral correlations to infer missing data, aiming to fill the gaps
in data coverage. Numerous methods have been proposed
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Fig. 1: Spatiotemporal Extrapolation. The diagrams depict
the prediction of spatiotemporal target nodes that have never
been seen or trained before, leveraging identical spatiotemporal
context nodes and corresponding exogenous covariates.

for spatiotemporal data imputation, including approaches
based on compressed sensing, matrix factorization [11],
and deep learning [12], [13], all of which have achieved
promising results. These methods typically operate on
a pre-defined grid structure, assuming that data can
be collected from a fixed set of regions at each time
period. By exploiting spatial correlations between regions
and temporal correlations within a single region, they
can infer missing spatiotemporal data. However, these
methods are largely transductive, meaning they struggle
handling newly added or dynamically changing sensing
regions. In practice, as shown in Fig. 1, target sensing
areas often change over time and may even have not been
observed. Therefore, tackling the challenge of inductive
spatiotemporal extrapolation in the context of new or
dynamically changing target regions is crucial for real-
world applications.

When dealing with unseen sensing regions, historical
data is often unavailable. Intuitively, generative methods
can be employed to synthesize data for such unknown
regions. Among these, the diffusion probability model,
renowned for its powerful data mining capabilities, has
achieved impressive results in sequence data genera-
tion [14], [15]. However, most existing spatiotemporal dif-
fusion probability models are transductive during training,
relying on data collected from fixed regions where sensors
were deployed [6], [13], [14]. In inductive scenarios, due to
the need to add and remove noise for all nodes and the
complexity of dynamic environments, the training process
becomes challenging.

Meanwhile, in spatiotemporal extrapolation tasks, sig-
nificant non-homogeneity often exists between the target



domain D and the known domain C' in terms of spatiotem-
poral distributions, leading to potential inconsistency
in the distribution of target variables with the known
domain. This distribution shift may arise from differences
in temporal distribution, spatial distribution, or feature
distribution, requiring models to possess cross-domain
transfer capability for accurate inference under distribu-
tion inconsistency, presenting another key challenge.

In addition, as new target sensing regions are intro-
duced and existing ones change, the structure of the
spatiotemporal graph becomes increasingly dynamic, and
the spatial-temporal relationships between sensing data
also change [16]. Therefore, how to adapt to these dynamic
graph structures and capture the evolving correlations is
the third challenge.

To address the aforementioned challenges in applying
diffusion probability models to spatiotemporal extrapola-
tion tasks, we propose a Diffusion Probabilistic Model for
Spatiotemporal Extrapolation (DSTE). We first introduce
graph aggregation to aggregate the information of known
regions onto the target region and then perform noise
adding training. Through the random sampling training
method, we fully train the nodes in the dataset so that
the model has the ability of extrapolation. To address the
distribution shift across different geographical regions in
extrapolation tasks, we then propose a Non-local Factor
Learning Module based on the neural process theory.
This is a method of using context nodes learning to take
the relationship between target variables and covariates
as an auxiliary factor to assist inferences. Finally, we
design a dynamic graph aggregation module, which uses
the relationships between covariates to generate dynamic
graphs in real time for auxiliary inferences. In summary,
our work makes specific contributions as follows:

o We introduce DSTE, the pioneering diffusion proba-
bility model and training method for spatiotemporal
extrapolation tasks, enabling data inference in unob-
served regions.

o To address the extrapolation challenges, we extract
Non-local factors to enhance generalization for un-
known regions and integrate them with model train-
ing through the loss function.

o To adapt to dynamic topological structures in extrap-
olation scenarios, we design static subgraph sampling
with dynamic topology learning to capture time-
varying graph features and strengthen topological
adaptation.

e Our model excels in spatiotemporal extrapolation,
outperforming others with an impressive reduction
in mean absolute error (MAE) on three real-world
datasets.

The source code for this study can be accessed at the
following repository?.

LCode available at: https://github.com/loiter74/DSTE

II. PRELIMINARIES

In this section, we present definitions for the different
terms and concepts associated with spatiotemporal data
discussed in the article. Following that, we provide a con-
cise introduction to the Denoising Diffusion Probabilistic
Model (DDPM).

A. Definitions and Notations

Definition 1 (Graph). We represent a graph as G =
(V,&) where V denotes the set of nodes, |V| represents
the number of vertices in the set, and £ signifies the set
of weighted edges connecting the nodes in the graph. A
represents the adjacency matrix of graph G. Ay specifically
designates the static matrix detailing weighted connec-
tions influenced by spatial distances among individual
nodes within the graph.

Definition 2 (Spatiotemporal data). We formalize spa-
tiotemporal data as a sequence Yy., = {¥1,Ys,..., Y.} €
REXLXdY gyer consecutive time, where Y; € REX%is the
values observed at time [ by K observation nodes, such
as air monitoring stations and traffic sensors. Here, dy
represents the feature dimension of Y7.r.

Definition 3 (Exogenous covariates). Exogenous covari-
ates are denoted as a sequence X;.;, = {X1, Xo,..., X} €
REXLxdz where dx is the number of channels. They con-
tribute to the learning process as they exhibit significant
correlations with node data. These exogenous covariates
are often readily available from diverse sources, such as
weather stations providing data on weather conditions,
which can influence air pollutant data. For all spatiotem-
poral data within the set of nodes X; € R¥, we utilize
the pairs {Y; 1.1, X; 1.0.}. Here, Y; 1.1, represents the target
values that we aim to infer for the corresponding nodes,
while Xj; 1.7, denotes the variables that are more easily
accessible and are related to Yj 1.1,

Definition 4 (Context and target sets).In our prob-
lem, the set of sites can be categorized into two types.
One is the set of context nodes, denoted as C, where
C = {Yijl:L,Xi,l;L}i]\Ll. Within set C, all the data
{Yi1.0,X; 1.0} of the nodes are known. The other type is
the set of target nodes, denoted as D = {Y; 1.1, Xi711L}'LAi17
representing the target values and exogenous covariates
of the regions we aim to infer. N and M respectively
correspond to the node quantities in sets C and D. In set
D, only the covariates are known, while the target values
are the objectives of our inference.

B. Diffusion probabilistic models

Diffusion Probabilistic Model, as a generative model,
has spawned various theoretical variants, including NCSN
[17], DDPM [18], and SGM [19] that involve a training
method that incorporates the addition of noise and denois-
ing. This process entails constructing two parameterized
Markov chains to diffuse the data with predefined noise
and subsequently reconstructing the desired samples from
the introduced noise. In the forward process, DDPM
gradually distorts the raw data distribution zg ~ g(z¢) to



TABLE I: KEY MATHEMATICAL NOTATIONS OF
THIS ARTICLE
Notation | Description

g Spatiotemporal graph

1% Set of nodes in spatiotemporal graph

& Set of edges in spatiotemporal graph

D Target nodes set

C Context nodes set

Yo Target variable of target nodes

Yt Target variable of target nodes in diffusion step ¢
X Exogenous covariates of target nodes

Yo Target variable of context nodes
Xc Exogenous covariates of context nodes

M Number of target nodes

N Number of context nodes

L Time window in dataset

Ag Static adjacency graph

Apyn Learnable dynamic adjacency graph

K Convolution kernel

ot Coefficient for noise addition at diffusion step t
Bt Ratio of noise added at step t calculated as 1 — ot
T Total diffusion steps in diffusion process

t Diffusion step in diffusion process

et Noise in diffusion step ¢

0 Model parameters

q Forward process in diffusion

0% Attention module gate parameter

Z Distribution representation of target nodes

Zc Distribution representation of context nodes

m The mean of the normal distribution

o The variance of the normal distribution

converge to the standard Gaussian distribution z; under
a pre-designed mechanism. Meanwhile, the reverse chain
aims to train a parameterized Gaussian transition kernel
to recover the unperturbed data distribution. Mathemat-
ically, the definition of the forward process q is as follows:
here we mainly follow the theoretical model proposed
by DDPM. The diffusion time steps are denoted with
superscripts to avoid confusion between diffusion time
steps and temporal time in space-time, such as z?.
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where (; is a small constant hyperparameter that controls
the variance of the added noise. The z! is sampled by
t = Valz® + /1 —ale, where ot =1 — g, a* =[], o,
and € is the sampled standard Gaussian noise. When T
is large enough, g(z7]z%) is close to a standard normal
distribution. The reverse process can be formalized as:

T
OT t—1
po(z T |aT) Hpa |z"), @)
po(a’™ 1|$)=N($t g (2t t), 0% T).

DDPM introduces an effective parameterization of py
and o2. In this work, they can be defined as:

1
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The neural network will undergo training to optimize
the variational upper bound on the negative log-likelihood,
which can be estimated via the Monte Carlo algorithm.
Consequently, the DDPM would sample from the limit dis-
tribution, and then recursively generate samples z! using
the learned reverse chain. DDPM proposes that it can be
trained more effectively by a simplified parameterization
schema, which leads to the following objective:

Loss(6) = Eqo . ¢ [He — eo(at, t)||§] : (4)

where €g(+) is a network estimating noise added to z*. Once
trained, target variables are first sampled from Gaussian
as the input of €y() to progressively learn the distribution
po (2t~ t|zt) and denoise z! until 2° is obtained. DDPM de-
composes a distribution into a combination of Gaussians,
with each step only recovering the simple Gaussian. This
capability empowers the model to effectively represent
complex distributions, making it suitable for learning the
conditional distributions in our tasks.

C. Neural Process

A neural process is a probabilistic model designed to
handle functions and distributions over functions [20].
It generalizes Gaussian processes by leveraging neural
networks. Neural processes can learn from a small number
of observed data points to make predictions about the
entire function. They are particularly useful in scenarios
where data is limited or expensive to obtain, such as in
few-shot learning tasks. The key idea is to capture the
underlying structure of the function space, enabling the
model to generate reasonable function values for new input
points based on the learned patterns from the available
data.

Let’s consider a set of input points X =
{z1,22, -+ ,x,} and their corresponding target values
Y = {y1,y2, - ,Yn}- A neural process consists of two

main components: an encoder and a decoder. The encoder
takes the input-output pairs (X,Y") and encodes them into
a latent representation z. Mathematically, the encoding
process can be represented as Z = Encoder(X,Y).

The decoder then takes a new input point x* and
the latent representation Z to predict the distribution
of the corresponding output y*. The prediction is for-
mulated as p(y*|z*, X,Y) = Decoder(z*,Z). In many
cases, the decoder outputs the mean p and variance
0% of a Gaussian distribution, so p(y*|z*, X,Y) =
N(y*su(z*, Z),0(x*,Z)). This formulation allows the
neural process to not only make point predictions but also
quantify the uncertainty associated with those predictions.



/ forward diffusion q(Yty:1) \\\
/ \
I

DSTCE (YUY X, C A, L) \}
i |
|
I e I
! Non-local Augmentation \’ |
! 3 V <« (pre-training) i
| s ST GNN |
|
I R=! — !
! .o S .. |
i Q Dynamic Topology i
! K Aggregation L] :
| _ |
L %0 (reit—1) N ) ) 7,7y |
|
! Output t i
| . . .
X. X¢: Exogenous covariates t: diffusion step |
\ Input Ye Xe X ¢ BROBENO o P
AN Y. Y: Target variable As: static topology /

Fig. 2: The proposed DSTE model framework. Attention learning is organized into multiple layers based on feature scales.
Within each layer, STGNN and Non-local Factor Learning module handle the extraction of attention mechanism components,
specifically V', while Dynamic Topology Aggregation incorporates dynamic topology to aggregate context node information into

the @, K in attention mechanism.

The attention from different layers and feature scales is finally fused through a linear layer, serving as the output for
noise prediction.

Algorithm 1: Training process of DSTE

Data: The set of context node set C, the exogenous
covariates X and the target variables Y9 of
the target node set D, the static adjacency
matrix Ag, the number of iterations N;;, the
number of diffusion steps T, noise levels
sequence gy

Result: Optimized noise prediction model 6

1 fori=1to N; do

2 Sample t ~ Uniform({1,...,T}), e ~ N(0, 1),
C1D ~ Datasetirain

3 Yt Vaty? + /1 - ate

4 Updating the gradient
Vollet —eg(YE, X,C, A, t)||3

III. METHODOLOGY

In this section, we propose DSTE, a diffusion probabilis-
tic model for spatiotemporal extrapolation. As illustrated
in 2, the key components are non-local factor learning
and dynamic aggregation modules that exploit covariate
information and adapt to dynamic scenarios. We introduce
the spatiotemporal extrapolation problem, then describe
the training and sampling stages, and finally detail the
two key modules and attention-based denoising network
€.

A. Spatiotemporal Extrapolation

Spatiotemporal extrapolation is a method of predicting
data in unknown spatiotemporal regions based on known
spatiotemporal data. We refer to our problem as an
extrapolation problem, using known context nodes to
infer target variable in target nodes through the learned
function f(-). Unlike other extrapolations, we also use

exogenous covariates to learn the interaction between
target variable and exogenous covariates for extrapolation
assistance:

C{X1..,Y1..},D{X1..} Lot D{Y1..}. (5)

For clarity, we denote the spatiotemporal target data
within the target set D{Y1.1} as Y, and the spatiotemporal
exogenous covariates within target set D{X;.1} as X.
Furthermore, the target data within the context set
C{Y1..} is referred to as Y¢, and the exogenous covariates
within the context set C{X;.1,} as X¢.

B. Inductive Diffusion Model Training

In response to the limitation that existing spatiotempo-
ral denoising diffusion probability models [14], [21] cannot
be applied to spatiotemporal extrapolation problems, we
adopt the conditional diffusion probability model pro-
posed by CSDI [14], utilizing spatiotemporal aggregation
information as a condition for guided diffusion model
generation. The forward noise addition process is shown
as follows:

gV = N(Y' /1= gyl Bi). (6)

The meaning of 5 in Eq. (6) is consistent with that in

Eq. (1), where Y represents the target spatiotemporal data

for the region. While the backward process is modified

to incorporate a conditional denoising approach, it is
specifically shown as follows:
T

po(YOT YT X, C A ) = [[pe (V' 7MY, X, C, Ay).
t=1

The loss function of the conditional diffusion extrapola-

tion model is derived from Eq. (3) and Eq. (4) as follows:

L(O) = Byo e [[le— (Y, X,C. 4003 . (8)

(7)



Algorithm 2: Extrapolation process with DSTE

Data: The set of context node set C, and the
exogenous covariates X of the target node
set D, the static adjacency matrix Ag, the
number of diffusion steps 7', the optimized
noise prediction model €g

Result: Unobserved extrapolation target values Y°

1 Sample YT ~ N(0,1), C ~ Datasetest
2 fort=T to1do
ug(Yt,X,C,AS,t) —
S (YT = BVI—alep(YF, X, C, A t)
4 Reverse denoising
YU N(po(Y!, X, C, A, 1), 021)

w

The improved diffusion extrapolation model integrates
the target node exogenous covariates X, the context node
set C, and an additional condition represented by the static
adjacency matrix A, which captures the static topological
relationships. The entire reverse process involves predict-
ing the added noise for the extrapolation target, with the
goal of restoring the original information of the noisy
sample. As a result, 6 is often referred to as the noise
prediction model.

The training and extrapolation processes of the model
are illustrated in the framework diagram shown in Fig. 2.
Specifically, during the training process, we start by
selecting a context node set C and a target node set
D from a pre-divided training dataset, ensuring that
the two sets do not overlap. Next, we introduce varying
degrees of Gaussian noise [18] to the target variables Y
in the designated target node set D, resulting in Y°.
Subsequently, we use the perturbed Y, diffusion time step
t, exogenous covariates X, the context node set C, and
the static topology between nodes A, as inputs. Through
the denoising module, we aim to learn the conditional
distribution of the target variables by removing the noise
added to Y!. The extrapolation process is the reverse of
the denoising process. At this stage, the target node set
D is already specified. We initialize the target variables
at the designated positions with pure Gaussian noise Y7
The remaining inputs follow a similar structure to the
training process. Through iterative denoising steps, we
progressively restore Y7 to the extrapolated target values
Yo,

We are not making substantial alterations to the overall
training process of the denoising diffusion model. This de-
cision is primarily influenced by our emphasis on designing
a denoising module tailored for extrapolation problems.
Our research aims to facilitate inductive reasoning by en-
abling the denoising model €y to learn the interdependence
between conditions and target recovery.

C. Denoising Neural Network

The Denoising Neural Network €y is a key part in
our model, which makes DSTE have generative ability
to transform Y7 to YO by inferring added noise ¢, at
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(context) nodes form the spatiotemporal graph. Arrows show
dynamic learning; lines show static topology. Static and dy-
namic modules together enable comprehensive spatial feature
representation.

every diffusion step t¢. It mainly consists of three mod-
ules. The Non-local factor learning aims to capture non-
regional factors within spatiotemporal data to enhance
model generalization. The Dynamic Topology Aggregation
Module is designed to capture complex and time-varying
correlations between nodes in real-world scenarios. The
Gradient Guided Attention Module extracts and inte-
grates relationships among features from the former two
modules for the extrapolation denoising diffusion model.

1) Non-local Factor Learning Module (Pre-training) To
minimize information loss from context nodes during ag-
gregation, we propose a non-local factor learning module.
This module maps the features of target and context nodes
into a Gaussian-form non-local factor via a neural network.
The design aims to comprehensively capture global depen-
dencies among nodes and incorporates uncertainty in node
interactions. Through pre-training, this module learns
cross-spatiotemporal non-local interaction patterns.: The
raw data consists of target variables and exogenous
covariates for all nodes, denoted as {Y,X} e [C,D].
The input is first processed by a Spatio-Temporal Graph
Neural Network (STGNN), which comprises a stacked
Temporal Convolutional Network (TCN) and a Graph
Neural Network (GNN). The TCN employs convolutional
layers instead of recurrent ones to efficiently capture long-
term dependencies in sequential data [22], while the



GNN extracts spatial features based on the static topology
Ag. This process provides the foundational spatiotemporal
representations required for the pre-training of the non-
local factor learning module.

pr = Enc, (GNN(TCN([Y*]|X]), As)), )
op = Enc, (GNN(TCN([Y!]|X]), As)).

After processing through GNN and TCN layers, the
target node set (D) and context nodes (C) are mapped
through linear layer normalization modules Enc,(-) and
Enc, () to form their respective node mappings:

o = Enc, (GNN(TCN([Yc [ Xc]), As)),

or, = Enc, (GNN(TCN([Ye || X¢]), As)), 10)

here, Enc,(-) and Enc,(-) output the mean g and vari-
ance o, forming the Gaussian non-local factor Fic p; ~
N (p,0?). Leveraging the pre-trained factors Fio p; and
the static adjacency matrix Ag, we perform non-local
factor fusion between target nodes (D) and context nodes
(C) as follows:

ir =05 | pp/oh+ Y Aspr./of, |,
neNE€ (m)
1 (11)

UFC /AS ’

op = |op"+ Y.

neNE (m)

where pup and op are the pre-trained factor parameters
derived from the encoding process, and jip, dF represent
the comprehensively fused non-local factor distribution at
the target node. NA(m) denotes the first-order neighbor-
hood of context nodes surrounding the target node m.

log p(Y|C, X, A) >Ey[log pnp(Y|C, F, X, A)]

(b) log-likelihood Term
— KL(¢(F|C U D)|p(F|C))

(¢) KL Regularization

During the pre-training process, we utilize the aggre-
gated information from target node set (D,Y = Y?)
and context nodes (C) as the prior distribution, while
using pure noise as target nodes D,Y ~ N(0,1) and the
aggregated information from context nodes (C) as the
posterior distribution. The KL divergence between these
distributions serves as a constraint, while the target values
of the posterior distribution are trained against Y using
negative log-likelihood. This approach ultimately yields
our pre-trained model. The loss function of the pretraining
phase is illustrated in Eq. (12).

In the pre-training phase, we establish a framework
where the aggregated information from the target node
set (D,Y = Y?) and context nodes (C) serves as the
prior distribution. Concurrently, we employ pure Gaussian
noise for target nodes D,Y ~ N(0,1) combined with

——
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Fig. 5: Target and context node features are projected to
compute a dynamic adjacency matrix via tensor multiplication.
This matrix aggregates context predictions to targets, followed
by normalization and projection to update target predictions,
enabling adaptive, time-varying relationship learning.

aggregated context node (C) information to form the
posterior distribution. We constrain the model using the
KL divergence between these distributions, while simul-
taneously training with negative log-likelihood between
the posterior distribution’s target values and Y. This
comprehensive approach results in our robust pre-trained
model. This process establishes an implicit association
between exogenous covariates and target variables (see [2]
for proof of the formulas).

2) Dynamic Topology Aggregation Module: To ensure
the model’s inductive learning capability, we employ par-
tial graph sampling across different time windows from the
complete spatiotemporal graph during training, while si-
multaneously learning the dynamic relationships between
target nodes and context nodes within the sampled subset,
as illustrated in Figure 4

However, we have noted that in real-world scenarios,
the correlation between regions is not solely determined
by their geographical distances. Various factors such as
weather conditions, terrain, construction of transportation
infrastructure, and traffic policies can contribute to com-
plex interconnections between regions. This correlation
may not be linearly related to geographic distance, and
in some cases it may exhibit exponential decay with an
increase in distance, a phenomenon commonly referred to
as the distance decay effect. Additionally, it is sometimes
observed that points farther apart exhibit stronger corre-
lations compared to other nodes in the network.

Accounting for this relationship is crucial in spatiotem-
poral extrapolation tasks. While statistical methods in-
formed by prior knowledge may seem reliable, applying
such methods in dynamically complex scenarios is often
impractical. On one hand, different application scenarios
may require distinct statistical approaches, necessitat-
ing extensive research to devise a theoretically sound
statistical method for newly emerging contexts, which
might lack timeliness in urgent situations. On the other
hand, the correlation structure in spatiotemporal contexts
may change over time, and failure to account for such
changes in statistical methods could result in the failure
of correlation predictions.



To address these challenges, we propose a dynamic
topology aggregation module that combines static
sampling with dynamic graph learning for extrapolation
tasks. This innovative approach leverages the efficiency of
static graph sampling while incorporating the flexibility of
dynamic graph learning. The module’s core functionality
is to learn time-varying dynamic correlations between
target and context nodes, and efficiently aggregate
contextual information onto the target nodes.

ADyn = (X*’Cl)(Xc*lcl). (13)

Eq. (13) illustrates the aggregation process of our
dynamic graph, accomplished by employing the same
channel convolution x/C1 as the target node and the exoge-
nous covariates feature extraction module of the context.
This convolution operation learns the co-variant feature
extraction between the target node and the context nodes,
resulting in the computation of the dynamic correlation
matrix Apy, € RMxNxda' Here, M and N represent the
quantities of target and context nodes in the inference
process, and dz’ denotes the dimension of features after

*KC1.

HDT = (YC*K2)ADyn~ (14)

Eq. (14) further illustrates the process of aggregating
the dynamic graph matrix of the context nodes onto the
target node after feature extraction. Hpa € RM xdy' <L
represents the aggregated values of the dynamic context,
where dy’ denotes the values after channel convolution,
and L represents the time length.

3) Gradient Guided Attention Module: The denoising
attention guidance module plays a crucial role in the ex-
trapolation denoising diffusion model. The main purpose
of this part is to extract the relationship between the
target node features and the context-aggregated features
obtained from the Non-local Factor Learning module as
well as the Dynamic Topology Aggregation module. For
the sake of clarity, we use the predicted target Y at the
previous diffusion step ¢ as the input of the attention
module [23]. The input is processed by the above two
modules respectively to form Hpr and Hp. Samples of Hg
are then drawn from the normal distribution N (fip,5%).
Then, as shown in 6(a), a cross-attention block is utilized
to measure the dependencies between Hpr and Hg. The
following equations illustrate the process:

Qea = Hp - WE,
K('a - HF W(va7 (15)
Vea = Hpr - WY,
H., = softmax (Qca ca Vm> . (16)
Vdp,

Here, H., represents the results, and W2, WX WY a

ca?’ ca?’

matrices that can be learned. To enhance the spatlal
relationship mining in Non-local Factor information, we
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Fig. 6: Gradient Guided Attention Module, The diagram shows
the overall aggregation module (a) and cross-attention module
(b). The overall aggregation module integrates self-attention
and cross-attention through a gated fusion mechanism to
process the input data with shape N x T X ¢ where c is feature
channel and generate the output Y*~! for the next diffusion
step. The cross-attention module measures the dependencies
between Hp

and Hpr to obtain H,,

employ self-attention to obtain as follows (similar to
equation 16):

Qsa = Hr - W32,
Ksa - HF Wsa? (17)
Vea = He - W,

Finally, a gated fusion mechanism is proposed to inte-
grate the outputs Y1

Yt ! = Linear (v Hso+ (1 —7) - He), (18)

where Y*~! is the Gradient Guided Attention output
and serves as the input in the next diffusion step. -~ is
a learnable parameter used to balance the self-attention
outputs and cross-attention outputs.

D. Joint Variational Lower Bound for Factor-Augmented
Diffusion Models

To integrate extrapolated factor learning into the dif-
fusion model in a principled manner, we employ a vari-
ational Bayesian framework. Specifically, we reformulate
the training objective by incorporating the learned non-
local factors into the evidence lower bound (ELBO) of the
diffusion process. The resulting variational lower bound is
given by:

Ing(Y‘C, X, A) 2 ]EqUngdif-f(Y|Oa F7 Xa A)}

(a) Diffusion Model Term

+ E,[log pup (Y|C, F, X, A
ollog pun (Y | LR

(b) Neural Process Term
— KL(¢(F|CUD)|p(F|C))

(c) KL Regularization

The formula presents the variational lower bound (Evi-
dence Lower Bound, ELBO) for the joint log marginal



likelihood of observations Y, under the scenario where
a **diffusion model and a neural process share a latent
variable space R. The interpretation of each term is as
follows:

1) Diffusion Model Term: This term represents the
expected log-likelihood of the observed data Y given the
context C, latent variable R, input X, and optional con-
dition A, as modeled by the diffusion model. It measures
how well the diffusion model explains the observations
under the current latent representation.

2) Neural Process Term: This term quantifies the
modeling capacity of the neural process for the same
observations, conditioned on the shared latent variable
R. By sharing R, the neural process can leverage richer
context information to enhance generalization.

3) KL Regularization Term: This term is the Kullback-
Leibler (KL) divergence between the variational posterior
q(R|C'U D) and the prior p(R|C). It acts as a regularizer,
constraining the latent variable distribution to stay close
to the prior, thus preventing overfitting and promoting
better generalization.

The objective of optimizing this ELBO is to jointly
improve the explanatory power of both the diffusion
model and the neural process with respect to the observed
data, while maintaining a reasonable latent variable dis-
tribution. By sharing the latent space R, both models
can complement each other, fully utilizing both context
and observation information to enhance generative and
generalization capabilities.

Proof 3.1: Proof: To achieve joint training of diffusion
models and neural processes, this chapter introduces a
shared noise latent variable space and defines the joint
interaction factor F' = (Fuig, Flp). Here, Faig represents
the interaction factor of the diffusion model, and Fy,
represents the interaction factor of the neural process.
During training, F' serves simultaneously as the output
of the neural process and as the conditional input of the
diffusion model, thereby achieving joint optimization of
both models.

According to the joint probability decomposition, we
have:

p(Y]C, X, A) = / pase(Y, Fag C, F, X, A)pap(Fap|C, X, A)dF

(20)

Introducing the variational distribution ¢(F|C'U D) to

approximate the posterior distribution, and according to
Jensen’s inequality:

log Eq[f(x)] = Eq[log(f(x))] (21)
We obtain:
- _ - Pdlﬁ(Y Fdlff|c F X A)pnp nplc X A
logp(Y|C, X, A) =1ogE, { J(FICU D)
>E 1 p(hH(Y FdlIT|C F X A)pnp nplC X A
= Lyq
¢(F|C'U D)
(22)
During joint training, we assume Faig = Fnp = F,

i.e., the interaction factor is shared between the diffusion
model and neural process. In this case, equation (4.24)
can be further simplified to:

logp(Y|C, X, A) ZE,[log pairr (Y|C, F, X, A)]
+ E4[log pup(Y|C, F, X, A)]
— KL(g(F|C U D)||p(F|C))

(23)

IV. EXPERIMENTS

In this section, we first introduce the datasets, base-
lines, evaluation metrics, and experiment settings. Sub-
sequently, to validate the effectiveness of our model, we
present the following questions and address them in the
following sections.

e QI1: Can our proposed extrapolation model outper-
form other baseline methods and achieve state-of-the-
art results in various environments?

e Q2: What is the effectiveness of the components in
our model, such as DS, DT, and GAttn?

e Q3: Is the model sensitive to hyper-parameters and
prone to over fitting?

e Q4: Is our model robust in extrapolated regions, and
can it maintain good performance in different unseen
areas, including cross-city scenarios?

A. Dataset

Beijing [24] contains air quality indexes (AQI) from 35
stations and district-level meteorological attributes. We
aim to extrapolate the AQI of PM2.5, PM10, and NO2,
using meteorological attributes such as temperature,
humidity, pressure, wind speed, wind direction, and
weather as exogenous covariates.

London is similar to the Beijing dataset, with the same
data format and 24 stations. During training, we input
hourly data with a time period of 24 hours. It is worth
mentioning that the final dataset used in London and
Beijing is a combination of AQI dataset and exogenous
covariate dataset represented by grid. The exogenous
covariate of each AQI monitoring station is the corre-
sponding content within the current grid.

We use datasets in grid form as covariates mainly due
to the following reasons: 1. Monitoring covariates such as
temperature and humidity is relatively easy, and detection
often only requires simple physical principles to detect;
AQI data, on the other hand, requires complex optical
sensing or chemical detection techniques. Detectors are
expensive and require frequent maintenance. In addition,
due to various reasons such as price, the data of these
covariates is relatively rich, making it easier and more
practical to infer discrete missing information from the
known rich information.

IntelLab [25], this dataset contains information about
data collected from 54 sensors deployed in the Intel
Berkeley Research lab between February 28th and April
5th, 2004. Temperature is in degrees Celsius. Humidity
is temperature corrected relative humidity, ranging from
0-100%. Light is in Lux. Voltage is expressed in volts,
ranging from 2-3, and is highly correlated with temper-
ature [25]. We multiply the obtained voltage value by
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TABLE II: Hourly Statistics for Beijing AQI Data Sets.

Fig. 8: PM2.5 extrapolation results on the Beijing dataset
from April 3 to 7, 2017. The blue regions and lines represent
our proposed method, while the red crosses indicate the
ground truth. The dashed box highlights that our method
demonstrates superior spatiotemporal extrapolation capability
compared to other methods.

mechanisms to capture long-range spatiotemporal depen-
dencies. For probabilistic methods, we utilize STGNP [2],

Data Type | Air-Quality

which provides results as probability distributions rather

than deterministic values.We also incorporate generative

Target variables |PM2.5(ug/m?) PM10(ug/m?) NO2(ug/m?) approaches including the GAN-based method GPNv2 [32]

o
Exogenous covariates Weather, Temperature(°C) , Pressure(hpa)

at) > sure(hpa) —,and diffusion-based methods PriSTT [3] and CaPaint [33].
Humidity(%), Wind speed(m/s), Wind direction

Subareas | 35

C. Evaluation Strategy and Hyperparameters

Duration \ 2017/5/1 to 2018/4/30

Our experimental setup closely follows the design of

Mean + Std

| 84.65 £ 81.20 112.85 & 101.17 52.11 + 37.02 [2]

. As illustrated in Fig. 7, prior to training, three nodes

100 to represent Voltagel00. Due to the misalignment
of the original data’s time, we have reduced the average
processing interval of the data to 10 minutes, and the
input time period is 12 hours. Fill in the missing value
with 0 and provide a prompt when calculating the loss
during training, indicating that the information does not
enter the input. Here, we conducted experiments on all
four variables as target values, and only presented the
experimental results of voltage as the extrapolation target
to demonstrate the potential of our system for more
practical physical quantities.

B. Baselines

In establishing our baseline models, we select classical
statistical and machine learning methods alongside repre-
sentative neural network approaches. We opt for Inverse
Distance Weighting (IDW) [26], a classical interpolation
technique widely used for spatial extrapolation tasks. Ad-
ditionally, classical machine learning baselines include k-
nearest neighbors (KNN) [27] and random forest (RF) [28].
Within our machine learning repertoire, we incorporate
XGBoost [29], an algorithm that leverages a gradient-
boosting framework to effectively amalgamate predictions
from multiple weak learners.

Among neural network methods, we employ both de-
terministic and probabilistic models. For deterministic
approaches, we include ADAIN [30], which combines MLP
and RNN architectures to aggregate data features, and
Vision Transformer (ViT) [31], which applies self-attention

are randomly selected from the dataset to form the final
test set, and they are excluded from the training set.
The remaining nodes are categorized into target nodes
and conditional nodes during each training iteration, with
N nodes chosen as targets and M nodes as conditions,
ensuring that 3M = 7N. In the final testing phase, all
(N + M) nodes are used as conditions to evaluate the
three nodes selected before training, which are not part
of the training set. The dataset is temporally divided into
three segments: an 80% training set, a 10% validation set,
and a 10% test set.

In the experimental process, we set the diffusion training
parameters, including the diffusion step size T as 100, 3°
and AT as 0.0001 and 0.2, respectively. We adopted the
quadratic schedule for other noise levels following [14],
which is formalized as:

2

B = (H\/Eﬁ-;_ll 5T> :

The embedding of diffusion time and temporal encoding

is realized through sine and cosine embeddings, building
upon prior studies [14], [15]. The learning rate decreases
from 0.001 to 0.0001 at 75% of the total epochs. The
internal feature channels of each layer within the attention
module are 16, 32, 64, 128. After attention computation,
the channels are merged, and the merged outputs are

passed through two linear layers to produce the final
outputs.

(24)

D. Results

1) Overall Performance (Q1): We evaluate our pro-
posed method on the Beijing dataset, which includes three
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TABLE III: Performances of DSTE and the baselines.

Model PM2.5 PM10 NO2 PM2.5 (London) Voltage100 (IntelLab)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
IDW 41.12 52.13 1.23 78.71 130.75 0.88 27.11 37.51 0.99 8.39 12.43 1.45 18.89 23.46 0.09
KNN 28.7 40.78 0.67 70.21 108.2 0.7 25.45 33.21 1.08 16.96 22.52 0.64 23.28 30.01 0.11
RF 20.05 33.35 0.47 47.43 91.08 0.53 21.04 26.42 1.00 16.94 22.47 0.64 21.54 29.73 0.10
XGB 16.30 25.62 0.37 41.08 78.66 0.41 15.79 20.97 0.61 14.57 20.07 0.49 19.66 37.19 0.10
Vit 18.77 34.37 0.39 34.86 54.61 0.31 13.96 18.22 0.38 5.79 6.21 0.57 12.13 15.74 0.08
ADAIN 17.87 29.24 0.36 34.2 61.29 0.36 15.73 21.3 0.58 8.41 10.26 0.55 12.23 16.55 0.08
STGNP 15.74 30.26 0.31 32.26 52.04 0.28 13.38 19.72 0.41 3.56 4.72 0.63 15.31 17.12 0.06
GPNv2 23.30 32.01 0.42 39.49 50.80 0.42 19.88 24.76 0.56 8.29 10.29 0.66 19.13 23.47 0.09
PriSTI 17.54 30.12 0.37 35.76 54.29 0.38 14.73 18.83 0.42 6.01 8.78 0.67 11.09 14.19 0.11
CaPaint  16.61 28.10 0.29 32.66 50.09 0.30 13.23 18.06 0.35 4.42 5.29 0.54 10.63 13.87 0.05
DSTE 14.14 23.24 0.24 22.78 46.40 0.23 10.28 14.64 0.30 3.11 4.07 0.60 7.94 10.28 0.04
L oste B wo ¥ w/o side L w/o 0T B0 w/o Ghten B +/p A I v/p KV els, ADAIN is considered a deterministic method which

13.0

Beijing-PM2.5

Beijing-PM2.5

Fig. 9: Ablation Study. DSTE is the full model. ‘w/o F’
removes Non-local Factor Learning;

‘w/o side’ drops covariate fusion; ‘w/o DT’ replaces
dynamic topology with distance matrices; ‘w/o GAttn’
removes gradient-guided attention; ‘r/p SA’ uses
self-attention instead; ‘r/p KV’ sets Non-local output as
@ and dynamic topology output as KV.

target variables: PM2.5, PM10, and NO2, along with
exogenous covariates such as wind direction, wind speed,
and rainfall. In the comparative methods, all approaches
utilize exogenous covariates as auxiliary information. In
the experimental results, we observe that neural network
methods outperform traditional statistical and machine
learning methods in terms of mean absolute error (MAE),
root mean square error (RMSE), and mean absolute
percentage error (MAPE).

Partial results, as shown in Fig. 8, demonstrate the
superior inference accuracy of our model around the peak
in the violet and brown boxes compared to other methods
of machine learning and neural networks. Among the
early machine learning methods, KNN, IDW, and RF
have their own characteristics. KNN is known for its
simplicity in handling data based on proximity in the
feature space. IDW is often used in spatial interpolation
scenarios with its unique distance - weighted approach. RF
utilizes multiple decision trees for better generalization.

XGBoost, a top-performing method in machine learn-
ing, tends to exhibit relatively stable changes in the
temporal dimension, with a limited representation of
time features. For conciseness, the fitting results of some
methods during this time interval are not illustrated.

Among neural network methods, we use both deter-
ministic and probabilistic models. In deterministic mod-

combines RNNs and fully connected layers.

ViT uses the Vision Transformer architecture, which ap-
plies the self-attention mechanism from natural language
processing to image-like data by treating spatiotemporal
patches as sequences of tokens, enabling it to capture long-
range dependencies and global contextual information
effectively.

In probabilistic models, STGNP is currently consid-
ered the state-of-the-art method. However, our proposed
method, DSTE, is outperforming previous methods across
all metrics and significantly outshines STGNP on some
data subsets.

GPNv2 is a GAN-based method that uses dual attention
mechanisms (Spatiotemporal Image Correlation attention
and Channel-Spatial attention) to mitigate echo attenua-
tion in radar precipitation nowcasting.

PriSTI introduces a conditional diffusion framework for
spatiotemporal imputation that extracts spatiotemporal
dependencies as global priors and employs geographic-
aware noise estimation to transform random noise into
missing values

CaPaint introduces a causal spatiotemporal framework
that identifies causal regions via Vision Transformer atten-
tion and performs diffusion-based inpainting on non-causal
areas to enhance model performance and interpretability.

Our proposed method, DSTE, outperforms previous
methods in all metrics. This improvement is attributed
to the powerful distribution-capturing capabilities of the
diffusion probability model used in our method. The
results are provided in TABLE III. Underlined values
indicate the best performance among the other models.

Simultaneously, we employ the Continuous Ranked
Probability Score (CRPS) as our evaluation metric. CRPS
assesses the compatibility of the estimated probability
distribution with the observed value. The calculation
details of CRPS are introduced as follows: For a missing
value x with an estimated probability distribution D,
CRPS measures the compatibility of D and z, defined
as the integral of the quantile loss A,:

CRPS(D,z) = / oA D (@) o) do, (25)
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Fig. 10: Regions Evaluation. We categorizes Beijing air quality
monitoring stations into three regions—Near Center (blue),
Middle (green), and Far from Center (red)—using a normal dis-
tribution approach. It calculates mean distance and standard
deviation, computes Z-scores, and assigns stations to regions
based on predefined thresholds. The resulting map visually
displays the spatial distribution, with each region represented
by a distinct color and concentric circles indicating standard
deviations.

TABLE IV: Evaluation Metrics for Different Regions

Region PM2.5
MAE RMSE MAPE CRPS
Baseline 15.74 30.26 0.31 0.43
Near Center 14.06 22.88 0.23 0.41
Middle 14.23 23.57 0.25 0.41
Far from Center  14.09 22.90 0.24 0.40
Random 14.11 23.39 0.24 0.41

where « € [0, 1] represents the quantile levels, D™1(«a) is
the a-quantile of distribution D, and I is the indicator
function. The quantile loss function A, is defined as:

Aa(Dil(a)aI) = (ailz<D*1(a))(x*Dil(o‘))v (26)

Following [2], as our distribution of missing values is
approximated by generating 100 samples, we compute
quantile losses for discretized quantile levels with 0.05
ticks:
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=3 2ioas(D (ix0.05),2). (27)
i=1

_]_ ~
CRPS(D™.2) ~ 15

We compute CRPS for each estimated missing value
and use the average as the evaluation metric, formalized
as:

D osex CRPS(D71,7)
X1

2) Ablation Study (Q2): To assess the contribution
of each component to the overall performance of our
model and address Q2, we conducted an ablation study,
and the results are presented in Fig. 9. In each study,
we modified the corresponding part while keeping other
settings unchanged.

CRPS(D,X) =

(28)
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Effect of Non-local Factor: We remove the Non-local
Factor Learning module, retaining only STGNN, and use
its output directly as input for attention mechanisms @
and K, with all other modules unchanged (w/o F). The
results of the ablation study indicate a significant perfor-
mance decline when the module is absent. This suggests
that utilizing distribution for information aggregation is
effective in extrapolation tasks. Effect of side encoding:
As the Non-local factor learning module includes Encg;ge,
i.e., the covariates encoding module, we systematically test
the performance of this module by removing Encg;q. while
keeping other modules unchanged (w/o side). The results
indicate a performance decrease when Encg;qe is removed,
but the magnitude of the decline does not exceed that
observed in the without that case. This simultaneously
demonstrates the effectiveness of Encg;q. in conjunction
with the remaining parts of Non-local factor learning
module.

Effect of Dynamic Topology Aggregation: To validate
the effectiveness of our dynamic information topology,
we conduct experiments by removing the dynamic graph
learning module and only using the static topology for
information aggregation in the DT module (w/o DT). The
experimental results show that without the extraction of
dynamic features, the performance of the module decreases
to some extent.

Effect of GAttn: In this section, we investigate the
effects of different attention mechanisms. First, we con-
duct ablation experiments by removing the entire atten-
tion module to verify the effectiveness of our proposed
gradient-guided attention mechanism (w/o GAttn). Ex-
perimental results demonstrate that the attention module
successfully learns the relevance between the aggregated
context nodes information and the target nodes, and
utilizes the learned information to better eliminate noise.
Next, we experiment with the allocation of QKV in the
attention module. We compare the performance of self-
attention applied only to distributed aggregated informa-
tion (r/p SA) and the performance of using the distributed
aggregated information as ) and dynamical topological
aggregated information as KV (r/p KV). Experimental
results show that the original GAttn setting contributes
the most to the performance in these settings, indicating
that the query subject of the attention mechanism should
be the distributed aggregated information of the target
node. While using aggregated topological aggregated in-
formation as the query content also provides information,
it should not be overly incorporated.

3) Hyperparameter Study (Q3): We conduct
experiments to assess the performance of DSTE under
various hyper-parameter settings. Initially, we focus on
the experimentation with the number of feature channels.
We fix the number of layers at 4 and experiment with
different channel quantities, specifically at [u, 2u, 4u, 8ul,
where u = [4, 8,16, 32,64]. The results indicate a gradual
increase in accuracy with an increase in the number
of channels, but the parameter count rises sharply. In
the experimental plots, we observe that around u = 16,
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Fig. 11: Hyperparameter Study. In the scenario where the number of channels is given by [u, 2u, 4u, 8u|, with u taking values
from the set [4,8,16,32,64], the corresponding model performance is compared across various measurement metrics. Number
of GAttn Layers represents the count of gradient-guided attention mechanism layers selected in our model. The magenta line

represents the overall number of parameters in the model.

the performance of the experiment stabilizes. Further
increasing the number of channels has little impact
on the results but significantly increases the training
parameters. Consequently, for the final experiment, we
opt for u = 16 as our channel parameter.

4) Spatial Sensitivity (Q4): Intra-city: The sensitivity
of our model to extrapolated positions, especially at
the edges, which are far from the city center, is a key
consideration for tasks involving space extrapolation. The
adaptability and generalization of the model to out-of-
distribution content are crucial. Categorizing air quality
monitoring stations into three groups based on geograph-
ical distribution, using z-scores. z-scores measure how far
a data point is from the mean in terms of standard
deviations. The formula is Z = (X — p)/o where X is
the data point, u and ¢ represent the mean and standard
deviation of the data points, respectively.

We choose inference positions as shown in Fig. 10, par-
ticularly focusing on the edge positions. Baseline method
is STGNP. Each position is marked with different colors
and represented accordingly on the bar chart. Randomly
chosen positions are represented in yellow on the bar chart.
Context nodes are chosen randomly from the same test
nodes, excluding the inference positions at this time. In
experiments on the Beijing dataset, we find that the fully
connected topological structure ensures adequate adja-
cency information, impacting regions less on extrapolation
results. This underscores the robust distribution-capturing
ability of the diffusion probability model, even in edge
positions.

Cross-city: To validate the generalization capability of
our proposed spatiotemporal extrapolation method, we
conduct cross-city air quality experiments. Specifically, we
treat the London air quality dataset as the target domain
for cross-domain extrapolation, selecting the current state-
of-the-art extrapolation method STGNP and the diffusion-
based method CaPaint as comparison baselines. All mod-
els are trained on the Beijing air quality dataset and then
evaluated on the London dataset for predicting PM2.5,
PM10, and NO2 concentrations.

The experimental results demonstrate that our model
achieves significant improvements over the comparison
methods across all air quality indicators in cross-domain
learning tasks. Particularly for the NO2 indicator, where

baseline methods exhibit high cross-domain inference er-
rors on London data, our model effectively ensures cross-
domain inference performance through diffusion mecha-
nisms that generate representations consistent with the
target distribution. This validates the effectiveness and
generalization capability of our proposed method.

V. RELATED WORK
A. Spatiotemporal Extrapolation

The goal of spatiotemporal extrapolation tasks is to pre-
dict the state of never seen before spatiotemporal points by
leveraging existing data and models through inference and
prediction methods. Early approaches employed statistical
and machine learning methods, such as kriging [34],
these methods have limitations in complex scenarios due
to underlying assumptions. KNN [27] and RF [28] are
both computationally complex and exhibited sensitivity
to outliers. Gaussian Processes [35] use flexible kernels to
learn spatiotemporal dependencies. However, constructing
kernels is computationally demanding. Matrix completion
methods [11], capture spatiotemporal patterns with a low-
rank matrix assumption. However, this approach become
ineffective when confronting with scenarios that did not
adhere to the low-rank assumption.

In neural network methods, Cheng et al. [30] propose a
model, utilizing recurrent neural networks and multilayer
perceptrons. Han et al. [36] improve performance by com-
bining graph convolutional networks with a multi-channel
attention module. Above methods are not considered
uncertain and lack exploration of topological relationships.
Wu et al. [5] proposed an inductive method, involving
sampling different subgraphs and reconstructing them.
However, it cannot leverage covariates information rele-
vant to the target variables and fails to capture dynamic
changes in node correlations.

Other work introduces generative models to learn the
inherent distribution of spatiotemporal data and capture
uncertainty. Hu et al. [2] employed neural processes,
utilizing the KL divergence between the target node
and context nodes as a guarantee for the correlation
between nodes during training. Zhang et al. [37] consid-
ered different scales of geographical space in real-world
scenarios. The former may face instability in training due
to the simultaneous consideration of prediction accuracy
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Fig. 12: Cross-city air quality prediction performance comparison. This figure presents cross-domain extrapolation results where
models are trained on Beijing and tested on London. The comparison includes STGNP, DSTE(w/o F) (our method without non-
local factor), and our full method across three air quality indicators (PM2.5, PM10, NO2) using MAE and RMSE metrics. (a)-(b)
PM2.5 prediction results; (c)-(d) PM10 prediction results; (e)-(f) NO2 prediction results. Our method outperforms baselines
across all metrics, with particularly significant improvements in NO2 prediction, validating the effectiveness and generalization
capability of the proposed diffusion model in cross-domain scenarios.

and node neighborhood consistency, while the latter is
struggling in training instability and pattern collapse [38].

B. Spatiotemporal Diffusion Probability Model

The early proposal of the diffusion probability model
was put forth by Sohl-Dickstein et al. [39] and later
refined by Ho et al. [18], resulting in its application in
the field of image generation, known as DDPM. Due to
its notable performance and stability relative to other
generative models [40], DDPM has garnered widespread
attention.

Tashiro et al. [14] introduced the first diffusion probabil-
ity model imputation framework for spatiotemporal data,
named CSDI which utilizes self-attention mechanisms to
independently learn temporal and feature-wise correla-
tions. Building on this work, Liu et al. [3] considered spa-
tial topology to enhance spatiotemporal correlations. How-
ever, the former struggles with capturing spatial correla-
tions, making it challenging to address missing values in
spatial contexts. The latter, spatial attention mechanism
significantly increases the time complexity of model train-
ing and inference phase, n target points, m conditional
information nodes, O((n + m)?), and n << m, while our

method achieves a time complexity of O(n?). Besides, our
model is inductive, while this model is transductive.

Hu et al. [21] designed a universal spatiotemporal pre-
training encoder to extract and compress conditional
information. However, the shared spatiotemporal encod-
ing module for both time and space completion limits
the learning capability of the model in kriging tasks.
This results in the model being able to only interpo-
late spatiotemporal data for positions that have been
previously trained, lacking the ability to infer positions
that have never been encountered, as well as not being
able to perform the spatiotemporal extrapolation tasks
mentioned in our paper. Zheng et al. [6] propose a
diffusion model-based image super-resolution technique
that extracts fine-grained information from coarse-grained
data in urban settings. It is limited by the specific
scenarios of super-resolution, posing challenges in ef-
fectively inferring dynamic and irregular spatiotemporal
graph data. CaPaint [33] is a causal structure plugin for
spatio-temporal prediction that leverages self-supervised
reconstruction with a Vision Transformer to automatically
identify causal and non-causal regions in the data, and
employs a diffusion model to generatively inpaint non-
causal regions, thereby improving the generalizability and



interpretability of the model, particularly in scenarios with
scarce data or distribution shifts.

VI. CONCLUSION

Aiming to predict values of never seen before region
by utilizing information from neighboring nodes and ex-
ogenous covariates within the target region, we introduce
conditional diffusion probability models, leveraging their
robust capability to capture sequence distributions and
conditional generative capacity. To explore the relation-
ship between covariates and target variables and utilize
them, we integrate a Non-local Factor Learning module to
comprehensively combine information, and dynamic graph
generation captures evolving topology. In extensive exper-
iments, the proposed method demonstrates a significant
improvement in accuracy compared to previous state-of-
the-art approaches. Although our method performs well
on datasets such as weather quality, it encounters inade-
quacies when dealing with tasks like traffic flow prediction.
Traffic patterns are often influenced by unpredictable non-
natural factors such as traffic accidents. How to extract
the true physical or causal correlation between covariates
and target variables in noise information will be worth
exploring.
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