
SmartPipe: Intelligently Freezing Layers in Pipeline
Parallelism for Distributed DNN Training

Nadia Niknami, Abdalaziz Sawwan, and Jie Wu
Center for Networked Computing, Temple University, USA

Abstract—Deep Neural Network (DNN) models have been
widely utilized in various applications. However, the grow-
ing complexity of DNNs has led to increased challenges and
prolonged training durations. Despite the availability of high-
performance computing systems, certain DNNs still require
several days for successful training. This study aims to address
this issue by proposing a method for significantly reducing
the training time of deep learning models while maintaining
test accuracy. Existing approaches primarily concentrate on
optimizing training efficiency through computational and com-
munication overlap/scheduling. In contrast, this research takes
a step further by inspiring transfer learning. Transfer learning
is a useful way to quickly retrain a model on new data without
having to retrain the entire network. During transfer learning,
the first layers of the network are frozen while leaving the
end layers open to modification. By doing so, computation
and communication requirements in these frozen layers are
eliminated. This intelligent approach involves freezing some of
the specific DNN layers and allocating resources to the remaining
active layers during the training process, thereby minimizing
DNN training time. To achieve this objective, we propose an
intelligently freezing DNN using pipeline parallelism. Through
trace-based simulation results, our scheme has demonstrated its
effectiveness in efficiently reducing the time cost of a training
iteration.

Index Terms—DNN training, gradient descent, intelligent
freezing, machine learning, neural networks, pipeline.

I. INTRODUCTION

Recent advancements in deep learning (DL) have greatly
benefited from training larger deep neural networks (DNNs)
on extensive datasets. Larger DNNs with increased model
sizes have shown improved inference accuracy and enhanced
generalization capabilities. However, deep learning models
require larger training times as the depth of a model increases
and suffers from vanishing gradients. As model sizes continue
to grow and datasets become larger, the computational cost
associated with large-scale training has become a significant
concern. Recent research in DL has focused on enhancing
DNN training techniques. These efforts include leveraging
parallelism and pipelining, and employing sophisticated meth-
ods such as computation-communication overlap or schedul-
ing, in order to build more efficient systems and reduce
training time [1]. However, while achieving linear scalability
can decrease the time required to train a model, the over-
all computation requirements remain unchanged. Numerous
research studies have explored different approaches include

This research was supported in part by NSF grants CNS 2214940, CPS
2128378, CNS 2107014, CNS 2150152, CNS 1824440, and CNS 1828363.

Fig. 1: Freezing layers in pipeline parallelism.

adjusting learning rates, parallelizing training tasks, reducing
model sizes, optimizing convolution computations, employing
batch normalization, and fine-tuning to reduce training time
for DL models.

Data parallelism stands as a widely employed technique,
involving the division of training data, which is then allocated
across distinct training devices [2]. Model parallelism divides
the parameters of a DNN across layers, with each device
responsible for a specific parameter subset. Model paral-
lelism tends to exhibit relatively lower resource utilization
efficiency. Pipeline model parallelism (Pipeline) techniques
have been proposed to enhance the resource utilization of
model parallelism through pipeline-like scheduling. One sig-
nificant advantage of pipeline is its ability to reduce GPU idle
time during model parallelism training. Its benefits include
reducing overall training time, minimizing GPU idle time
while waiting for predecessor or successor GPU outputs, and
adaptability to various types of DNN models [3].

Transfer learning involves leveraging feature representa-
tions from a pre-trained model, eliminating the need to train
a new model from scratch. It is called fine-tuning referring to
using the weights of an already-trained network as the starting
values for training a new network. By incorporating pre-
trained models into a new model, the training time is reduced,
and generalization error is lowered. Nevertheless, fine-tuning
for a few epochs can still be quite time-consuming, even when
GPUs are employed. This is primarily attributable to the fact
that pre-trained models are generally computationally inten-
sive [4]. A natural approach to enhance the efficiency of fine-
tuning involves constraining the extent to which the model’s
layers are updated, effectively aligning it with the principles

of transfer learning. In transfer learning, one approach is
freezing layers. In DNN, it is a frequent observation that the
initial layers converge swiftly, while the deeper ones demand
significantly more training time. By strategically freezing
these early-converging DNN layers, we can effectively reduce
their associated computational and communication overheads
without sacrificing model accuracy [5].

An instance of layer freezing in a pipeline is exemplified
in Fig. 1. The blue and green colors in the diagram represent
forward and backward propagation operations, respectively.
Each block contains a number denoting the input data ID.
A row of these blocks represents the operations conducted
by a specific worker during a given time slot. Each GPU
initially carries out forward propagation for input data 1
to 6, followed by running backward propagation for input
data 1, contingent on receiving the output from the next GPU.
In this example, we operate under the assumption that the
layers allocated to GPU1 have been frozen. Consequently,
no backward propagation occurs from GPU2 to GPU1 in
this scenario. While freezing layers can help decrease training
costs, careful consideration must be given to ensure that the
freezing process is applied at an appropriate stage in the
training process to maintain optimal accuracy.

We propose the expansion of a pipeline approach to en-
hance the efficiency of DNN training on mobile devices.
Our emphasis on the pipeline methodology stems from its
capacity to diminish training duration by concealing the com-
munication phase behind the computation phase. The process
of freezing a layer involves preserving its weights without
making any modifications. By avoiding the backward pass to a
frozen layer, computational speedups can be achieved. While
freezing layers can be beneficial in reducing training costs,
prematurely freezing under-trained layers can have a negative
impact on the final accuracy. The key challenge in extending
layer freezing to general DNN training lies in maintaining
accuracy by selectively freezing only the converged layers.
This objective is accomplished by employing a mathematical
formula to identify the layers that require less training and are
suitable for freezing while ensuring that the overall accuracy
of the model is preserved.

To summarize, the key contributions of this paper include:

• We introduce an efficient system to implement the idea
of freezing layers during training. In order to reduce
the computation time overhead, we selectively and pe-
riodically calculate the gradient information during the
training process.

• We utilize semantic knowledge to optimize DNN training
by freezing layers, thereby reducing both backward com-
putation and communication while upholding accuracy.

• We introduce the concept of conservative and aggressive
freezing rate to determine the number of frozen layers
for DNNs.

• Our scheme’s effectiveness in efficiently reducing train-
ing time and enhancing resource utilization is evident
from our trace-based simulations conducted on various

widely adopted DNN models.

II. BACKGROUND AND MOTIVATION

A. DNN Training

Modern DNNs comprise numerous layers that execute
mathematical operations. Each layer takes an input tensor of
features and produces corresponding activations. The DNN
training procedure entails iterating through a large dataset
multiple times while minimizing a loss function. The dataset
is divided into smaller mini-batches, and a complete pass
through the entire dataset is referred to as an epoch. The
initialization phase involves setting parameters to random
weights and initializing biases to zero. This is succeeded by
a forward pass of the data through the network to generate
the model’s output. Finally, the backward propagation process
is conducted. The model training process typically entails
several iterations. Within each training iteration, three main
steps are performed: (1) forward pass (FP), (2) backward
pass (BP), and (3) parameter synchronization.

Ttraining =
∑

i∈D
t
(i)
fp +

∑
i∈D

t
(i)
bp + tcom, (1)

where t
(i)
fp and t

(i)
bp denote the time cost for forward prop-

agation and the time cost for backward propagation for i-
th batch of data D, respectively. tcom is the completion
time of parameter updating. Both the forward and backward
passes require computational resources, typically executed
on GPUs. During the forward pass, a mini-batch of data is
processed layer-by-layer within the model, calculating the
loss with respect to the target labels and the defined loss
function. The backward pass of a DNN layer involves two
steps: computing the error or gradient of the current layer
based on the error or gradient propagated from the subsequent
layer, and updating the model parameters of the current layer
accordingly. Gradient gl can start its forward propagation only
when the previous gradient finishes the forward propagation
and gl completes its parameter update process.

The backward pass calculates the parameter gradients from
the last layer to the first layer using the chain rule of
derivatives with respect to the loss. In contrast, the forward
pass of a DNN layer only computes the output values for the
subsequent layer, which typically has a similar computational

TABLE I: Main notations

Symbol Meaning
L = {l1, ..., lk} Layer of DNN

ls/ lt First/ Last layer of partition
pi = (ls, lt) Partition of DNN layers assigned to vi

gl Gradient of layer l
η Gradient norm change
λi Freezing rate in ith iteration
ti ith iteration
s Pipeline depth (number of stages/GPUs)
m Mini-batch size

tfp/tbp Cost of forward/backward propagation
tcom Completion time of parameter updating

Fig. 2: Freezing layers during the training process.

complexity to calculating the error or gradient. Therefore, the
time required for the backward pass is generally considered
to be approximately twice that of the forward pass.

The weights of the model are updated layer-by-layer in
a backward manner using an error estimate, such as the
gradient, which guides how each weight should be updated
within a layer. This error estimate assumes that the input to
a layer remains unchanged from the previous layer. However,
this assumption can hinder the learning process, necessitating
the use of smaller learning rates and potentially requiring
more epochs to achieve convergence. To address this is-
sue, batch normalization is employed. Batch normalization
normalizes the inputs of a layer for each batch, ensuring
that the input distribution does not vary significantly. By
standardizing the inputs, batch normalization stabilizes the
learning process, reducing the time and number of epochs
required for convergence. It helps mitigate the negative impact
of changing input distributions and allows for more efficient
and stable training of deep models.

B. Freezing Layers

Recent efforts have shown that it is not necessary to have
every unit in a network participate in the training process
at every training step. The front layers primarily extract
general features of the raw data and often become well-trained
much earlier, while deeper layers are more task-specific and
capture complicated features outputted by front layers. Not
all layers need to undergo training for the entire training
duration. We can reduce computation and prevent overfitting
by consecutively freezing layers (Fig. 2). For instance, con-
sider a scenario where only the most recent k layers of the
model are subject to updates. This approach is called static
freezing [6]. In this approach, we train the last portions of the
layers, specifically targeting the final 25%, 50%, 75%, or only
the very last layer, for complete fine-tuning. This approach
implies that avoiding gradient computation for specific layers
(freezing) can notably shorten the training duration.

According to findings in [4], static freezing methods result
in a reduction in accuracy ranging from 0.2% to 1.7%.
However, employing too low a percentile value may result
in an overly conservative approach, causing fewer layers to
be frozen than desired. Conversely, using too high a percentile
value can lead to an overly aggressive approach. Therefore,
while techniques such as static freezing and cosine annealing
can diminish backward computation costs, it is important to
be aware of the common side effects of accuracy loss. There is
no specific way to decide how many layers should be frozen
confidently. However, depending on how much target data
we have and how similar they are to the source data, we can

Fig. 3: Pipeline with three GPUs.

approximately decide how many layers should be fixed and
how many layers should be fine-tuned on the target data.

C. Pipeline Model Parallelism (Pipeline)

In Pipeline, the model is partitioned into multiple stages
each including a consecutive set of neural network layers.
These stages are allocated to specific GPUs or workers. To
maximize the system throughput, each training batch is further
split into mini-batches, enabling a pipeline-like execution of
computations. This pipeline operation necessitates point-to-
point communication for the exchange of activations and their
corresponding gradients between adjacent stages.

An illustrative example is presented in Fig. 3, where we
can observe the forward and backward propagation operations
designated by blue and green blocks, respectively. Each
block’s numerical value corresponds to the input data ID. This
scenario involves three stages (s = 3), with a mini-batch size
of m = 6. Each row of blocks represents the operations exe-
cuted by a specific GPU during each iteration. In the pipeline
strategy, each GPU undertakes computations on successive
micro-batches and transfers the outcomes to the subsequent
GPU. GPU1 initially conducts forward propagation for input
data 1 to 6. GPU1 proceeds to perform backward propagation
for input data 1 after receiving the output from GPU2. To
elucidate the steps of a DNN training iteration, we utilize the
labeled blocks in Fig. 3.

The GPUs are interconnected by data dependencies, and
computations on each GPU follow the input data order. To
ensure optimal training throughput and maintain a continuous
pipeline during the entire training process, GPUs must coordi-
nate effectively. Delays or disruptions in data flow can result
in GPU idleness (“bubbles” are illustrated by gray areas) and
a decrease in training efficiency. The presence of idle bubbles
within the training pipeline, as depicted in Fig. 3, enlarge the
training makespan. There are three mainstream techniques of
pipeline to reduce bubbles: (1) Gpipe [7], (2) One forward
one backward (1F1B) [8] and (3) Overlapping cost [9].
Gpipe [7] introduced the concept of micro-batches, wherein
the traditional mini-batch is subdivided into smaller, equal-
sized micro-batches. These micro-batches are introduced into
the pipeline simultaneously to minimize idle periods within
the distributed system. In 1F1B scheduling scheme, as in-
troduced in Pipedream [8], workers/GPUs execute backward
propagation immediately following a forward propagation.

III. PROPOSED METHOD

During the typical training of DNN models, all layers are
involved in the training process simultaneously. However, it

may not be necessary for all layers to be actively trained at
all times, as different layers exhibit varying learning speeds.
Layer freezing techniques are used to freeze the weights
of specific layers of an already trained DNN in order for
them to remain unchanged during training. In our method,
the first training iteration starts without freezing, where all
layers are updated. In the following iterations, this method
then progressively starts freezing from the early layers down
to the latest layers in the model in an orderly fashion.

By avoiding the backward pass to a layer whose weights
we wish to leave unaltered, we can achieve a substantial
acceleration in processing speed. For instance, if we freeze
half of the model and proceed to train it, the time required
will be approximately half that of a fully trainable model.
However, it is crucial to strike a balance as we still need to
train the model adequately. Freezing the model prematurely
can lead to inaccurate predictions, emphasizing the impor-
tance of determining the optimal point at which to freeze the
layers.

For stability, we adopt an initial training phase where layers
are allowed to train without freezing for a specific number of
epochs before the freezing process commences. Nevertheless,
two crucial questions require attention: 1) The determination
of the optimal number of layers to freeze initially, and 2)
The appropriate frequency at which these layers should be
frozen. To address these questions, a gradual identification and
freezing process during training is implemented, accompanied
by the allocation of resources to train the remaining active
layers. Notably, excluding consecutive bottom layers from the
pipeline proves beneficial as it effectively reduces computa-
tion, memory, and communication overhead. By conducting a
meticulous analysis of the freezing rates and applying suitable
freezing strategies, we can achieve optimization of the training
process, leading to improved efficiency of DNN models.

A. Model

Consider a distributed training setup with multiple workers
or GPUs, each responsible for updating a subset of the DNN
parameters. L = {l1, l2, ..., ln} are layers in the DNN. The
total number of layers in the training model is denoted by
n. Let ϕ(w1, w2, ..., wk) denote the loss function, where wi

refers to parameters in layer li. We suppose that there are k
parameters for each layer. After the backward propagation of
iteration t, the model parameters for the following iteration t+
1 are updated using the following equation:

Wx(t+ 1) = Wx(t)− α
∂

∂Wx
ϕ(w1, w2, . . . , wk), (2)

where Wl(t) is the weight matrix of layer l at times-
tamp t, where l ∈ L and α is the learning rate. Let
V = {v1, v2, ..., vn} denote a set of GPUs. We assume each
partition is handled by a single GPU device. Mathematically,
the architecture of a neural network with three layers can be
described as follows:

y1 = xW1 + b1, y2 = y1W2 + b2, y3 = y2W3 + b3,

where W1,W2,W3, b1, b2 and b3 are the weights and biases
of the network. In this example, x, y1, and y2 are inputs to
the first, second, and third layers, respectively. We derive the
backpropagation equations with the loss L using the chain
rule as follows:

∂L
∂W3

=
∂L

∂y3

∂y3
∂W3

=
∂L
∂y3

y2,

∂L
∂b3

=
∂L

∂y3

∂y3
∂b3

=
∂L
∂y3

× 1 =
∂L
∂y3

,

∂L
∂W2

=
∂L

∂y3

∂y3
∂y2

∂y2
∂W2

=
∂L
∂y3

WT
3 y1,

∂L
∂b2

=
∂L

∂y3

∂y3
∂y2

∂y2
∂b2

=
∂L
∂y3

WT
3 × 1 =

∂L
∂y3

WT
3 ,

∂L
∂W1

=
∂L

∂y3

∂y3
∂y2

∂y2
∂y1

∂y1
∂W1

=
∂L
∂y3

WT
3 WT

2 x,

∂L
∂b1

=
∂L

∂y3

∂y3
∂y2

∂y2
∂y1

∂y1
∂b1

=
∂L
∂y3

WT
3 WT

2 ×1 =
∂L
∂y3

WT
3 WT

2 ,

With the equations provided earlier, updating the network
weights (namely W1, W2, and W3) necessitates retaining the
values of x, y1, and y2 throughout the forward calculations,
as these values are essential for subsequent backward com-
putations.

Importantly, the progression of forward and backward
operations between workers is organized in a pipeline manner.
multiple workers can concurrently execute forward and back-
ward propagation on distinct mini-batches of input data. Let
di signify the mini-batch with label i. Moreover, we make the
assumption that the time taken for both forward and backward
propagation on all workers remains constant. Assume that
the network architecture is already pre-trained on a large
dataset and that the lower layers capture general features,
while the higher layers capture more task-specific features.
With the freezing algorithm, we freeze the lower layers,
allowing the higher layers to adapt to the new task during
training. Since the lower layers are frozen, their gradients are
not updated, reducing the overall computational load during
training. Therefore, during training, the gradient for frozen
layers is gi = 0.

B. Learning the Importance of Layers

The proof of convergence for optimization algorithms like
SGD [10] demonstrates that the expected gap between pa-
rameters and the optimal solution diminishes across training
iterations. Consequently, the difference in weights (or the
magnitude of weight updates) between consecutive iterations
also lessens. As a result, there is a possibility that certain
layers might experience minimal parameter adjustments as
training nears completion. Detecting and subsequently freez-
ing these layers when their updates are minimal will not
compromise accuracy. In the context of transfer learning, pre-
trained models show slight adjustments during fine-tuning
compared to the initial pre-training phase. Thus, identifying
and freezing layers with negligible updates (weight distance

values) should have a limited impact on the fine-tuning
process, as well as the ultimate accuracy achieved.

Definition 1. (Freezing Decision) For a layer l, whose
weights at timestamp j can be denoted as W j

l : Given a
sequence of its weight history (W j

l)
t
j=0 at timestamp t, yield

a positive decision to freeze the layer at current epoch if the
layer is ready to be frozen, and yield a negative decision if
the layer needs further training.

We can evaluate how much a layer adds to the overall
training progress. If a layer does not make a big difference,
we can freeze it to speed up training. The change in gradient
values over time in a layer helps us understand how fast the
model’s weights are getting updated for that specific layer.
We consider the normalized difference of gradients as an
important measurement. When weight adjustments happen
in both positive and negative directions, and these updates
eventually offset each other, it results in time being expended
on redundant updates. As a result, these weights can be frozen
since the opposing gradients offset each other. The freezing
rate of a layer defines the degree to which we opt to freeze
it. We collect gradients for each layer in the model and carry
out our evaluations at regular time intervals marked by t.

Definition 2. (Gradient Norm Difference) We define the
alteration in gradient norm for layer l at time t as η:

ηl =
∥gt−1

l − gtl∥
∥gt−1

l ∥
. (3)

Definition 3. (Frozen Layer Sequence) A layer can be marked
for freezing if all preceding layers are frozen, and it holds the
layer that experiences the slow rate of change. Therefore, to
implement the freezing algorithm for layer li, two conditions
should be considered:

1) Gradient norm difference of li should be smaller than
given Threshold (ηli < τ)

2) For k = 0 to k = i− 1 : gradient of lk should be zero
(glk = 0).

The core idea involves employing a formula to compute
freezing rates, which offers insight into the number of initial
layers to freeze. We introduce a test based on the gradient
norm that assesses layers according to their rate of change.
Subsequently, we choose the least changing layers for freez-
ing. Our aim is to freeze layers as they approach optimality.
This signifies that the gradients pertaining to these layers
are comparably small. We can find the max prefix of layers
for freezing by comparing the gradient difference with the
threshold. It is noted that our approach includes a freezing of
successively more layers from layer 1.

Definition 4. (Freezing Rate) We propose an adaptive freeze
algorithm to define L

(t)
frozen as the set of frozen layers at time

step t where t ≥ 1 as follows:

|L(t)
frozen| = |L(t−1)

frozen|+ λt|(L− L
(t−1)
frozen)|, (4)

where λ is a hyperparameter termed the freezing rate, con-
strained within the interval λ ∈ (0, 1). This effectively freezes
λ fraction of the remaining active layers. Increasing λ results
in an aggressive layer freezing approach. The λ parameter
controls the trade-off between accuracy and training speed.

However, having small gradients does not necessarily mean
we are getting close to the best solution. The shape of the
function we are attempting to minimize can be quite complex,
featuring saddle points and flat regions with high loss. These
features can also result in small gradient values.

Lemma 1. If the rate is too aggressive (freezing too many
layers too quickly), it leads to suboptimal accuracy. If the rate
is too conservative (freezing too few layers), the model may
not be able to fully leverage the benefits of freezing and may
require more epochs to converge to the desired accuracy.

Definition 5. (Conservative and aggressive freezing Rate) In
the case of Conservative Freezing, where fewer layers are
frozen in each epoch (λ has a small value), it requires more
epochs and longer training times to achieve similar accuracy.
In the case of Aggressive Freezing, where a larger number of
layers are frozen in each epoch (λ has a large value), it leads
to shorter training times since more layers are frozen, and the
model’s parameters require fewer updates. However, there is a
risk of prematurely freezing, leading to suboptimal accuracy.
The more aggressive our freezing policy is, the greater the
accuracy loss will be.

The procedure outlined in Algorithm 1 elucidates the
details of training deep models through SGD coupled with
intelligent freezing. To streamline the process, a learning rate
denoted as α and threshold τ are employed within Algo-
rithm 1. In scenarios where SGD with step decay is adopted,
the steps delineated in Algorithm 1 are straightforwardly
repeated for each distinct learning rate utilized.

Algorithm 1 Intelligent freezing on pipeline parallelism

Require: Network parameters: ω,
Learning rate: α,
Number of training epochs without freezing: e1,
Number of training epochs: E,
The threshold for freezing rate: τ .

1: for epoch = 0 to e1 do
2: train(); test();
3: end for
4: Optimizer = Get-optimizer(ω, α)
5: for epoch = e1 + 1 to E do
6: Lcandidate = Get-Layers-to-Freeze(ω, τ)
7: Lfrozen = Lfrozen ∪ Lcandidate

8: Optimizer = Get-optimizer(ω,Lcandidate)
9: train(); test();

10: end for

A higher learning rate can expedite training, but it risks
overshooting the optimal solution or hindering convergence.

Conversely, a lower learning rate fosters stability but extends
training duration. Typically, higher learning rates are applied
in initial epochs for acceleration. As training progresses
and model weights approach optimality, the learning rate
diminishes to encourage convergence. Lowering the learning
rate generally results in lower freezing rates for layers. It is
important to note that freezing rates cannot directly determine
which layers to freeze. When an unfrozen layer feeds into a
frozen one, gradients for the frozen layer are still computed
to facilitate gradients for preceding unfrozen layers. Conse-
quently, to enhance efficiency, it is advisable to commence
freezing from the first layer and proceed sequentially. Non-
sequential frozen layers would lead to gradients being com-
puted for layers preceding the unfrozen ones. When a layer’s
learning rate reaches zero, it transitions to inference mode and
is excluded from subsequent backward passes, resulting in an
immediate per-iteration speedup proportional to the layer’s
computational cost.

C. Reduction of Bubbles and Training Time

The training time corresponds to the period taken for the
completion of the training process. We can quantify the extent
of the pipeline bubble in GPipe, denoted as (tpb). We denote
the number of mini-batches in a batch as m, the number of
pipeline stages (the number of GPUs) as s, the ideal time
per iteration assuming perfect scaling as tid, and the time
taken for executing both the forward and backward passes of
a single mini-batch as tfp and tbp, respectively. The pipeline
bubble encompasses s−1 forward passes at the start of batch
and s− 1 backward passes towards the end. The cumulative
time spent within the pipeline bubble can be expressed as
tpb = (s−1)(tfp+tbp). Correspondingly, the ideal processing
time for the batch is tid = m(tfp + tbp). Therefore, the
fraction of ideal computation time spent in the pipeline bubble
is tpb/tid = (s− 1)/m.

Lemma 2. If training data has D batches and the size of mini-
batch is denoted by m, in each epoch there are I = D/m
iterations. Each GPU needs to wait (s − 1) and perform
training on m data in each iteration. By considering both
forward and backward propagation for each item of data,
GPUs spend time for 2(m + s − 1) in each iteration. The
finishing training time and number of bubbles depend on
batch size m and number of stages s in each iteration :

Training time = 2(m+ s− 1) (5)

The fraction of time wasted on bubbles depends on the
pipeline depth or stage s and mini-batch size m:

Bubble = 1− 2sm

2s(m+ s− 1)
= 1− m

m+ s− 1
(6)

Increasing the size of the mini-batches is necessary for
making the bubble fraction small. For the bubble time fraction
to be small, we thus need m >> s. Large mini-batch sizes
require careful learning rate scaling and will increase the
memory demand for caching the activations to be kept in

memory for all m mini-batches through the lifetime of a
training iteration.

Theorem 1. The freezing algorithm in distributed training
on DNNs can accelerate convergence by reducing training
time. Suppose the training data has D batches and the number
of mini-batches in each batch is denoted by m, so that in
each epoch, there are I = D/m iterations. By freezing f
layers, where f = λ.|L| and Gpipe is used as the pipeline,
the reduction time is:

Reduction Time = f(2I − 1), (7)

By freezing f layers, where f = λ.|L| and 1F1B is used
as pipeline, the reduction time is :

Reduction Time = fI, (8)

Proof. In an epoch with f frozen layers, there would be f
reduction for forwarding passes and f reduction for back-
warding passes in each iteration except the first iteration.
In the first iteration, because each layer needs to have its
input to start forwarding passes, there is no reduction for
forwarding passes. Therefore, the reduction is f for the
first iteration and 2f for (D/m) − 1 = I − 1 iteration:
Reduction Time = f+2f(I−1) = f(2I−1). If we have the
1F1B approach for pipeline and interactions between layers,
the GPU performs a backward propagation immediately after
a forward propagation. That is why, in this approach, for each
iteration there is a f reduction.

Theorem 2. The freezing algorithm in distributed training
on DNNs can accelerate convergence by reducing bubbles.
By freezing f layers, where f = λ.|L| and Gpipe is used as
the pipeline,

Bubbles = (s− f)(I + 1)(s− 2) (9)

By freezing f layers, where f = λ.|L| and 1F1B is used
as the pipeline,

Bubbles = (s− f)I (10)

Proof. In the Gpipe pipeline, each active GPU has s − 2
bubbles for backward passes in each iteration except the first
iteration. The first iteration has (s − 2) bubbles for forward
passes as well. So, by having s − f active GPUs, there are
s(s− 2)(I) + s(s− 2) bubbles in total.

In the 1F1B pipeline, the bubble consists of s− 1 forward
passes at the start of a mini-batch. The bubble that we have
in Gpipe for backward passes has been filled by forwarding
passes of new data. So, by having s GPUs, there are s(s−1)
bubbles in each iteration. By freezing f layers, each GPU,
which does not have frozen layers, just has a 1 bubble which
is for waiting for the first input from the previous layer.
Therefore, by having (s − f) GPUs which are not involved
with frozen layers and I iterations, the number of bubbles is
(s − f)I . Note that GPUs with frozen layers can efficiently
process new data during idle periods without the need for
backward passes, eliminating any bubble time.

(a) No freeze: (Bubbles: 48, T:24). SmartPipe: (Bubbles: 13, T:18)

(b) No freeze: (Bubbles: 24, T:18). SmartPipe: (Bubbles: 9, T:16)

Fig. 4: Gpipe: No freezing vs. two frozen layers. Data size
D = 6, stage s = 4, and (a) batch size b = 3, (b) batch size
b = 6.

Consider a dataset of size D = 6 and a total of s = 4
stages, and present an example to demonstrate the effective-
ness of the frozen layer in SmartPipe. In the accompanying
diagram, the blue and green colors denote forward and
backward propagation operations, respectively. The bubbles
are depicted in gray areas. The unoccupied space signifies
that the GPU is at liberty for any other tasks. Fig. 4 presents a
comparative analysis between the No Freezing and SmartPipe
during the Gpipe approach. In part (a), when the No Freezing
method is employed with a batch size of b = 3, the following
results are observed: The number of bubbles is 48, and
the training time amounts to 24 units. Conversely, with the
utilization of the SmartPipe technique and by freezing two
layers, the number of bubbles is notably reduced to 13, and
the training time is correspondingly diminished to 18 units.
In part (b), the same scenario is repeated, but with a larger
batch size of b = 6.

Fig. 4 presents a comparative analysis between the No
Freezing and SmartPipe methodologies within the context
of the 1F1B approach. Consistently, the results reveal that
SmartPipe yields a reduction in both the number of computa-
tional bubbles and the overall training time in comparison to
the No Freezing method. In both scenarios, utilizing different
approaches and distinct batch sizes, the effectiveness of the
SmartPipe method in enhancing and optimizing the training
process is clearly evident.

D. Resource Allocation

We can complement our approach with the method pre-
sented in [9], which incorporates resource allocation consid-
erations. Our primary objective is to minimize the duration
of bottleneck operations during DNN training while adhering

(a) No freeze: (Bubbles: 32, T:20). SmartPipe: (Bubbles: 10, T:16)

(b) No freeze: (Bubbles: 24, T:18). SmartPipe: (Bubbles: 9, T:16)

Fig. 5: 1F1B: No freezing vs. two frozen layers. Communica-
tions are omitted for simplicity where data size D = 6, stage
s = 4 and (a) batch size b = 3, (b) batch size b = 6.

to resource allocation constraints. In the case of considering
resource allocation for pipeline on distributed training, the
lengths of forward and backward propagation are mainly
related to resource allocation and the DNN model partition.
The allocation of resources guarantees that each worker can
attain optimal speedup, while the model partition effectively
determines the individual workload of every worker. Given
the resource allocation, the forward propagation time for a
specific DNN partition pi = (ls, lt) can be represented by
f(pi,

∑j
j=1 βjrj). Similarly, the backward propagation time

for pi is denoted as g(pi − Lfrozen,
∑j

j=1 (1− βj)rj). In
our model, the communication time is designated as h(pi −
Lfrozen, b), which exclusively varies with the partition pi.
The problem can be formulated as minimizing the equation:

max
vi∈V

{
f(pi,

m∑
j=1

βjrj), g
(
pi − Lfrozen,

m∑
j=1

(1− βj)rj
)
,

h(pi − Lfrozen, b)

}
Subject to 0 ≤ βj ≤ 1, 1 ≤ j ≤ m, Lfrozen ≤ L− 1.

(11)

By combining these two approaches, we aim to achieve
greater optimization in DNN training, effectively reducing
bottlenecks and ensuring efficient utilization of available
resources.

IV. RELATED WORK

A significant amount of work has been dedicated to
fragmenting the computation of NN models in pursuit of
efficient large-scale distributed training [11]. In [12], the

(a) Accuracy for batch size: 1024 (b) Accuracy for batch size: 8192 (c) Training time for batch size: 1024 (d) Training time for batch size: 8192

Fig. 6: Comparing accuracy and training time for different methods under baseline and proposed approaches.

authors explored strategies for accelerating training processes.
Several parallel techniques have emerged to expedite the
training of distributed deep learning. Megatron [13] intro-
duced model parallelism by dividing layers, facilitating the
training of sizable transformer-based language models. Mesh-
TensorFlow enables intra-layer model parallelism, with a
user-friendly interface for specifying parallelization strategies.
Another widely used parallel approach is pipeline parallelism,
which involves segmenting extensive models into distinct
stages [14], [15].

GPipe [7] employed micro-batches to partition batches,
minimizing pipeline bubble size without altering the strict
synchronous optimizer semantics. In a bid to further re-
duce pipeline bubbles, Chimera [16] introduced bidirectional
pipelines that amalgamate two pipelines in opposing direc-
tions. Both pipelines encompass a complete DNN model
and leverage micro-batch strategies. Chimera not only fills
idle pipeline time but also reduces bubble count by up to
50% compared to GPipe. A framework based on elastic
averaging has been explored in [17], which incorporates
elastic averaging to introduce multiple parallel pipelines.

PipeDream [8] presented a solution called 1F1B, which
introduces asynchronous updates to mitigate the issue of
bubbles in micro-batch-based methodologies. Under the 1F1B
scheduling within the pipeline, workers execute backward
propagation immediately after forward propagation, utilizing
distinct data samples for each computation. When pipeline
balance is maintained, 1F1B ensures a bubble-free pipeline.
Addressing the storage problem of PipeDream, PipeDream-
2BW [18] adopts double-buffered gradients to alleviate
storage overhead arising from numerous gradient copies.
TeraPipe [19] put forth a fine-grained pipeline approach
across tokens tailored for auto-regressive models. PipeTrans-
former [20] dynamically adjusts pipeline and data parallelism
by freezing certain layers and allocating resources to active
layers. Deepspeed [21] combined data parallelism, intra-layer
model parallelism, and inter-layer pipeline methods to train
exceedingly large models.

DAPPLE [22] is a synchronous training framework that
combines data and pipeline parallelism to enhance com-
putational efficiency while ensuring convergence. In [23],
the concept of training plasticity is introduced to quantify
the progress of internal DNN layers. The authors devise a
knowledge-guided DNN training system leveraging semantic

knowledge from a reference model to accurately assess the
training plasticity of individual layers. This approach safely
freezes converged layers, conserving computational resources
and communication. Furthermore, in [24], the idea from [5] is
harnessed to apply gradient amplification, expediting training
and achieving enhanced performance at larger learning rates.

V. EVALUATION

In this section, we assess the efficacy of the SmartPipe
methodology through its application to standard benchmark
datasets, namely CIFAR-100 [25] and ImageNet [26], for
the purpose of image classification. Our experimentation
incorporates three distinct models: RestNet50 [27], AlexNet
[28], and GoogLeNet [29]. We use the PyTorch [30] li-
brary to implement the DNN training. Models are trained
by using PyTorch on an 8 × A100 GPU server. We
adopt the standard data augmentation and SGD optimizer.
In PyTorch, to freeze a specific layer, we need to set
requires_grad = False/True for each parameter
that we want to freeze/update. The requires_grad flag
is a boolean that allows for fine-grained exclusion of sub-
graphs from gradient computation. Setting the parameters’
requires_grad flag to False would prevent calculating the
gradients for these parameters in the backward step, which in
turn prevents the optimizer from updating them.

We measure the execution time for forward and backward
propagation on mobile devices. We conduct these tests using
a laptop featuring an Intel i7 CPU, a GTX 1650 GPU, and
32GB RAM. This laptop is considered a relatively robust de-
vice. Additionally, we treat the laptop’s CPU and GPU as sep-
arate computing resources, enabling us to separately evaluate
the time taken for both forward and backward propagation on
each resource [9]. To comprehensively evaluate our approach
and make a comparative assessment against baseline methods,
we employ three key measurements: accuracy, training time,
and average time per epoch. These metrics will enable us
to gauge the effectiveness and efficiency of our proposed
approach in comparison to other established methods.

A. Accuracy and Training Time under Different Thresholds

The threshold serves as a critical hyperparameter in our
proposed approach. It governs the rate at which layer freezing
occurs during training. Achieving the right balance is crucial,
as overly aggressive freezing, where too many layers are

(a) AlexNet (b) GoogLeNet

Fig. 7: Comparison accuracy on different numbers of epochs.

frozen too quickly, can undermine accuracy. Conversely, a
conservative approach, freezing too few layers, might hinder
the model from fully capitalizing on the benefits of freezing
and necessitate more epochs to attain the desired accuracy.
As depicted in Fig 6, adopting a conservative freezing strat-
egy (small λ) demands a higher number of epochs and longer
training times to achieve comparable accuracy levels. On the
other hand, an aggressive freezing strategy (large λ) leads to
shorter training times due to the increased number of frozen
layers, reducing parameter updates. However, it carries the
risk of premature freezing, potentially leading to suboptimal
accuracy. Certainly, the level of aggressiveness in our freezing
approach directly impacts the extent of accuracy reduction. It
is crucial to achieve an optimal balance that enables efficient
training while maintaining an acceptable level of accuracy.

B. Comparison of Accuracy for Different Numbers of Epochs

As shown in Fig 7, the SmartPipe approach exhibits
performance closely comparable to the full training ap-
proach in terms of accuracy. Particularly, when applied to
the GoogLeNet model, SmartPipe achieves the same level
of accuracy and effectively completes the training process.
Both the fixed freezing and linear freezing approaches may
complete training in fewer epochs, but their lower accuracy
compared to our proposed approach renders them unaccept-
able. Despite the shorter training times, sacrificing accuracy
can have significant implications for the overall performance
and reliability of the deep learning models. Therefore, our
proposed approach, which achieves comparable accuracy

(a) AlexNet (b) GoogLeNet

Fig. 8: Average time on different numbers of stages.

while efficiently reducing training time, stands as a more
viable and effective solution for DNN training.

C. Average Time of an Epoch for Different Numbers of Stages

Increasing speedup in pipeline parallelism by considering
more GPUs involves optimizing the distribution of the work-
load across the GPUs and minimizing communication over-
head. As the number of GPUs increases, the workload can be
divided into more stages or subtasks, allowing multiple stages
to be executed concurrently. This parallel processing reduces
the overall time needed to complete the entire pipeline. With
more GPUs, it becomes possible to overlap the computation
of one stage with the communication and setup of subsequent
stages. This reduces the idle time of GPUs and increases
overall throughput. While one GPU is busy processing, others
can begin processing the next stage.

As depicted in Fig 8, the number of stages (represent-
ing the number of GPUs responsible for pipeline training)
significantly influences the average time required for each
epoch during training. Specifically, increasing the number of
stages reduces training time per epoch. The implementation
of SmartPipe further enhances this effect, contributing to a
noticeable reduction in the time required for each epoch.
By optimizing the training process and leveraging pipeline,
SmartPipe effectively accelerates the overall training duration,
making it more efficient and time-effective. The reason behind
the time reduction is attributed to the freezing process, which
effectively limits the number of interconnections between
GPUs. This limitation optimizes communication overhead,
enabling a more streamlined and efficient training process

TABLE II: Comparison of different freezing methods.

CIFAR-100 ImageNet
Model Method Accuracy Time(s) Accuracy Time(s)

RestNet50

Full training 96.10%± 0.12% 2, 594 81.68%± 0.15% 2, 500
Fixed Freezing (k=2) 96.05%± 0.25% 1, 980 81.48%± 0.29% 1, 844

Linear Freezing (k=#epoch) 95.03%± 0.21% 2, 424 78.30%± 0.48% 1, 963
SmartPipe (ours) 96.02%± 0.11% 1, 955 81.63%± 0.22% 1, 787

AlexNet

Full training 97.48%± 0.20% 14, 603 85.03%± 0.28% 14, 628
Fixed Freezing (k=2) 81.06%± 0.23% 8, 760 73.89%± 0.19% 9, 956

Linear Freezing (k=#epoch) 90.56%± 0.22% 10, 368 76.10%± 0.32% 10, 654
SmartPipe (ours) 97.35%± 0.16% 8, 662 84.82%± 0.25% 9, 599

GoogLeNet

Full Training 93.36%± 0.17% 2, 698 74.95%± 0.11% 2, 703
Fixed Freezing (k=2) 92.35%± 0.19% 1, 587 73.26%± 0.23% 1, 846

Linear Freezing (k=#epoch) 92.08%± 0.19% 10, 291 72.26%± 0.23% 1, 846
SmartPipe (ours) 93.28%± 0.25% 1, 554 74.66%± 0.29% 1, 831

across multiple GPUs in the pipeline. As a result, the overall
training time is significantly reduced.

D. Comparison of Different Models and Different Datasets
In Table II, we present a comprehensive comparison of

accuracy and training time for the RestNet50, AlexNet, and
GoogleNet models on the CIFAR-100 and ImageNet datasets.
The evaluation involves different approaches: 1) Full Training
(No Freezing): All layers are trained without any freezing, 2)
Fixed Freezing: A fixed number of layers are frozen in each
epoch, 3) Linear Freezing: The number of frozen layers varies
linearly with the number of epochs, 4) SmartPipe. The results
indicate that the SmartPipe approach achieves accuracy close
to those obtained by full training on both datasets. Moreover,
our proposed approach significantly reduces the training time
compared to the other evaluated methods.

VI. CONCLUSION

This study delved into the proposing a method for signif-
icantly reducing the training time of deep learning models
while maintaining test accuracy by using of layer freezing in
DNNs through pipeline parallelism. Layer freezing involves
excluding specific layers from backpropagation, thus retaining
their unchanged weights and reducing the computation time
during backpropagation. Building upon the benefits of freez-
ing layers, we propose an intelligent freezing approach that
takes into account the training progress of layers throughout
the epochs. By dynamically selecting layers to freeze during
the training process, we aim to optimize the training efficiency
further. To evaluate the effectiveness of our proposed scheme,
we conducted trace-based simulations. The results of our ap-
proach clearly demonstrate its efficiency in reducing the time
required for a single training iteration without significantly
compromising accuracy.

REFERENCES

[1] L. Cui, Z. Qu, G. Zhang, B. Tang, and B. Ye, “A bidirectional dnn
partition mechanism for efficient pipeline parallel training in cloud,”
Journal of Cloud Computing, vol. 12, no. 1, p. 22, 2023.

[2] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce scheduling
for expediting distributed dnn training,” in Proc. of the IEEE Conf. on
Computer Communications (INFOCOM), 2020, pp. 626–635.

[3] H. Wang, C. Imes, S. Kundu, P. A. Beerel, S. P. Crago, and J. Paul Wal-
ters, “Quantpipe: Applying adaptive post-training quantization for dis-
tributed transformer pipelines in dynamic edge environments,” in Proc.
of the Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
2023, pp. 1–5.

[4] Y. Liu, S. Agarwal, and S. Venkataraman, “Autofreeze: Automati-
cally freezing model blocks to accelerate fine-tuning,” arXiv preprint
arXiv:2102.01386, 2021.

[5] X. Xiao, T. B. Mudiyanselage, C. Ji, J. Hu, and Y. Pan, “Fast deep
learning training through intelligently freezing layers,” in Proc. of Intl.
Conf. on Internet of Things (iThings), 2019, pp. 1225–1232.

[6] J. Lee, R. Tang, and J. Lin, “What would elsa do? freezing layers during
transformer fine-tuning,” arXiv preprint arXiv:1911.03090, 2019.

[7] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of
giant neural networks using pipeline parallelism,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[8] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in Proc. of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1–15.

[9] Y. Duan and J. Wu, “Optimizing resource allocation in pipeline paral-
lelism for distributed dnn training,” in Proc. of the 28th IEEE Intl. Conf.
on Parallel and Distributed Systems (ICPADS), 2023, pp. 161–168.

[10] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[11] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright,
H. Shojanazeri, M. Ott, S. Shleifer et al., “Pytorch fsdp: Experiences on
scaling fully sharded data parallel,” arXiv preprint arXiv:2304.11277,
2023.

[12] L. Shen, Y. Sun, Z. Yu, L. Ding, X. Tian, and D. Tao, “On efficient
training of large-scale deep learning models: A literature review,” arXiv
preprint arXiv:2304.03589, 2023.

[13] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[14] J. Geng, D. Li, and S. Wang, “Elasticpipe: An efficient and dynamic
model-parallel solution to dnn training,” in Proc. of the 10th Workshop
on Scientific Cloud Computing, 2019, pp. 5–9.

[15] J. Zhan and J. Zhang, “Pipe-torch: Pipeline-based distributed deep
learning in a gpu cluster with heterogeneous networking,” in Proc. of
the 7th IEEE Intl. Conf. on Advanced Cloud and Big Data (CBD),
2019, pp. 55–60.

[16] S. Li and T. Hoefler, “Chimera: efficiently training large-scale neural
networks with bidirectional pipelines,” in Proc. of the Intl. Conf. for
High Performance Computing, Networking, Storage and Analysis, 2021,
pp. 1–14.

[17] Z. Chen, C. Xu, W. Qian, and A. Zhou, “Elastic averaging for efficient
pipelined dnn training,” in Proc. of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, 2023,
p. 380–391.

[18] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-efficient pipeline-parallel dnn training,” in IEEE Intl. Conf.
on Machine Learning (PMLR), 2021.

[19] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Stoica,
“Terapipe: Token-level pipeline parallelism for training large-scale
language models,” in Proc. of the IEEE Intl. Conf. on Machine Learning
(PMLR), 2021, pp. 6543–6552.

[20] C. He, S. Li, M. Soltanolkotabi, and S. Avestimehr, “Pipetransformer:
Automated elastic pipelining for distributed training of large-scale
models,” in Proc. of the 38th Intl. Conf. on Machine Learning (PMLR),
2021, pp. 4150–4159.

[21] D. Team and R. Majumder, “Deepspeed: Extreme-scale model training
for everyone,” 2020.

[22] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia et al., “Dapple: A pipelined data parallel approach for
training large models,” in Proc. of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2021, pp. 431–
445.

[23] Y. Wang, D. Sun, K. Chen, F. Lai, and M. Chowdhury, “Egeria: Efficient
dnn training with knowledge-guided layer freezing,” in Proc. of the 18th
European Conf. on Computer Systems, 2023, pp. 851–866.

[24] S. Basodi, K. Pusuluri, X. Xiao, and Y. Pan, “Intelligent gradient am-
plification for deep neural networks,” arXiv preprint arXiv:2305.18445,
2023.

[25] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Infor-
mation Processing Systems, vol. 25, 2012.

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 1–9.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

	Introduction
	Background and Motivation
	DNN Training
	Freezing Layers
	Pipeline Model Parallelism (Pipeline)

	Proposed Method
	Model
	Learning the Importance of Layers
	Reduction of Bubbles and Training Time
	Resource Allocation

	Related Work
	Evaluation
	Accuracy and Training Time under Different Thresholds
	Comparison of Accuracy for Different Numbers of Epochs
	Average Time of an Epoch for Different Numbers of Stages
	Comparison of Different Models and Different Datasets

	Conclusion
	References

