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Abstract—The goal of a trust-based recommendation system
is to predict unknown ratings based on the ratings expressed
by trusted friends. However, most of the existing work only
considers the ratings at the current time slot. In real life, a
user receives the influence of different opinions sequentially;
accordingly, his opinion evolves over time. We propose a novel
rating prediction scheme, FluidRating, which uses fluid dynamics
theory to reveal the time-evolving formulation process of human
opinions. The recommendation is modeled as fluid with two
dimensions: the temperature is taken as the “opinion/rating,” and
its volume is deemed as the “persistency,” representing how much
one insists on his opinion. When new opinions come, each user
refines his opinion through a round of fluid exchange with his
neighbors. Opinions from multiple rounds are aggregated to gain
a final prediction; both uniform and non-uniform aggregation are
tested. Moreover, Three sampling approaches are proposed and
examined. The experimental evaluation of a real data set validates
the feasibility of the proposed model, and also demonstrates its
effectiveness.

Keywords—Fluid dynamics theory, rating prediction, time-
evolving, trust-based recommendation system.

I. INTRODUCTION

High-quality and personalized recommendations are a key
feature in many online systems [1]–[3]. To recommend an
item that a user may be interested in, explicit knowledge of
social network structures, such as the trust relationships, can
be incorporated. In recent years, trust-based recommendation
systems have gained significant attention [1], [4]–[6]. Such
systems use the knowledge of a trust network among users,
to provide personalized recommendations by aggregating the
opinions of their trusted friends. Several models have been
proposed to aggregate trust information among trusted friends
[7], such as TidalTrust [8], MoleTrust [9], FlowTrust [10], and
RN-Trust [11]. These models work in one round, i.e., only
the current trust information is considered, or, the information
is taken as static. In real life, a user’s opinion evolves with
time, because he receives the influence of different opinions
at different times, either directly from connected friends or
indirectly from friends of friends. Therefore, going one step
further, we propose a rating prediction scheme, FluidRating,
to simulate the time-evolving opinion formulation process as
fluid flows, using the fluid dynamics theory.

In this paper, we consider the setting where there is a
single item of interest (e.g., a product). A subset of users
(raters, denoted as R) have prior opinions about this item.
A special non-rater, the sink (denoted as S), is one whose
rating is being predicted. The remaining non-raters (denoted
as N ) have not formed their opinions, but can propagate
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Fig. 1. An example of a rating network, where nodes represent users;
numbers on nodes represent ratings on a given target item, and weighted
edges represent influence relations.

the opinions from R to S. In addition, we convert the trust
relations into the influence relations, which are based on the
following intuition: the more user a′ trusts user a, the higher
the probability is that the opinion of a can influence a′. Then,
the three sets of users, R, N , and S, and the influence relations
among them, are used to construct a rating network. Fig. 1
shows an example of rating network, where R = {a1, a2},
N = {a3, a4, a5}, and S = {a6}. The number associated with
a node in R corresponds to a rating. The higher the number
is, the higher the rating is. The number associated with each
edge represents the influence strength from one user to another,
which is determined by the trust relationship between them.

We consider this question: Upon receiving new opinions,
how will a user refine his opinion? For instance, for a given
target item, a person first receives a positive opinion from
a friend, and forms an initial opinion; some time later, he
receives a negative opinion from another friend. Will the user
change his initial opinion? We observe in real life that whether
the user changes his opinion or not depends on how much he
insists on his own opinion, as well as how much the others
insist on theirs. We call this feature the persistency, and take
it into consideration in the FluidRating scheme.

Main Ideas. The proposed FluidRating is a computational
model using the fluid dynamics theory. A rating network is
modeled as a fluid dynamics system: each node corresponds
to a container with uniform size and unlimited volume. Each
influence edge corresponds to a pipe connecting two con-
tainers; Pipes are installed at the bottom of the containers.
The recommendation (or opinion influence) from friends is
captured as fluid, which has two dimensions: the temperature
is taken as the “opinion/rating,” and its volume is deemed as
the “persistency.” Fig. 2 shows the resulting fluid dynamics
system of the rating network in Fig. 1.

In FluidRating, fluids originate from raters and pass
through non-raters. When there exists a fluid height difference978-1-4799-3360-0/14/$31.00 c⃝ 2014 IEEE
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Fig. 2. The illustration of FluidRating. Each node corresponds to a container.
The fluid temperature in the container is its “opinion/rating,” and volume is
the “persistency” of its opinion. The direction of fluid flow is consistent with
that of influence, and is controlled by a one-way valve.

between two connecting containers, fluid will flow from one
container to another, according to the fluid dynamics theory.
Then, when fluid flows, the fluids flowing into a container
will mix with the existing fluids, and the fluid temperature
and volume in this container will change, which reflects the
time-evolving properties of opinion formulation. Eventually,
fluid will flow into the sink (i.e., a6 in Fig. 1). In this paper,
we adopt a discretized approach to computing the temperature
change of each container over the round. The final rating of
the sink is a collection of sampled temperatures. Among many
desirable feasibilities, FluidRating can capture the effect of first
influence through the shortest path from a rater.

Our contributions are threefold: (1) We present a clean-slate
computational model, FluidRating, based on the fluid dynamics
theory that can capture many subtle details in a time-evolving
recommendation system. Instead of only considering a static
influence at the current time slot, the model takes the opinion
refinements over time into consideration, which clearly reveals
the time-evolving formulation process of human opinions.
(2) We take a discretized approach for efficient calculation.
We also differentiate direct influence from directly connected
friends and indirect influence from friends of friends. Both
influence value and features, such as the persistency of a
user over that of his neighbor, are captured through a simple
system consisting of containers and pipes only. (3) We conduct
extensive experiments in a real data set (Epinions.com), which
validate the feasibility of the proposed model and demonstrate
its effectiveness. The effects of several factors are tested,
including the number of rounds, the duration of time slots,
the weight sequence, and the sample approaches.

The remainder of this paper is organized as follows:
Section II surveys related work. Section III states the problem
we address. Sections IV and V present the overview of the
model and the algorithm details, respectively. Section VI
analyzes the properties of FluidRating. Section VII describes
the experimental evaluation. Finally, Section VIII concludes
this paper and suggests future work.

II. RELATED WORK

We review the related literature of trust models, user opin-
ions, and social influence used in recommendation systems.

Trust model. Trust models usually conduct trust inference
based on trusted graphs [12], which can be shortest and
strongest paths [8], or paths with a restricted depth [9]. Existing
models calculate trust values in one round at the current
time slot [8]–[10]. Personalized PageRank [1] is conducted
with multiple rounds, based on the Markov chain model.

TABLE I. NOTATIONS.

Symbol Description
G = (V,E) rating network with node set V and edge set E
R rater set {a1, a2, ..., am}
N non-rater set {am+1, ..., an−1}
S set {an} with sink an
V = R

∪
N

∪
S node set with a total of n nodes

a/a′/a′′ node/outgoing neighbor/incoming neighbor of a
Na/Nout

a /N in
a whole/outgoing/incoming neighbor set of a

eaa′/waa′/vaa′ edge from a to a′/weight waa′ /flow velocity vaa′

i/∆ sample index/sample interval
ha(i)/sa(i)/ta(i) height/volume/temperature in a at the i’th sample
saa′ (i)/taa′ (i) volume/temperature from a to a′ at the i’th sample

FluidRating uses the fluid dynamics theory to relate time-
evolving temperature changes to opinions/rating refinements.
It is more powerful in modeling for its ability to describe
persistency or other features.

User Opinion/Rating. User opinion is usually represented
as a numeric value in online web sites. Anderson et al. [1]
uses a finite integer set with {+, -, 0} representing positive,
negative, and no (neutral) ratings. In FluidRating, opinion is
measured by fluid temperature, which can be easily updated
based on the volume and temperature of new fluid.

Social influence. [13] finds that a person’s opinion is
significantly swayed by others’ opinions. [14] validates that
stronger ties are individually more influential, while weak ties
are responsible for the propagation of novel information. Our
FluidRating takes the finding in [13] as a foundation: when
new opinions come, each person refines his opinion through a
round of fluid exchanges with his neighbors. In addition, the
concept of direct and indirect influences are modeled through
fluid exchanges among neighbors and neighbors’ neighbors;
meanwhile, the strength of influence, strong or weak, is
modeled by the cross-sectional area of the corresponding pipe.

III. PROBLEM FORMULATION

We first describe the settings of a trust-based recommen-
dation system. Then, we formulate the problem we address.
Notations used in this paper are described in Table I. We first
define the rating network as follows:

Definition 1: A rating network is a directed graph G =
(V,E) where V is a set of nodes, and E ⊆ V 2 is a set of
directed edges. Each edge eaa′ has the direction from node
a to node a′, associated with a weight waa′ indicating the
influence value from a to a′.

The node set V = {a1, a2, ..., am, am+1, ..., an−1, an}
consists of three types of nodes, raters who have formed their
opinions R = {a1, a2, ..., am}, non-raters who haven’t formed
their opinions N = {am+1, ..., an−1}, and the sink S = {an},
a special non-rater whose opinion is being predicted. Note
that, generally, the sink is also a non-rater. However, in order
to isolate the roles of non-raters and the sink as in [1], we
put the sink into a single set. Currently, we only collect the
temperature of sink for k rounds. A natural extension is to
collect the temperatures for all non-raters, where the ratings
of multiple non-raters can be predicted at the same time.

Three types of users take different roles: raters (R) have
formed their opinions, and thus, serve as the source of opin-
ions. Non-raters (N ) connect raters and the sink, and take
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the role of propagating influence, i.e., they will be influenced
by some raters, and then, will propagate the influence to the
sink. Sink (S) is the target of the influence; he can refer to
multiple opinions from friends, and form his own opinion.
There are some key features of the influence among users:
(1) The opinions of raters will not change with time, while
the opinions of non-raters (including the sink) change. (2) The
opinions of raters and non-raters can influence the opinion
of a non-rater (including the sink). (3) The influences are
independent. The opinions of raters and non-raters influence
several non-raters (including the sink), independently. Then,
we define the problem as follows:

Time-evolving Rating Prediction Problem. Given a rating
network G = (V,E) with V = R

∪
N

∪
S, and a sink an

whose rating on a target item needs to be predicted, the task
is to design a scheme to predict the rating of an efficiently,
and to capture the time-evolving opinion formulation process;
another task is to refine opinions using the features of users,
such as the persistency.

IV. OVERVIEW OF THE MODEL

We first describe two social principles that our model
should obey. Then, we describe the overview of FluidRating,
where we use a novel approach of applying the fluid dynamics
theory in trust-based recommendation systems.

A. Basic Social Principles

We extract the following two ground truths in real life,
which serve as the general rules for the model design:

Principle 1: First Influence Dominates. In real life, the first
influence makes more of an impact on people’s opinions (the
first impressions [15] phenomenon in psychology). As men-
tioned in a proverb, “first impressions are lasting impressions.”

Principle 2: Stronger Influence Dominates. When a new
opinion influence comes to a user, only if it is stronger than
his current opinion, will the user refine his own opinion
accordingly.

We will use Principle 1 to guide the selection of aggre-
gation sequence, and Principle 2 to model the refinement of
opinion. In a rating network, direct friends’ influences come
earlier than indirect ones; the influences from 1-hop neighbors
are taken as the first influences.

B. Model the Recommendation

We view the time-evolving formulation process of human
opinions as follows: each user first receives the influence
from directly connected friends, and updates his own opinion
accordingly; then, he propagates his opinion to other friends.
The process can be done iteratively. In this way, for each user,
both the direct influences he receives from connected friends
and indirect influences from friends of friends are captured.

Based on this, a rating network is modeled as a fluid
dynamics system (Algorithm 1): each user corresponds to
a container with uniform size, and with unlimited volume,
so that fluid will never overflow. Containers are connected
through pipes, which correspond to the influence edges in
the rating network. Recommendations are modeled in terms

Algorithm 1 Initialization(G, an)
Input: G, a rating network for predicting an’s rating.
Output: G′, a FluidRating system for an.

1: for each rater/non-rater in G do
2: Set up a container with unlimited volume in G′. Set the

fluid temperature in the rater’s container to be equal to
its rating, and height to h. Let the non-rater’s container
be empty.

3: for each influence edge from a to a′ in G do
4: Set up a single-direction pipe from a to a′ in G′.

of fluids, which originate from raters, pass through non-raters,
and finally reach the sink. The ratings of users are modeled as
the fluid temperature, and the persistency of the corresponding
user is measured as the fluid volume. Both the direct and
indirect influences are modeled through fluid exchanges among
connecting containers. Using the basic fluid dynamics theory,
we can obtain the speed of efflux, and cope with the updating
of fluid temperature and volume in containers.

In addition, we adopt a discretized approach to computing
the temperature change over the round (or time slot), with each
slot having a duration of ∆. A total of k samples of the fluid
temperatures in an are collected, and are aggregated to get the
final temperature (i.e., the ultimate opinion). Then, the process
of time-evolving rating prediction is converted into the fluid
temperature, and volume updates through multiple rounds.

Assumptions: (1) The whole system is a closed one, in
which there is enough fluid to supply each rater’s container. (2)
The fluid temperature in each container will not change until
it is mixed with the incoming fluid. That is, the container, the
pipes, and the one-way valve are associated with temperature-
insulating material. (3) Raters’ ratings and persistencies will
not change (similar to [1]). The insight is that, when a user has
enough first-hand experience, he will not listen to the others.
(4) A rating network is available to be used, based on which,
the FluidRating system can be set up. It can be constructed
as follows: Add the sink, the neighbors who are raters, and
those who can reach raters within a given maximum number
of hops, into the rating network; then, add in all edges among
those nodes (including the sink).

C. FluidRating System Setup

The FluidRating system consists of three parts: the contain-
ers, the pipes between containers, and the fluid flowing among
the containers and pipes. Algorithm 1 shows the initialization
process. Fig. 2 illustrates an example of the FluidRating system
corresponding to the rating network in Fig. 1.

1) The Containers: We relate each node to a container with
unlimited volume (i.e., large enough so that fluid can never
overflow). All the containers have the same size. The cross-
sectional area is denoted as b, which essentially reflects the
persuasiveness of the corresponding node, i.e., how effectively
he can persuade neighbors. Due to page limitations, in the
future we will consider the work of accurately modeling the
feature of persuasiveness. Then, we take b as a constant of 1.
As a result, the fluid hight is proportional to the fluid volume.
Moreover, all containers are put in the same horizontal level,
so that they have the same surface air pressure.
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Fig. 3. The one-way valve: (a) a symbol; (b) an example in real life.

2) The Pipes: Each edge eaa′ is related to a directional
pipe from the container of a to a′, the cross-sectional area of
which is equal to waa′ . The directional pipe is implemented
through installing a one-way valve in it. Fig. 3 shows the
symbol and a real-world example (from Google Images) of
the one-way valve. All the pipes are installed at the bottom
of the connecting containers. The only exception is for an
additional container a0, which is used to store the fluid in
an. A special pipe is installed to absorb all the fluid from an
to a0. The setting of directional pipes is based on Principle 2,
i.e., stronger influence dominates. Only when a container has a
larger fluid height (indicating larger persistency), will the fluid
flow to its neighbors and mix with their fluids.

3) The Fluid: We assume that there is a single type of fluid
in FluidRating. We maintain the fluids in the container of each
rater to be a height of h by injecting fluid continuously (line 2
in Algorithm 1), indicating the stable persistency. Their ratings
are initialized as the fluid temperatures. Meanwhile, we assume
that initially all non-raters have no opinions on the target item.
Then, their containers are set to be empty. We do not consider
the external influence [16] that may impact users’ opinions.

In Algorithm 1, each rater, non-rater, and the sink is
considered once (lines 1-2), the time complexity of which is
O(|V |). Each edge is transformed into a pipe (lines 3-4), the
time complexity of which is O(|E|). Therefore, the total time
complexity of Algorithm 1 is O(|V |+ |E|).

D. Basic Physical Principles

Given a FluidRating system as has been set up above, fluid
will flow from raters to the sink an, directly or via non-raters in
N . Before going further into the detailed process, we describe
the following two basic physical principles that FluidRating
should obey as a closed system:

Principle 3: Mass Conservation [17]. The mass of any
closed system must remain constant over time.

Principle 4: Energy Conservation [18]. The total energy of
an isolated system cannot change over time.

Since FluidRating takes a single type of fluid which has a
constant density and mass = density · volume, fluid volume
is proportional to the mass. Principle 3 will be used for
maintaining the fluid volume conservation when we conduct
fluid updates. Principle 4 will be applied to calculate the
updated temperature when fluids are mixed.

V. FLUIDRATING: ALGORITHM DETAILS

The FluidRating scheme consists of three steps: fluid
updating preparation, fluid updating execution, and sample
aggregation. First, we present how the fluid will flow and how
the flowed fluids will mix up, according to fluid dynamics
theory. Then, sampled temperatures of multiple rounds are

Algorithm 2 FluidRating(G′, an)
Input: G′, a FluidRating system for predicting an’s rating.
Output: tan , an’s temperature/rating.

1: Let k be the total number of samples (time slots).
2: for i = 0 to k do
3: for each pipe from a to a′ do
4: if ha(i) > ha′(i) then
5: Record the volume and temperature of the flowed

fluid (Eqs. 1 and 2).
6: for each rater’s container do
7: Fill fluid into it to maintain its height/temperature.
8: for each non-rater’s container do
9: Update fluid height and temperature (Eqs. 4 and 5).

10: Record fluid temperature in an.
11: Draw all the fluid in an to a0.
12: Aggregate the k fluid temperatures in an (Eq. 6).

aggregated to gain a final opinion, using a non-increasing
weight sequence. The earlier opinions are given larger weights
than are the later opinions, based on Principle 1.

We show how fluid flows among containers and pipes, from
the view of a discrete time system. Without loss of generality,
we consider that the fluid updating is done synchronously at
the end of each time slot (k time slots in total). A high-level
fluid flowing process is shown in Algorithm 2. Meanwhile,
Fig. 4 illustrates the updating process, which corresponds to
the example of rating network in Fig. 1. At the beginning of
the ith time slot, we prepare fluid updating and check if fluid
will flow in each pipe, by comparing the fluid heights of two
connected containers. If there is a directional pipe from a to
a′, and the fluid height in a is larger than that of a′, then the
fluid will flow from a to a′; if either of the two conditions is
not met, no fluid will flow. Then we record the volume and
temperature of the flowed fluid, i.e., varied amounts of fluid
in containers, in this time slot. At the end of each time slot,
we mix up the flowed fluid and the remaining fluid in each
container, and conduct fluid updating.

A. Fluid Updating Preparation

First, let us consider a single pipe, say the pipe connecting
a and a′, with cross-sectional area waa′ . At the beginning of
the ith time slot, if a has more fluid than a′ (i.e., ha(i) >
ha′(i)), then the fluid will flow from a to a′ during this time
slot, with a duration of ∆. The basic theory behind flowed
fluid is Torricelli’s law [19]. It states that the speed of efflux,
v, of a fluid through a sharp-edged hole at the bottom of a tank
filled to a depth h is the same as the speed that a body (in this
case a drop of water) would acquire in falling freely from a
height h, i.e., v =

√
2gh, where g is the acceleration due to

gravity. As an application of this law, the speed of flowed fluid
in our case will be vaa′ =

√
2g(ha − ha′). Considering the

cross-sectional area waa′ and the duration of the time slot ∆,
the volume of flowed fluid in this time slot can be calculated
as follows:

saa′ = vaa′ · waa′ ·∆ =
√

2g[ha(i)−ha′(i)] · waa′ ·∆ (1)

The insight behind Eq. 1 is that, the influence received by a
person from a friend is proportional to the square root of their
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Fig. 4. The illustration of fluid updating from the ith to (i+1)th time slot.

persistency difference, the influence strength from this friend
to him, and the duration of the time slot. In another word, the
influence strength and the duration of time are proportional
to the actual amount of influences. As for the temperature of
flowed fluid from a to a′, we consider it to be the same as
that of a, as in the following:

taa′(i) = ta(i). (2)

B. Fluid Updating Execution

In this subsection, we describe how the flowed fluid mixes
up with the existing fluid in the containers. According to the
law of mass conservation, the fluid in the amount of saa′ , will
flow out from a, and flow into a′. For a given container a, at
the end of the ith time slot, the volume of fluid in a will be:

sa(i+ 1) = sa(i)−
∑

a′∈Nout
a

saa′ +
∑

a′′∈Nin
a

sa′′a, (3)

where Nout
a and N in

a represents the outgoing and incoming
containers of a, respectively. As we have mentioned before,
fluid height will impact whether fluid will flow, which we
calculate as follows:

ha(i+ 1) = sa(i+ 1)/b, (4)

where b is the cross-sectional area.

Since we use a single type of fluid, the specific heat is a
constant. According to Principle 4, the law of energy conser-
vation, the fluid temperature after mixing up is calculated as
follows:

ta(i+ 1) =

ta(i) ·
[
sa(i)−

∑
a′∈Nout

a

saa′
]
+

∑
a′′∈Nin

a

[ta′′a · sa′′a]

sa(i+ 1)
(5)

Eq. 5 is essentially
∑

(volume · temperature)/
∑

volume. The
first part of the numerator is the existing fluid in container a,
while the second part is the flowed fluid from other containers.

For the fluid system in Fig. 2, its fluid updating process is
shown in Fig. 4. The known conditions are: ha3 = ha4 = h,
ta3 = 5 and ta4 = 3. During the 1st time slot ∆, due to the
height difference of the fluid in two connected containers, the
pipes from a1 to a3, a1 to a4, a2 to a4, and a2 to a6 will have
some flows. We first calculate the volumes and temperatures
of fluid that will flow, using Eqs. 1 and 2. Without loss of
generality, we let the raters’ fluid height be h = 10. At the
end of the 1st ∆, the heights and the temperatures of fluids
in each container can be calculated using Eqs. 4 and 5; the
process and results are shown in Table II.

TABLE II. FLUID UPDATING IN THE 1st ∆.
Parameter Calculation Value
sa1a3 (1)

√
2gh · 0.8 ·∆ 0.4482

sa1a4 (1)
√
2gh · 0.7 ·∆ 0.3922

sa2a4 (1)
√
2gh · 0.8 ·∆ 0.4482

sa2a6 (1)
√
2gh · 0.7 ·∆ 0.3922

ta1a3 (1) ta1 (0) 3
ta1a4 (1) ta1 (0) 3
ta2a4 (1) ta2 (0) 5
ta2a6 (1) ta2 (0) 5
sa3 (1) sa1a3 (1) 0.4482
sa4 (1) sa1a4 (1) + sa2a4 (1) 0.8404
sa5 (1) 0 0
sa6 (1) sa2a6 (1) 0.3922
ta3 (1) sa1a3 (1) · ta1a3 (1)/sa1a3 (1) 3

ta4 (1)
sa1a4 (1)·ta1a4 (1)+sa2a4 (1)·ta2a4 (1)

sa1a4 (1)+sa1a4 (1)
4.067

ta5 (1) 0 0
ta6 (1) sa2a6 (1) · ta2a6 (1)/sa2a6 (1) 5

C. Sample Aggregation

We aggregate the temperature of sink in different time slots
to gain a final temperature (i.e., a final opinion or rating). Based
on Principle 1 “first influence dominates,” a basic aggregation
rule is that: the earlier samples take no less weights than do the
samples that come later. The insight behind this is that the first
impression is not less important than the latter impressions. An
example of the sample aggregation is:

tan =
k∑

i=1

q1+c(i−1) · tan(i), (6)

where q1+c(i−1) is the weight for the ith sample, and∑k
i=1 q

1+c(i−1) = 1. Meanwhile, c ∈ [0,∞], q ∈ [0, 1]. For
example, when c = 1, the sequence is nonuniform, {q, q2, q3,
...}. When c = 0, the sequence is uniform, {q, q, q, ...}. When
c = ∞, the sequence is {q, 0, 0, ...}. Therefore, we can use
different c to control the method of sample aggregation.

Besides the above sample approach (denoted as FluidRat-
ing 1), we design two additional methods, FluidRating 2 and
FluidRating 3, to collect the sampling temperatures of the sink.
FluidRating 2 has the same setting as FluidRating 1, that is,
at the end of each time slot, a0 absorbs the fluid in an. The
difference is that we collect the sample of fluid temperature in
a0, instead of in an. This method will mix all the incoming
fluids together. As the fluid volume in a0 gets larger, the later
incoming fluids will make less of an impact. FluidRating 3 has
a different setting than do both FluidRating 1 and 2. We do
not use a0 to absorb fluid in an, we just let an keep all the
incoming fluid, and we collect the fluid temperature in an for
k time slots. This method will mix the incoming fluid whose
amount is larger than the current amount in an. When an has
enough fluid, no more fluid can flow in and mix with its fluid.

The time complexity of Algorithm 2 can be calculated
as follows: in a single time slot, each container and pipe is
considered once, the time complexity of which is O(|V |+|E|);
there are a total of k time slots; so the final time complexity
is O(k|V | + k|E|). Over a time period, the updating of fluid
temperature and volume in containers can be deemed as a
state transition from one to the next. At a specific time slot,
say t(i), only one array is used to record the current fluid
state in pipes; two arrays are needed to store the current
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Fig. 5. The fluid temperature and height for the example scenario in Fig. 1,
k = 250,∆ = 0.04, h = 10, b = 1.

state (temperature/height) and the next state of containers,
respectively. The space cost is O(|E|) for pipes, and O(|V |)
for containers. An additional array is used for recording the k
samples of fluid temperatures in an, with space cost O(|k|).
Therefore, the total space complexity is O(|V |+ |E|+ |k|).

D. Convergence of the Overall Method

As shown in Fig. 5, the height and temperature become
stable after some time. The insight behind this phenomenon
is the opinion formulation process. At the very beginning, a
user (sink) has no opinion on the given target item. Upon
receiving opinions from others, he formulates and refines his
own opinion. In addition, a person’s opinion increases in
maturity, indicating the increased persistency. Moreover, the
opinion matures quickly at the beginning, and slows down
later, i.e., the amount of increased persistency decays with
time. This simulation result is consistent with our real-world
experiences.

VI. THE ANALYSIS

In this section, we analyze the properties of FluidRating on
two aspects: its conformity with social and physical principles,
and its explainability of recommendation.

A. Conformity with Basic Principles

FluidRating is consistent with both social and physics
principles. (1) Conformity with Principle 1: In FluidRating,
when aggregating the samples of fluid temperatures, a non-
decreasing sequence is used as weight, so that the earliest fluid
is being given the highest weight. Since the earlier incoming
fluid represents the earlier influence, it emphasizes the impor-
tance of the first influence. (2) Conformity with Principle 2:
In FluidRating, the larger height indicates stronger persistency.
For updating fluid, we look at each pipe. For the pipe from a to
a′, according to Torricelli’s law, only when ha > ha′ , will fluid
flow, and mix with others. This is consistent with Principle 2,
in that only when other’s persistency is larger, will the current
user take the advice and refine his own opinion. (3) Conformity
with Principle 3: Since we consider a single type of fluid in
FluidRating, the conservation of volume is equivalent to that
of mass. The fluid volume in FluidRating remains unchanged,
because for each step of updating, the fluid flows in a pipe
are always equal to the fluid flows out of that pipe. Therefore,
the total amount of fluid remains unchanged. (4) Conformity
with Principle 4: According to the physics, the fluid energy
is equivalent to the product of fluid mass, temperature, and
specific heat. In FluidRating, with several parts of the fluid
mixed, the final temperature is calculated according to the
energy before mixture (Eq. 5). Therefore, Principle 4 holds.

B. Explainability of Recommendations

Explainability means that the recommendation system is
able to explain how it predicted the rating, to help users
understand why particular items have been suggested [5]. In
FluidRating, we model the opinions as the temperatures of
fluid, as to predict tan . In total, k samples of the temperature
of fluid flowing into an in a given time period are collected.
During this process, we can get both the final rating, and
the rating variations over time. Positive and negative opinions
from trusted friends are modeled as fluids with high or low
temperatures. These fluids mix with each other and finally get
to steady states, similar to how friends’ opinions may influence
each other and finally lead to an agreement.

Now we can use these k samples to explain why our
prediction is reasonable. We can explain to users that this pre-
diction is based on ratings from their trusted users, according
to the time they reach and the persistency they have. A more
interesting phenomenon is that, the temperature’s first sample
equals the temperature of the nearest rater, which stands for
the first impression. Essentially, the fluid from the nearest
rater arrives at the sink the earliest. In addition, all the three
aggregation methods make sense: (1) In FluidRating 1, an
does not keep the fluid, and all later fluids can reach an (since
ha = 0). We collect the temperature of fluid that reaches an
(then the fluid flows into a0). In other words, this approach
collects the variation of opinions. (2) In FluidRating 2, we
collect the fluid temperature in a0, where all the incoming
fluids of an are kept. In this way, the sample that we collect
each time is actually the temperature of all those mixed fluids.
(3) In FluidRating 3, sink an keeps all the incoming fluids in
its own container. We collect the fluid temperature in an for
k time slots. In this way, when there is enough fluid in an’s
container, no more fluid can flow into it. It makes sense in that,
if one has enough persistency, he will not listen to others.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of FluidRating
with experiments in a real social network data set.

A. Experimental Design

We use the leave-one-out method to evaluate the perfor-
mance [4], [5]. If there is a user providing a rating to an item,
the rating is masked and predicted through algorithms based
on the rating network. Then, we compare the calculated value
with the masked value. The metric of root mean squared error
(RMSE) [5] is used to measure the error in rating prediction:
RMSE =

√∑
(ru,i − ˆru,i)2/D, where D is the total number

of user/item pairs that can be predicted, and ru,i and ˆru,i
denote the real and predicted ratings respectively. A smaller
RMSE indicates a higher prediction accuracy.

Epinions is a good testbed [4] that is widely used in the
research of trust-based recommendation. This is because it
includes both the information of user trust relationships and
user/item ratings. Users can review items and assign them
numeric ratings in the range of [1,5]. They can also build
their own trust network by adding the people whose reviews
they think are valuable. We use the data set published by
Massa [4]. It consists of 49,290 users who rated a total of
139,738 different items at least once. The total number of
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TABLE III. THE COVERAGE WITH DIFFERENT LENGTH.
Length 1 2 3 4 5 6

Coverage(%) 62.49 78.84 85.74 89.76 96.4 100

TABLE IV. PARAMETER SETTING.
Parameter Description Default value

h fluid height in rater’s container 10
b cross-sectional area of containers 1
k number of interations 250
∆ time slot 0.04
c (non-)uniform aggregation (1)0

q
uniform aggregation 1/k
nonuniform aggregation [0.1,0.9]

reviews is 664,824. The total number of issued trust statements
is 487,181. Since we focus on the time-evolving opinion
formulation, we do not run experiments on the whole data set.
Alternatively, we extract a subset. First of all, we restrict the
maximum length to be 6, i.e., if a user has some friends within
6 hops who have rated the same item, we say the user/item
pair can be predicted. We randomly choose 1,000 users. For
each user, we randomly choose at most 6 items to which he
has given a rating which can be predicted. A total of 5,548
pairs of user/items that can be predicted are selected. Table III
shows the coverage of the selected sub data set, measuring the
percentage of test pairs that can be predicted.

For a given test pair, we first construct a rating network,
by identifying raters and non-raters: the former are the users’
friends within a given hop who have rated the item, while
the latter are those have not. Based on this, we relate users
with containers and ratings as fluid temperatures, and then
conduct multiple rounds of fluid updating using the FluidRat-
ing scheme. The temperatures of the sink are collected and
aggregated as the final predicted rating. Next, we select the
following methods for comparison: (1) TidalTrust [8]. It finds
all trusted raters with the shortest distance from the sink, and
aggregates their ratings, weighted by the trust between the
sink and these raters. (2) MoleTrust [9]. It considers all raters
up to a maximum-depth, which is given as an input, and is
independent of any specific user and item. (3) Random Walk.
Similar with [5], we set different thresholds on the number
of steps in a random walk. (4) Personalized PageRank [1].
We take the result when it converges (e.g., the variation is
small enough). Table IV shows the parameter settings. We use
FluidRating 1 and uniform aggregation as the defaults.

B. Experimental Results and Analysis

In this subsection, we present the results of our experi-
ments. First we describe the findings of “first influence,” then
we analyze how each factor can impact the performance.

1) The Existence of the “First Influence”: We test the
RMSE of 1-hop, 2-hop, 3-hop neighbors, and we get the
results of 1.186, 1.436, and 1.639, respectively. It validates
our claim that closer friends help for more accurate prediction,
which is also found in [4], and indicates the existence of “first
influence”. In fact, we observe the first influence phenomenon
through all experiments. Figs. 6(a) and 6(b) show 4 different
patterns of 4 user/item pairs, where the real ratings of TestPairs
1, 2, and 4 are higher than the predicted rating, and that of
TestPair 3 is lower. For TestPair 1, the real rating is 5, and the
predicted rating first decreases when the number of samples,
that is k, increases from 1 to 6, then keeps stable during the

TABLE V. THE RESULTS FOR A TEST PAIR WITH DIFFERENT ∆.
HHHHk

∆ 0.001 0.01 0.1 0.4

2 4 4 4 4
6 4 4 4.0027 3.9478
19 4 4 4.0084 3.961
51 4 4 4.0146 3.929
81 4 4 4.0168 3.9148
121 4 4 4.018 3.9036
181 4 4 4.0189 3.894
250 4 4 4.0193 3.8878

period afterward. For TestPair 2, there is a fluctuation when
k varies from 2 to 6, then to 11 and 19. It first decreases,
then increases, and finally stabilizes. TestPairs 3 and 4 show
other patterns. In all the four patterns, the first samples give
predictions close to the real truth. This finding is a general
phenomenon in the data set; as shown in Fig. 6(c), for the
sub-data set we use, the average rating when k is small is very
close to the the real average rating, and when k becomes larger,
the gap between real and predicted ratings decreases gradually;
this also indicates the refinements of users’ opinions.

Fig. 7(a) displays the results of 100 TestPairs, which shows
that the predicted rating is very close to the real rating in some
cases, while some other cases are not. We analyze the meta-
results, and find the reason is: for the latter test pairs, it usually
happens that those users have few raters in their subgraph, or
the raters’ opinions are largely different from one another. In
fact, this is what usually happens in real life. FluidRating is
proposed exactly for modeling this process by combining the
influence from different opinions over time.

2) The Effects of Time Slot: We test the effects of the
duration of time slot, ∆, as shown in Table V and Fig. 7(b).
Generally speaking, a smaller ∆ leads to slower convergence,
while a larger ∆ may lead to an inaccurate prediction because
of the discrete approach. Fig. 7(b) shows the average rating
of real and prediction, with different ∆ ∈ [0.01, 0.1]. It
indicates that, when ∆ is small enough, the rating prediction
performance is stable. Table V shows the detailed results for
an example test pair 7/213, where 7 is the user ID, and 213 is
the item ID. We let ∆ switch among {0.001, 0.01, 0.1, 0.4},
and we find that the predicted ratings change insignificantly
from ∆ = 0.001 to ∆ = 0.1, and it changes sharply when ∆
changes from 0.1 to 0.4. Thus, ∆ should not be too large.

3) The Effects of Aggregation Methods: As mentioned
before, we design a set of sequences, q1+c(i−1), to measure
the weights of k samples. The default setting of FluidRating
1 is c = 0 and q = 1/k. We also try a non-uniform sequence
of c = 1, and let q change in the range of [0.1, 0.9], with
an increment of 0.2. The results are shown in Figs. 7(c),
8(a) and 8(b). Fig. 7(c) shows that when q is smaller, the
RMSE is larger, and vise versa. This finding indicates that
when we give earlier samples a larger weight, the accuracy
is higher. It again validates the existence of “first influence.”
In addition, when q ≥ 0.5, the change of RMSE becomes
insignificant. Based on this, we can say that, approximately,
first influence takes at least an importance of 50% in the
whole process of opinion formulation. Fig. 8(a) shows that
FluidRating 1* has a better and more stable performance than
FluidRating 1 with respect to the maximum length. It indicates
that, when we put more weight on the earlier influence, the
accuracy is improved. This finding validates the feasibility of
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our sample aggregation approach, which prefers a decreasing
weight sequence. Fig. 8(b) shows that FluidRating 2 and 3
have performances stable and good as, or even better than,
those of FluidRating 1*, which again indicates flexibility in
that multiple choices are available to collect the samples.

4) The Effects of Sample Approaches: Figs. 9(a)-9(c) show
the RMSE of using FluidRating 1, FluidRaing 2 and Flu-
idRaing 3, respectively. The trends of performance changes are
similar when using FluidRating 1 and 3, and the performance
varies quite significantly when the maximum length changes.
FluidRating 2 shows two notable differences: with the increase
of k, its performance becomes stable gradually; the gap of
RMSE is insignificant with respect to different maximum
lengths. In a trust-based recommendation system, a larger
maximum length usually indicates a larger coverage, however,
this also indicates a decreased accuracy. The above findings
indicate that FluidRating 2 is more resistant to maximum
length changes. However, it takes a longer time to converge.

5) Comparison of Multiple Methods: We compare the
RMSE of using several trust-based recommendation methods.
As shown in Fig. 8(c), FluidRating beats MoleTrust, Ran-
domWalk, and Personalized PageRank; meanwhile, TidalTrust
performs almost as well as FluidRating. We analyze the reason
to be that, TidalTrust takes the shortest and strongest recom-
mendation path for rating prediction, which is exactly taking
the first influence. In addition, the RMSE of using FluidRating
1* is 4.812% less than that of using TidalTrust when maximum
length=6, which indicates the existence of varieties. That is, in
most cases, “first influence dominates” works, while in a few
other cases, it does not. This finding also indicates the necessity
of considering influence over time in multiple rounds, rather
than only one round. It is worth noting that, the RMSE of the

randomly selected subset is larger than that of the whole data
set, as in [5] and [4]. However, the sub-data set is enough for
us to reveal the opinion formulation process. In the future we
will consider extending the experiments in the whole data set.

C. Summary of Experiments

The experimental results show that users’ opinions do
evolve with time, and verify the existence of the first influence
phenomenon. The proposed FluidRating model can flexibly
handle those key points. Multiple factors, such as the number
(k), the duration (∆) of time slots, and the weighted sequence
of k samples, can affect the prediction performance. The main
findings are summarized as follows: (1) First influence does
exist in the experiments. It holds in many cases. (2) Exceptions
also occur. For some test pairs, influence other than first
influence dominates. This is exactly why we propose “stronger
influence dominates,” consider the persistency of users, and
form opinions over time.

VIII. CONCLUSION AND FUTURE WORK

Recommendation systems aim to predict the opinions of
users on a target item, in order to decide whether to recom-
mend the item to them. However, existing work focuses on
the static rating prediction at the current time. We identify
two challenges of capturing ratings and refining them, based
on direct and indirect influences. We propose a novel fluid
dynamics theory-based rating prediction model, where we
consider two dimensions of a dynamic fluid. That is, fluid
temperature is taken as “opinion/rating,” and volume is then
deemed as the “persistency” of its opinion. In this way, the
two challenges are solved naturally and gracefully. The exper-
iments in a real social network data set, Epinions, validate the
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effectiveness of the proposed model, as well as the existence
of phenomenon we observe in real life, that is, first influence.
Currently, we mainly consider the feature of persistency for
opinion influence, and we assume that the cross-sections of all
containers are uniform. For future works, we are interested
in extending FluidRating in dealing with more features in
real life. For instance, the persuasiveness of a user can be
reflected by the cross-sectional area of a container. In addition,
once a user has formed his opinion, he may actually buy the
product, and will form his own opinion based upon not only
his expected opinion, but also his experience. This will then
change his rating, which may in turn change the rating of his
trusted friends. This evolution will also be studied in the future.
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