
On the Design and Analysis of Data Center Network
Architectures for Interconnecting Dual-Port Servers

Dawei Li and Jie Wu
Department of Computer and Information Sciences

Temple University, PA
{dawei.li, jiewu}@temple.edu

Abstract—We consider the design and analysis of Data Cen-
ter Network (DCN) architectures for interconnecting dual-port
servers. Unlike existing works, we propose the concept of Normal-
ized Switch Delay (NSD) to distinguish a server-to-server-direct
hop and a server-to-server-via-switch hop, to unify the design of
DCN architectures. We then consider a fundamental problem:
maximizing the number of dual-port servers, given network
diameter and switch port number; and give an upper bound on
this maximum number. Two novel architectures are proposed:
SWCube and SWKautz, based on the generalized hypercube
and Kautz graph, respectively, which in most cases accommodate
more servers than BCN [1], which was claimed to be the largest
known architecture. Compared with three existing architectures,
SWCube and SWKautz demonstrate various advantages. Analysis
and simulations also show that SWCube and SWKautz have nice
properties for DCNs, such as low diameter, good fault-tolerance,
and capability of efficiently handling network congestion.

Index Terms—Data center networks (DCNs), dual-port server-
s, generalized hypercubes, Kautz graphs.

I. INTRODUCTION

Data centers provide various internet-based/online services,
such as search, email, online video, social networking, online
gaming and large-scale computations, etc.. Data centers also
provide the infrastructure services such as GFS, Bigtable,
MapReduce and Dryad [2]–[5]. As the increasing of the service
demand will never end, the number of servers in today’s data
centers is required to be very large, for example, hundreds of
thousands or millions.

A great challenge in data centers is how to design network
architectures to interconnect large numbers of servers. Tradi-
tional tree-based architectures have been shown to be difficult
in meeting the requirements of Data Center Networks (DCNs).
During the past decade, various novel DCN architectures
have been proposed. Considering whether the interconnection
intelligence is put on the switches or on the servers, these
architectures fall into two categories, namely, switch-centric
designs and server-centric designs [6]. In switch-centric de-
signs [7], [8], switch functionality is extended to meet the
interconnection need, while servers do not need to be modified
for interconnection purposes. Thus, high-end switches are
needed, which significantly increases the interconnection cost.
In server-centric designs [1], [9]–[13], switches are only used
as cross-bars while servers act as both computing nodes and
packet relay nodes. Though packet relay overhead on the
servers is introduced, server-centric designs have the advantage
of using only low-end layer-2 switches, thus reducing cost;
also, by putting the interconnection intelligence on servers,
they provide a higher degree of programmability. Considering
the number of NIC ports used on servers, architectures in

the second category can be further classified into two sub-
categories. In the first sub-category, servers can have more than
2 ports; in the second sub-category, servers only have 2 ports.
Since COTS servers in data centers often only have 2 NIC ports
[11]. Restricting the server degree in a DCN to be no more
than 2, the time and human power needed to upgrade hundreds
of thousands of servers can be avoided; also, the packet relay
overhead on the servers can be reduced, compared with the
case when more than 2 ports are used on servers.

In this paper, we consider server-centric DCN architecture
design, where servers only have 2 NIC ports, and only low-
end layer-2 switches are used. Obviously, to design DCN
architectures, various aspects should be considered, such as
the number of servers that an architecture can accommodate,
network diameter, interconnection cost, and fault-tolerance,
etc.. Our goal of designing DCNs is to scale-out the network
(increase the number of servers) and maintain or improve the
network performance. Our main contributions are as follows.

First, we notice that in existing works [1], [9]–[12],
the lengths of a server-to-server-direct hop and a server-
to-server-via-switch hop are assumed to be equal. We call
this assumption the HOmogeneous Hop (HOH) assumption.
However, as servers’ packet forwarding capabilities will in-
crease significantly in future DCNs, it may not be suitable to
neglect the processing delay at switches [14]. Thus, design and
comparison based on this assumption may be inappropriate.
For example, in FiConn [11] and BCN [1], there exist server-
to-server-direct hops, while in DPillar [12], any two servers
are not directly connected. In this paper, we propose the
concept of Normalized Switch Delay (NSD), which is defined
as the switch’s packet forwarding delay divided by the server’s
forwarding delay (when they have no other load), to distinguish
these two kinds of sever-to-server hops to unify the design of
DCN architectures. Specifically, we assume that a server-to-
server-via-switch hop is counted as 1+ c, where c is the NSD,
(0 ≤ c ≤ 1), and a server-to-server-direct hop is still counted
as 1; thus, we have the HEterogeneous Hop (HEH) assumption.
Correspondingly, we can calculate the diameter of the network
architecture under this new assumption.

Second, we ask the following fundamental question: what
is the maximum number of dual-port servers that any archi-
tecture can accommodate at most, given network diameter d,
and switch port number n? Motivated by the Moore Bound
[15], which provides the upper bound on the number of nodes
in a graph given a node degree and diameter, we give an
upper bound on the maximum number of dual-port servers
in a DCN, given network diameter d and switch port number
n. In [1], the authors claimed that BCN is the largest known
architecture to interconnect dual-port servers, with diameter



7, given a switch port number. We notice that the existing
DPillar architecture accommodates more servers than BCN
under the same configurations. Besides, the numbers of dual-
port servers that BCN and DPillar can accommodate show big
gaps between the upper bound.

Third, we propose two novel DCN architectures which
try to approximate the upper bound. The first one is called
SWCube, which is based on the generalized hypercube.
SWCube accommodates a comparable number of servers as
that of DPillar. Specifically, SWCube accommodates less
servers than DPillar when the switch port number is small and
the network diameter is large, and accommodates more servers
than DPillar when the switch port number is large and the
network diameter is small. The second one, called SWKautz,
which is based on the Kautz graph, always accommodates
more servers than DPillar. Then, we compare various DCN
architectures on several aspects, namely, the design flexibility,
the number of servers given a network diameter, the hardware
interconnection cost per server, and the influences of c (NSD)
on different architectures under the HEH assumption. Analysis
and simulations on SWCube and SWKautz reveal that they
also have nice properties for DCNs such as high degree
of regularity, high bisection width, good fault-tolerance, and
efficient handling of network congestion.

The rest of the paper is organized as follows. Some basic
definitions are given in Section II. In Section III, we provide
the upper bound of the maximum number of dual-port servers
that any architecture can accommodate at most, given network
diameter d, and switch port number n. We then design two
novel architectures that try to approximate this upper bound,
which are defined in Sections IV and V, respectively. Three ex-
isting architectures are reviewed in Section VI. In Section VII,
we compare our two proposed architectures with the three
existing ones in various aspects. Section VIII evaluates our
two proposed architectures in detail. Conclusions and future
work are sketched in Section IX.

II. PRELIMINARIES

In our considerations, all switches are low-end COTS ones.
We assume that all servers only have two NIC ports. To
construct large DCNs, we assume that the switch port number,
n is at least 4. We do not consider switch-to-switch-direct
connection in our design and analysis, because this type of
connection generally forms a tree-like structure, in which the
top switches have to be high-end to handle the larger traffic
in higher levels. Since there are two kinds of nodes, namely,
servers and switches in a DCN, some concepts should be made
clear as compared to those in a traditional graph. Before further
discussion, we give some definitions.

We define that a hop is a path, from one node to another
node of the same kind, which consists of no other nodes of the
same kind. Thus, we have switch-to-switch hops and server-to-
server hops. According to our assumption, there does not ex-
ist switch-to-switch-direct hops. Server-to-server hops consist
of server-to-server-direct hops and server-to-server-via-switch
hops. The length of a path between two servers is the number
of server-to-server-direct hop(s), plus 1 + c times the number
of server-to-server-via-switch hop(s) in the path. Again, c can
be regarded as the Normalized Switch Delay (NSD), which is
the switch’s packet forwarding delay divided by the server’s
forwarding delay. We explicitly consider c because switch’s

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

d/
lo
gN

c

 FIConn
 BCN
 DPillar

Fig. 1. Scaled diameter of FiConn, BCN, DPillar for different c values.

forwarding delay may not be neglected in practical and future
DCNs. Besides, c is assumed to be less than or equal to
1, because we predict that servers’ packet forwarding ability
will not increase to the extent of outperforming switches. The
distance of two servers is the length of the shortest path
between the two servers. The diameter of a DCN architecture
is the maximum distance among all pairs of servers. Distance
between servers and network diameter are critical factors on
the communication latency in DCN, which is an important
metric for DCN design.

To give a preview of the influence of NSD, we compare
the diameter of three existing architectures, namely, FiConn,
BCN, and DPillar, when c chooses different values, given
the same switch port number n = 48, server degree 2,
and approximately equal numbers of servers. Readers may
refer to Section VI for details on FiConn, BCN and DPillar.
We use approximately equal numbers of servers because it
is almost impossible for these architectures to have exactly
the same number of servers under any configurations. We
choose: FiConn(48, 2) with 361,200 servers and diameter 7,
BCN(32, 16, 1, 1), with 787,968 servers and diameter 7, and
DPillar(48, 4) with 1,327,104 servers and diameter 6. The
initial diameter values are calculated assuming c = 0. As we
can see, the numbers of servers that the three architectures
have still differ much. Thus, we calculate the scaled diameter,
which is the diameter divided by the logarithm of the number
of servers of an architecture, when c chooses different values.
As shown in Fig. 1, under the HOH assumption, DPillar has the
lowest scaled diameter; as c increases, the scaled diameter of
BCN tends to be comparable with, or even lower than, that of
DPillar. This tendency is intuitively correct because, in DPillar,
all server-to-server hops are server-to-server-via-switch hops,
while in BCN, lots of server-to-server-direct hops exist. As
c increases, server-to-server-via-switch hops will contribute
more to the diameter.

III. MAXIMIZING THE NUMBER OF SERVERS GIVEN
NETWORK DIAMETER AND SWITCH PORT NUMBER

A basic idea of designing DCN architectures is to scale-out
the network (increase the number of servers) and maintain or
improve the network performance at the same time. Though the
latter (the network performance) itself includes many aspects
and is not easy to express explicitly, traditional graph theory
can be applied to address the former (increase the number of
servers). This aspect motivates us to ask the following funda-
mental question: what is the maximum number of dual-port
servers that an architecture can accommodate, given network
diameter d, and switch port number n? A similar problem
in traditional graph theory is the degree/diameter problem:
find graphs with a maximal number of nodes with given
constraints of maximum degree δ and diameter d. Compared



Fig. 2. The architecture greedily constructed to maximize the number of
servers has a diameter d = 2(1 + c)l, l = 2.

to the traditional graph model (where only one kind of node
exists), in a DCN, two kinds of nodes exist. Given the server
degree 2, some related work in the traditional graph theory can
be applied for analyzing DCNs. The Moore Bound gives an
upper bound for the degree/diameter problem.

Moore Bound: The maximum number of nodes in a graph,
given diameter constraint d and node degree δ is N ≤ 1+ δ+
δ(δ − 1) + · · ·+ δ(δ − 1)d−1 = 1 + δ

∑d−1
i=1 (δ − 1)i [15].

Illustration: Any node can reach at most δ other nodes
within distance 1. Each of the δ nodes can reach another δ−1
nodes within distance 2, because one degree has already been
used for connecting the original node. Extending to distance d,
the upper bound on the maximum number can be calculated.

Reverting to our DCN architecture scenario, we start with
the situation when c = 0, which is the HOH assumption that
all existing works adopted.

Theorem 1: For c = 0, given switch port number n,
(n ≥ 4), the maximum number of dual-port servers that any
DCN architecture, with diameter less than or equal to d (d
is a positive integer), can accommodate is: Nv ≤ Nub

v =
(2(n− 1)d+1 − n)/(n− 2).

Proof: For c = 0, the lengths of a server-to-server-
direct hop and a server-to-server-via-switch hop are equal. We
consider the maximum number of other servers that a server
S can reach within distance d. Within distance 1, S has two
choices to reach other servers: the first one is to connect 2
other servers directly, and the second one is to connect to two
switches, each of which connects n−1 other servers, resulting
in a total of 2(n− 1) servers. Obviously, the second choice is
better because S reaches more other servers and more servers
has one port remaining for further expansion. Within distance 2
of S, based on the second choice, the 2(n−1) servers connect
to 2(n − 1) switches, each of which connects n − 1 other
servers, resulting in another 2(n− 1)2. Extending to distance
d, S can reach at most 2(n−1)+2(n−1)2+· · ·+2(n−1)d other
servers. Plus the original server S itself, the maximum number
of dual-port servers that any network can accommodate is:
Nv ≤ Nub

v = 1 + 2(n − 1) + 2(n − 1)2 + · · · 2(n − 1)d

= (2(n− 1)d+1 − n)/(n− 2).
Next, we consider the HEH assumption, where 0 ≤ c ≤ 1.

Theorem 2: Given switch port number n, (n ≥ 4), the
maximum number of dual-port servers that any DCN ar-
chitecture, with diameter less than or equal to d (d is an
arbitrary positive number), can accommodate is: Nv ≤ Nub

v =
(2(n− 1)⌈d/(1+c)⌉+1 − n)/(n− 2).

Proof: Refer to the Appendix.
However, like the Moore Bound, the upper bound may not

be achievable. Consider a graph greedily constructed to max-
imize the network order within l server-to-server-via-switch
hops as shown in Fig. 2. Notice that we consistently use rect-
angles to represent switches, and circles to represent servers in

all DCN architectures. The network in Fig. 2 accommodates
at most Nv = (2(n − 1)l+1 − n)/(n − 2) servers. However,
this network actually has a diameter d = 2(1+c)l. In terms of
d and n, Nv ≤ (2(n−1)⌈d/(2(1+c))⌉+1−n)/(n−2), which is
much less than the upper bound. As we can notice, when c = 0,
the upper bound is approximately 2nd. The numbers of servers
that three existing architectures for interconnecting dual-port
servers, namely, FiConn, BCN, and DPillar can accommodate
show big gaps between the upper bound. In traditional graphs,
a d-dimensional r-ary generalized hypercube has diameter d
and network order (the number of nodes in a network) rd; a
Kautz graph with r + 1 symbols and diameter d has network
order rd+ rd−1. These facts motivate us to design large order
DCN architectures, based on the generalized hypercube and the
Kautz graph. The following two sections present our two novel
DCN architectures: SWCube and SWKautz. When calculating
the diameter of SWCube and SWKautz, we assume c = 0.
Since server-to-server hops are all server-to-server-via-switch
hops in SWCube and SWKautz, the actual diameter is 1 + c
times the diameter calculated assuming c = 0.

IV. SWCUBE
A. The Generalized Hypercube and SWCube Construction

We denote a k-dimensional generalized hypercube [16]
by Hk

r1×r2×···×rk
. The ith dimension is with radix ri, ∀i =

1, 2, · · · , k. A node W is represented by a k-tuple: W =
w1w2 · · ·wk, where 0 ≤ wi ≤ ri − 1, ∀i = 1, 2, · · · , k. Two
nodes are connected directly by a link if and only if their
addresses differ at one bit. We call that a set of nodes are
along the same dimension i if all of their addresses differ only
at the ith bit. We can see that nodes along the same dimension
form a complete graph.

We design a novel DCN architecture for interconnecting
dual-port servers based on the generalized hypercube. The new
architecture can be constructed logically as follows: 1.) replace
the nodes in the original generalized hypercube with switches;
2.) insert one server into each link that connects two switches.
The resulting DCN architecture is named SWCube because
the SWitches form a generalized hyperCube. Fig. 3(a) and
Fig. 3(b) show a 1-dimensional and a 2-dimensional SWCube,
respectively, where r1(= r2) = 4. Note that in Fig. 3(b), the
interconnections of switches and servers along the 2nd, 3rd,
and 4th columns are represented by dotted lines.

Since we replace nodes in the original hypercube with
switches, switches in SWCube can adopt the same addressing
scheme for nodes in the original generalized hypercube. In
SWCube, each server is uniquely identified by the two switches
that it directly connects to. Thus, we represent a server by
V = (V 1, V 2), where V 1 = v11v

1
2 · · · v1k and V 2 = v21v

2
2 · · · v2k

represent the two switches that the server directly connects
to. Since, in the original generalized hypercube formed by the
switches, two switches are adjacent if and only if they differ at
one bit, for each server, there exists only one i ∈ {1, 2, · · · , k}
such that v1i ̸= v2i .

B. Properties of SWCube
The number of switches in an SWCube is Nw =

∏k
i=1 ri.

Since switches along the same dimension form a complete
graph, each switch connects to the other ri − 1 switches via a
server along the ith dimension. Thus, the number of ports that
are used in each switch is: n =

∑k
i=1(ri − 1). The number



3

2

1

0

(a) 1D SWCube

01 11 21 31

03 13 23 33

02 12 22 32

00 10 20 30

(b) 2D SWCube
Fig. 3. SWCube.

of servers in an SWCube is actually the number of edges in
the original generalized hypercube, which can be calculated as
the number of switches Nw, times the switch port number n,
divided by 2: Nv = (

∏k
i=1 ri)(

∑k
i=1(ri − 1)/2).

For symmetry and regularity, we can choose r1 = r2 =
· · · = rk = r. We denote the constructed architecture as
SWCube(r, k). When the number of ports used in a switch
is n = 8, we can choose r = 5, k = 2. SWCube(5, 2) can
accommodate a total of 100 servers. When the number of ports
used is n = 16, we can choose r = 5, k = 4. SWCube(5, 4)
can accommodate a total of 5000 servers. Fig. 3(a) and
Fig. 3(b) represent an SWCube(4, 1) and an SWCube(4, 2),
respectively; the numbers of ports used in each switch are 3
and 6, respectively.

We say that two servers S = (S1, S2) and D = (D1, D2)
are along the same dimension if and only if the four switches,
which the two servers connect to, S1, S2, D1 and D2 differ
at most one bit.

Lemma 1: The distance of two servers that are along the
same dimension is at most 2.

Proof: As the SWCube is constructed, if two servers S =
(S1, S2) and D = (D1, D2) are along the same dimension,
the four switches they connect to, S1, S2, D1 and D2 are also
along the same dimension. Since all switches along the same
dimension form a complete graph (disregarding the servers),
S1 can reach D1 via one intermediate server; or S1 and D1

are the same switch. Thus, the shortest path between S and D
is no greater than S → S1 → (S1, D1) → D1 → D, where
S1 and D1 represent switches, and (S1, D1) represents the
intermediate server, if it exists. Thus the shortest path consists
of at most 3 servers, and the distance between S and D is at
most 2.

Lemma 2: The distance of two servers that are not along
the same dimension is at most k + 1.

Proof: Consider servers S = (S1, S2) and D = (D1, D2)
again. Since all switches form a generalized hypercube, each
switch, say S1, can reach another, say D1, at most k hops by
correcting one bit via each switch-to-switch-via-server hop.
The total number of servers in such a path from S1 to D1 is
at most k. Plus S and D themselves in a path from S to D,
there are at most k+2 servers in the path from S to D. Thus,
the distance between two servers is at most k + 1.

Theorem 3: The diameter of an SWCube(r, k) is d = k+1.
Proof: The theorem directly follows from Lemma 1 and

Lemma 2.

TABLE I. CHOICES OF k GIVEN n = 16
k 1 2 4 8 16
r 17 9 5 3 2
d 2 3 5 9 17

Nw 17 81 625 6561 65536
Nv 136 648 5000 52488 524288

Theorem 4: In terms of network diameter and switch port
number, the number of servers in an SWCube(r, k) is Nv =
n(n/(d− 1) + 1)d−1/2.

Proof: The number of switches in an SWCube(r, k) is
Nw = rk. The number of ports that are used on each switch
is n = k(r − 1). Since d = k + 1, r = n/(d − 1) + 1. The
number of servers in SWCube(r, k) is Nv = krk(r − 1)/2 =
n(n/(d− 1) + 1)d−1/2.

Given a switch port number n, for a regular SWCube, n =
k(r− 1), where k and r− 1 are positive integers. For n = 16,
k can be 1, 2, 4, 8 and 16. Table I shows the choices of k and
corresponding other values, given switch port number n = 16.
Notice that a huge gap on the total number of servers exists
between the k = 8 column and the k = 16 column. This gap
results from the assumption that all ri’s are equal; in practical
designs, this assumption is not necessary, and ri’s and k can
choose more flexible values to accommodate desired numbers
of servers and to meet other requirements.

V. SWKAUTZ
A. The Kautz Graph and SWKautz Construction

A k-dimensional Kautz directed graph [17], [18] with r+1
symbols is denoted by KA(r, k). The node set of KA(r, k) is
given by all possible strings of length k where each symbol
of the string is from the set Z = {0, 1, 2, · · · , r} with the
restriction that two consecutive symbols of the string are
always different. In other words, a string w1w2 · · ·wk can
represent a node in a KA(r, k) if wi ∈ Z, ∀1 ≤ i ≤ k and
wi ̸= wi+1 ∀1 ≤ i ≤ k− 1. There exists a directed edge from
node W 1 = w1

1w
1
2 · · ·w1

k to node W 2 = w2
1w

2
2 · · ·w2

k if and
only if W 2 is a left-shifted version of W 1, i.e., w1

2w
1
3 · · ·w1

k =
w2

1w
2
2 · · ·w2

k−1, and w2
k ̸= w2

k−1. A 3-dimensional Kautz
graph with 3 symbols is illustrated in Fig. 4(a).

The total number of nodes in a KA(r, k) graph is (r +
1)rk−1 = rk + rk−1 because the first symbol of a string
representing a node has r+1 choices, while the other symbols
have r choices in order to make sure two consecutive symbols
of every string are not equal. The network diameter of KA(r, k)
is k. Each node is with an indegree r and an outdegree that is
also r.

We construct another DCN architecture for interconnecting
dual-port servers based on a k-dimensional Kautz graph with
n/2 + 1 symbols; in other words, r = n/2, where n is the
switch port number. The new architecture can be logically
constructed as follows. We replace each node in the original
KA(n/2, k) graph with an n-port switch. After that, we remove
the direction of all of the edges and insert a server into each
edge. The architecture constructed as such is named SWKautz
because the SWitches form a Kautz graph. Fig. 4(b) shows a
SWKautz(2, 3), whose base Kautz graph is KA(2, 3) shown
in Fig. 4(a). In SWKautz(2, 3), the switch port number is 4.

Since the SWKautz is constructed by replacing each node
in the Kautz graph with an n-port switch, the addressing or
labeling scheme of the switches can be identical to that of
the nodes in the original Kautz graph. That is to say, each



210

101

021

121

012

120

201

010

102

020

202 212

(a) KA(2, 3) (b) SWKautz(2, 3)
Fig. 4. Kautz graph and SWKautz.

switch is represented by a k-digit string w1w2 · · ·wk, where,
wi ∈ Z, ∀1 ≤ i ≤ k and wi ̸= wi+1, ∀1 ≤ i ≤ k − 1. Note
that there may be two servers connecting two switches W 1

and W 2, since in the original Kautz graph, there may exist a
directed edge from W 1 to W 2 and a directed edge from W 2 to
W 1 at the same time. Thus, we use an ordered pair (W 1,W 2)
to represent a server; W 1 and W 2 are the server’s left switch
and right switch, respectively. We also say that the left switch,
W 1, of W is W ’s home switch. Note that (W 2,W 1) represents
a different server from (W 1,W 2).

B. Properties of SWKautz
Theorem 5: The diameter of an SWKautz(n/2, k) is d =

k + 1.
Proof: Consider two servers S = (S1, S2) and D =

(D1, D2), where S1 and S2 are the switches S connects, and
D1 and D2 are the switches that D connects. Since all switches
form a k-dimensional Kautz graph, while a k-dimensional
Kautz graph has diameter k, the longest path from any switch,
say S1, to another, say D1, is at most k switch-to-switch-via-
server hops. Thus the longest path from S to D includes at
most k+2 servers. The network diameter of SWKautz(n/2, k)
is d = k + 1.

Theorem 6: In terms of network diameter and switch port
number n, the number of servers in an SWKautz(n/2, k) is
Nv = (n/2)d + (n/2)d−1.

Proof: The number of switches in an SWKautz(n/2, k) is
equal to the number of nodes in the original Kautz graph, and
can be calculated as: Nw = (n/2)k + (n/2)k−1. The number
of servers in an SWKautz(n/2, k) is equivalent to the number
of edges in the original Kautz graph, which can be calculated
as: Nv = n((n/2)k + (n/2)k−1)/2 = (n/2)k+1 + (n/2)k =
(n/2)d + (n/2)d−1.

VI. RELATED EXISTING WORKS
In this section, we review three main DCN architectures

that also consider interconnecting dual-port servers. Notice that
MCube [13] only uses 6-port switches; thus, its application is
very limited. Besides, the number of servers that an MCube
can accommodate is much less than those of FiConn, BCN and
DPillar; thus, we do not consider MCube in our paper. As we
have mentioned, all existing works adopt the HOH assumption,
in other words, c = 0.

A. FiConn
FiConn [11] is a recursively defined architecture.

FiConn(n, 0) is the basic construction unit, which consists of
n servers and an n-port switch connecting them. If there are

switch

server

Fig. 5. FiConn(4, 2).

a total of b servers with one port remaining in a FiConn(n, k)
(k > 0), the number of FiConn(n, k−1)’s in a FiConn(n, k) is
equal to b/2+1. In each FiConn(n, k− 1), b/2 servers out of
the b servers with one port remaining are selected to connect
the other b/2 FiConn(n, k−1)’s using their second ports, each
for one FiConn(n, k− 1). Fig. 5 shows a FiConn(4, 2), which
consists of four FiConn(4, 1)’s.

The diameter of a FiConn(n, k) is d = 2k+1 − 1. The
number of servers in a FiConn(n, k) is Nv ≥ 2k+2(n/4)2

k

,
which, in terms of d and n, can be represented as follows:

Nv ≥ 2log2(d+1)+1(n/4)(d+1)/2 = 2(d+ 1)(n/4)(d+1)/2.

The number of switches in a FiConn(n, k) is Nw = Nv/n. The
average server degree in FiConn(n, k) is 2 − 1/2k. Table II
provides some feasible k and d values for FiConn.

TABLE II. k, d VALUES FOR FICONN

k 0 1 2 3 4
d 1 3 7 15 31

B. HCN & BCN
HCN [1] is also a recursively defined architecture. A high-

level HCN(n, h) employs a low level HCN(n, h − 1) as a
unit cluster, and connects many such clusters by means of
a complete graph. HCN(n, 0) is the smallest module, which
consists of n dual-port servers and an n-port switch. For each
server, its first port is used to connect to the switch, and its
second port is used to interconnect with another server in
different smallest modules for constituting larger networks.
An HCN(n, i) (i > 0) is formed by n HCN(n, i − 1)’s
and has n servers that still have one remaining port, each in
an HCN(n, i − 1) for further expansion. Fig. 6(a) shows an
HCN(4, 1) which connects four HCN(4, 0)’s.

A BCN architecture can be represented by
BCN(α, β, h, γ), where h denotes the level of BCN in
the first dimension, and γ denotes the level of a BCN, which
is selected as the unit cluster in the second dimension. When
0 ≤ h < γ, the BCN(α, β, h, γ) is simply BCN(α, β, h),
which is the same as an HCN(α, h), except that in each of the
smallest unit BCN(α, β, 0)’s, there are β slave servers that
can be used to expand the network in the second dimension.
α = n−β is the number of master servers that can be used to
expand the network in the first dimension in a BCN(α, β, 0).
The shortest path length among all of the server pairs in
BCN(α, β, h) is at most d = 2h+1 − 1. Actually, in order
to maximize the number of dual-port servers, the case when
h < γ needs not to be considered, since an HCN(n, h) will



HCN(4,0) HCN(4,1)

(a) HCN (b) BCN
Fig. 6. HCN and BCN.

have more servers than a BCN(α, β, h). When h ≥ γ ≥ 0,
the shortest path length among all of the server pairs in
BCN(α, β, h, γ) is at most d = 2h+1 +2γ+1 − 1. The number
of servers is

Nv = αh−γ(αγ(α+ β)(αγβ + 1)).

Apparently, in this case, Nv ≤ nh−γnγn(nγ+1+1) ≤ nh+γ+3.
Since d = 2h+1 + 2γ+1 − 1 ≥ 2

√
2h+1 · 2γ+1 − 1, we have

h+γ+2 ≤ 2 log2((d+1)/2). Thus, Nv ≤ n2 log2((d+1)/2)+1.
The number of switches is Nw = Nv/n. All slave servers have
degree 2, α(αγβ + 1) master servers have degree 1, while all
other master servers have degree 2. Thus, the average server
degree is 2 − 1/(αh−1n). Since HCN is just a special case
of BCN, and has a known small network order, we focus on
BCN only. More details on HCN & BCN can be found in [1].
Table III provides some feasible h, γ and d values for BCN.
Fig. 6(b) shows a BCN(4, 4, 0, 0).

TABLE III. h, γ , d VALUES FOR BCN
d h = 0 h = 1 h = 2 h = 3

γ = 0 3 5 9 17
γ = 1 1 7 11 19
γ = 2 1 3 15 23
γ = 3 1 3 7 31

C. DPillar
The DPillar architecture, which is based on the butterfly

network, can be represented by DPillar(n, k), which consists
of k server columns and k switch columns; Hi and Si

(0 ≤ i ≤ k − 1) represent server and switch columns,
respectively. The server and switch columns are alternately
placed along a cycle, as shown in Fig. 7(a). A server in each
server column is connected to the two switches in its two
neighboring switch columns. For a switch in column Si, half
of its n ports are connected to n/2 servers in Hi, and the other
half are connected to n/2 servers in Hi+1 mod k. Each server
column has (n/2)k servers; each switch column has (n/2)k−1

switches. Fig. 7(b) shows a DPillar(4, 3).

The diameter, the number of switches in a DPillar(n, k) are
d = k+⌊k/2⌋, Nw = k(n/2)k−1, respectively. The number of
servers in a DPillar(n, k) is Nv = (2d/3)(n/2)2d/3, when k is
even and Nv = ((2d+1)/3)(n/2)2d/3 , when k is odd. Every
server’s degree is 2, because both of its two ports are used.
Table IV provides some feasible k and d values for DPillar.

TABLE IV. k, d VALUES FOR DPILLAR

k 1 2 3 4 5 6 7 8 9 10 11 12 13
d 1 3 4 6 7 9 10 12 13 15 16 18 19

S0
H1 H0

S1

Si-1

Hi

Si

Sk-1

(a) vertical view (b) horizontal view
Fig. 7. DPillar.

VII. ON THE COMPARISON OF VARIOUS ARCHITECTURES
We compare various architectures in several aspects. The

first one is the design flexibility of different architectures;
our discussion focuses on the choices of network diameters
assuming c = 0. The second is the fundamental one: the
number of servers that an architecture can accommodate, given
the same configurations. The third aspect is the interconnection
cost per server in an architecture. Forth, we investigate the
influence of c values on the architectures.

A. Design Flexibility
As a recall, the network diameters of FiConn and BCN

are d = 2k − 1(k ≥ 0) and d = 2h+1 + 2γ+1 − 1(h ≥ γ ≥
0), respectively. Thus, FiConn and BCN allow very limited
network diameter values, due to the integer constraints of k for
FiConn, and h and γ for BCN. In a regular SWCube where
r1 = r2 = · · · = rk, n = k(r− 1) = (d− 1)(r− 1), it is only
required that d−1 is a divisor of n. As we have mentioned, in
practice, ri’s can be different from each other. Thus, SWCube
allows flexible choices of diameter values. DPillar also allows
flexible choices of diameters, in that d only needs to be in
the form of k + ⌊k/2⌋. SWKautz allows the most flexible
choice of network diameters because it can choose arbitrary
positive integers independent of switch port number, and its
architecture itself does not incur additional constraints.

B. The Number of Servers Given d and n
We have also calculated the number of servers for all

architectures. As we have shown above, FiConn and BCN
allow very limited choices of d. Besides, the number of servers
that FiConn accommodates is approximately 2(d+1)(n/4)d/2;
which is strictly less than that of SWCube, DPillar, and
SWKautz. The number of servers BCN accommodates is less
than n2 log2((d+1)/2)+1, which is also less than that of SWCube,
DPillar, and SWKautz for most n and d values. We do not
include FiConn and BCN for comparison in Fig. 8

We choose four typical diameter values for comparing
SWCube, DPillar and SWKautz, d = 4, 6, 7, 9. When d = 4
and d = 7, we vary n = 12, 24, 36, 48, 96, 192. When d = 6,
we vary n = 20, 40, · · · , 200. When d = 9, we vary n =
16, 32, 48, · · · , 192. Results for different d values are shown
in Fig. 8(a), Fig. 8(b), Fig. 8(c), and Fig. 8(d), respectively.
As we can see, for small d values, SWCube can accommodate
more servers than DPillar. For large d values, DPillar will
exceed SWCube when n is small; when n is sufficiently large,
SWCube still accommodates more servers than DPillar. Under
various configurations, SWKautz almost always outperforms
DPillar and SWCube in terms of maximizing the number of
servers. Also notice that, the number of servers that SWKautz
accommodates is the most close to the upper bound even under
the HEH assumption when c ̸= 0.



20 40 60 80 100 120 140 160 180 200

3

4

5

6

7

8
lo
gN

switch port number n

 SWKautz
 SWCube
 DPillar

(a) d = 4

20 40 60 80 100 120 140 160 180 200
4

5

6

7

8

9

10

11

12

lo
gN

switch port number n

 SWKautz
 SWCube
 DPillar

(b) d = 6

20 40 60 80 100 120 140 160 180 200

4

6

8

10

12

14

lo
gN

switch port number n

 SWKautz
 SWCube
 DPillar

(c) d = 7

20 40 60 80 100 120 140 160 180 200
4

6

8

10

12

14

16

18

lo
gN

switch port number n

 SWKautz
 SWCube
 DPillar

(d) d = 9

Fig. 8. Number of servers given network diameter and various switch port numbers.

TABLE V. HARDWARE INTERCONNECTION COST COMPARISON
FiConn(n, k) BCN(α, β, h, γ) DPillar(n, k) SWCube(r, k) SWKautz(n/2, k)

Nw/Nv 1/n 1/n 2/n 2/n 2/n
average server degree 2 − 1/2k 2 − 1/(αh−1n) 2 2 2

cost per server Pw/n + Pl(2 − 1/2k) Pw/n + Pl(2 − 1/(αh−1n)) 2Pw/n + 2Pl 2Pw/n + 2Pl 2Pw/n + 2Pl

C. Hardware Interconnection Cost per Server
We compare the hardware interconnection cost when all

architectures use n-port switches. Assume that the price of an n
port switch is Pw, and that the price of a cable/link is Pl. Based
on architectures’ switch-number to server-number ratio and
server degree, different architectures’ hardware interconnection
costs per server can be calculated as in Table V. As we can see,
the cost on links of different architectures do not differ much;
in fact, it is very close to 2Pl for all architectures. The cost per
server on switches of DPillar, SWCube, SWKautz is twice that
of FiConn and BCN; which is the main reason why DPillar,
SWCube and SWKautz can accommodate more servers than
FiConn and BCN. With only twice the cost, DPillar, SWCube,
and SWKautz provide a large order of increase on the number
of servers.

D. Influence of c on Various Architectures
We investigate the influence of c (NSD) on various ar-

chitectures. For this purpose, we choose fixed d = 7 when
c = 0. Under the HEH assumption, When c chooses different
values, the scaled diameter of different architectures can be
calculated. Fig. 9(a), Fig. 9(b), Fig. 9(c) and Fig. 9(d) show the
comparisons when n = 24, 48, 96 and 192, respectively. Since,
in FiConn and BCN, server-to-server-direct hops exist, when c
increases, their scaled diameter will not increase as sharply as
that of DPillar. Though FiConn and BCN have a large scaled
diameter when c = 0, as c increases, their scaled diameter
tends to be comparable with that of DPillar. SWKautz always
has the lowest scaled diameter because its network order is
much greater than that of all the others.

VIII. EVALUATION OF SWCUBE AND SWKAUTZ
In this section, we revert to the situation when c = 0, which

is the assumption that all existing works have adopted. Since
the two architectures are based on the generalized hypercube
and Kautz graph, they are conjectured to have high degree of
regularity, high bandwidth, good fault-tolerance, rich parallel
paths, as well as other nice properties for DCNs. In our work,
we focus on their properties related to routing.

A. Routing Properties of SWCube and SWKautz
Lemma 3: The shortest path length between two servers,

S = (S1, S2) and D = (D1, D2), in an SWCube can be
calculated by: 1+min {hd(S1, D1), hd(S1, D2), hd(S2, D1),
hd(S2, D2)}, where hd() is the Hamming distance between
two switches.

Proof: For a packet at server S to reach D, it must go
through one of the two switches S1 and S2, and one of the two
switches D1 and D2. In a generalized hypercube, the shortest
path length between two nodes is their Hamming distance;
thus, in the shortest path between any pair of two switches, say
S1 and D1, there exist at most hd(S1, D1) servers. Thus, the
shortest path length between two servers S and D is 1 +min
{hd(S1, D1), hd(S1, D2), hd(S2, D1), hd(S2, D2)}.

Theorem 7: For two servers S = (S1, S2) and D =
(D1, D2), if their shortest path length is l ≥ 2, their exist
at least l − 1 server-disjoint shortest paths between them.

Proof: For l ≥ 2, min{hd(S1, D1), hd(S1, D2),
hd(S2, D1), hd(S2, D2)} ≥ 1, without lose of generali-
ty, we assume min{hd(S1, D1), hd(S1, D2), hd(S2, D1),
hd(S2, D2)} = hd(S1, D1). According to the hypercube prop-
erties, there exist hd(S1, D1) switch disjoint shortest paths
between S1 and D1. Obviously, these paths are also server-
disjoint. Therefore, there exist at least hd(S1, D1) = l − 1
server-disjoint shortest paths between S and D.

It has been shown that, there exist r node-disjoint paths
between any pair of nodes in a KA(r, k) [19], and their lengths
are no greater than k + 2.

Theorem 8: There exist at least n/2 server-disjoint paths
between any pair of servers in an SWKautz(n/2, k), and their
lengths are no greater than k + 3.

Proof: This theorem follows from the aforementioned
fact. Plus 1 is imposed on k + 2 because the length of the
path between two servers is less than or equal to the number
of servers in a path between their home switches plus 1.

As Theorems 7 and 8 have indicated, both SWCube and
SWKautz have good fault-tolerance properties.

B. Average Path Length
For SWCube, the shortest path length between any pair of

servers can be easily calculated. For SWKautz, considering two
servers S = (S1, S2) and D = (D1, D2), we first calculate
the shortest path length among the following paths as in the
original Kautz graph: S1→D1, D1→S1, S1→D2, D2→S1,
S2→D1, D1→S2, S2→D2, D2→S2 by the shortest path
routing algorithm of Kautz graph [18]; denote this value as lm.
Then the shortest path length between S and D in SWKautz is
l ≤ l

′
= 1 + lm. The actual shortest path length l may not be

equal to l
′

because Kautz is a directed graph, while SWKautz
is undirected. More details are omitted. We calculate shortest



0.0 0.2 0.4 0.6 0.8 1.0

0.8

1.0

1.2

1.4
1.6

1.8

2.0
2.2

2.4

2.6
d/
lo
gN

c

 SWKautz
 SWCube
 DPillar
 BCN
 FiConn

(a) n = 24

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

d/
lo
gN

c

 SWKautz
 SWCube
 DPillar
 BCN
 FiConn

(b) n = 48

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6

d/
lo
gN

c

 SWKautz
 SWCube
 DPillar
 BCN
 FiConn

(c) n = 96

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

1.4

d/
lo
gN

c

 SWKautz
 SWCube
 DPillar
 BCN
 FiConn

(d) n = 192

Fig. 9. Scaled diameter of FiConn, BCN, DPillar, SWCube, SWKautz for different c values.

path lengths and l
′

values of all possible pairs of servers in
SWCube and SWKautz, respectively. Fig. 10(a) shows the
shortest path length distribution of SWCube(13, 2) and l

′
value

distribution of SWKautz(12,2). Fig. 10(b) shows the same
distributions of SWCube(9, 3) and SWKautz(12, 3). In the
figures, a bar represents the percentage of paths whose lengths
are equal to the corresponding value. The average shortest path
lengths of SWCube(13, 2) and SWCube(9, 3) are 2.66 and
3.42, respectively; the average l

′
values of SWKautz(12, 2)

and SWKautz(12, 3) are 2.51 and 3.45, respectively. Since
SWKautz(12, 3) consists of 22,464 servers; and SWCube(9, 3)
only consists of 8,748 servers. One might conjecture that the
SWKautz has a greater average shortest path length. However,
the average l

′
values is just slightly greater than the average

shortest path length of SWCube(9, 3). Thus, the shortest path
length in SWKautz(12, 3) is also small.

C. Routing Simulation With Congestion
We design simulations to evaluate SWCube’s and

SWKautz’s routing performance, under different degrees of
network traffic flow pressure. Notice that our emphasis is on
evaluating the architectures themselves, instead of on designing
the most efficient routing algorithms. Our simulations are time
step (ts) based. All randomly generated flows are imposed on
the network at the same time step ts = 0. We assume that each
server can send a packet and/or receive a packet at each time
step; however, it can send at most one packet at each time step.
If more than one packet needs to be sent out, the packages
will be queued by the First-In-First-Out (FIFO) scheme. If
packages arrive at a server at the same time, the packet with
a smaller flow index is assigned a higher priority. At each
time step, only the packet at the server’s queue head will be
sent to this packet’s next server, and other packet(s) should be
delayed. These idealistic assumptions comply with the HOH
assumption that delay at switches is negligible, compared to
the delay at servers.

In SWCube, we adopt the shortest path for SWCube, which
can be easily achieved according to Lemma 3; as for selecting
the shortest path from switch W 1 to W 2 in SWCube, the path
that corrects the switch address string from the first bit to the
last bit is selected. Since shortest path routing in Kautz graph
may cause a severe congestion problem [18], we choose the
long path routing algorithm for SWKautz. Each server chooses
its left switch as its home switch; then, a path from a source
server’s home switch to a sink server’s home switch can be
constructed by the long path routing algorithm [18]. A flow’s
delay without congestion is just the flow’s path length, while
a flow’s delay with congestion is the time step, ts’s value,
at which the flow arrives at its destination. Though our path
selection is fixed, by simulating a sufficiently large number of

1 2 3
0

10

20

30

40

50

60

70

pe
rc
en

ta
ge

 SWCube
 SWKautz

(a) d = 3

1 2 3 4
0

10

20

30

40

50

pe
rc
en

ta
ge

 SWCube
 SWKautz

(b) d = 4

Fig. 10. Path length distribution (n = 24).

flows, the path selection of all the servers in the network will
tend to be randomized.

We conduct simulations for SWCube(13, 2) and
SWKautz(12, 2), which have Nv = 2028 and Nv = 1872
servers, respectively. We vary the number of flows as
100, 200, 300, · · · , 1000. For each number of flows, we
randomly generate 100 sets of flows and calculate the average
delay. Fig. 11 shows the results of our simulation. “SWCube
WoC”, “SWCube WC”, “SWKautz WoC”, and “SWKautz
WC” represent the average delays of SWCube without
congestion, with congestion, SWKautz without congestion
and with congestion, respectively. When the total number of
flows is small, the average delay with congestion is almost
the same as that of the average delay without congestion.
For the number of flows equal to 100, the average delays
with congestion are only 3.36% and 2.53% greater than the
average delays without congestion for SWCube(13, 2) and
SWKautz(12, 2), respectively. When the number of flows
increases, the average delays with congestion only slightly
increase linearly, even when about half of the servers initiate
a flow at the same time. For the flow number equal to
1,000, the average delays with congestion are 31.17% and
27.15% greater than the average delays without congestion
for SWCube(13, 2) and SWKautz(12, 2), respectively. Thus,
both SWCube and SWKautz can efficiently handle network
congestion. As we can also see, though SWKautz’s long path
routing has a greater average delay, its delay with congestion
increases less significantly.

IX. CONCLUSION AND FUTURE WORK

We consider the design and analysis of DCN architectures
for interconnecting dual-port servers in this paper. Unlike
all existing works, we propose distinguishing a sever-to-
server-direct hop and a server-to-server-via-switch hop when
calculating the distance of two servers, to unify the design
of DCN architectures for interconnecting dual-port servers.
Next, we aim to maximize the number of servers, given a
network diameter and a switch port number. Motivated by the
diameter/degree problem in traditional graph theory, we give an



200 400 600 800 1000
2.6

2.8

3.0

3.2

3.4

3.6

de
la
y

number of flows

 SWCube WoC
 SWCube WC
 SWKautz WoC
 SWKautz WC

Fig. 11. Routing simulation for SWCube and SWKautz without and with
congestion.

upper bound on this maximal number. Then, we propose two
novel architectures which try to approximate this upper bound:
SWCube and SWKautz, which are based on the generalized
hypercube and Kautz graph, respectively. We compare our
two proposed architectures with three existing ones in various
aspects. Results show that SWCube and SWKautz demonstrate
advantages in various aspects. Analysis and simulation on
SWCube and SWKautz in detail reveal that they also maintain
good properties for DCNs. Our future work will be designing
efficient routing algorithms for the two architectures. Another
direction of our future work is to consider interconnecting
servers with more than two NIC ports.

REFERENCES

[1] D. Guo, T. Chen, D. Li, M. Li, Y. Liu, and G. Chen, “Expandable
and cost-effective network structures for data centers using dual-port
servers,” IEEE Trans. on Computers, vol. 62, no. 7, pp. 1303–1317,
2013.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proc. of the 19th ACM Symp. on Operating Systems Principles, 2003,
pp. 29–43.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a
distributed storage system for structured data,” in Proc. of the 7th
USENIX Symp. on Operating Systems Design and Implementation -
Volume 7, 2006, pp. 15–15.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proc. of the 2nd ACM SIGOPS/EuroSys European Conf. on Computer
Systems, 2007, pp. 59–72.

[6] Y. Zhang and N. Ansari, “On architecture design, congestion notifica-
tion, tcp incast and power consumption in data centers,” Communica-
tions Surveys Tutorials, IEEE, vol. 15, no. 1, pp. 39–64, 2013.

[7] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in Proc. of the ACM SIGCOMM 2009 Conf. on
Data Comm., pp. 51–62.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. of the ACM SIGCOMM Conf. on
Data Comm., 2008, pp. 63–74.

[9] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable
and fault-tolerant network structure for data centers,” in Proc. of the
ACM SIGCOMM Conf. on Data Comm., 2008, pp. 75–86.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” in Proc. of the ACM SIGCOMM 2009 Conf.
on Data Comm., pp. 63–74.

[11] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, and S. Lu, “Ficonn: Using
backup port for server interconnection in data centers,” in Proc. of IEEE
INFOCOM, 2009, pp. 2276–2285.

[12] Y. Liao, D. Yin, and L. Gao, “Dpillar: Scalable dual-port server
interconnection for data center networks,” in Proc. of 19th Int’l. Conf.
on Computer Comm. and Networks, 2010, pp. 1–6.

[13] C. Wang, C. Wang, Y. Yuan, and Y. Wei, “Mcube: A high performance
and fault-tolerant network architecture for data centers,” in Int’l. Conf.
on Computer Design and Applications,, vol. 5, 2010, pp. V5–423–V5–
427.

[14] A. Curtis, T. Carpenter, M. Elsheikh, A. Lopez-Ortiz, and S. Keshav,
“Rewire: An optimization-based framework for unstructured data center
network design,” in IEEE INFOCOM, 2012, pp. 1116–1124.

[15] N. Biggs, Algebraic Graph Theory. Cambridge: Cambridge University
Press, 1974.

[16] L. Bhuyan and D. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” Computers, IEEE Trans. on, vol.
C-33, no. 4, pp. 323–333, 1984.

[17] W. H. Kautz, “The design of optimum interconnection networks for
multiprocessors,” Architecture and Design of Digital Computer, NATO
Advances Summer Institute, pp. 249–277, 1969.

[18] G. Panchapakesan and A. Sengupta, “On a lightwave network topology
using kautz digraphs,” IEEE Trans. on Computers, vol. 48, no. 10, pp.
1131–1138, 1999.

[19] G. J. M. Smit, P. Havinga, and P. Jansen, “An algorithm for generating
node disjoint routes in kautz digraphs,” in Proc. of the 5th Int’l. Parallel
Processing Symp., 1991, pp. 102–107.

APPENDIX

Proof of Theorem 2: Consider the number of servers that a
server S in a DCN can reach at most within distance d. For 1 ≤
d < 1+ c, S can reach at most 2 other servers through server-
to-server-direct hops; ⌈d/(1 + c)⌉ = 1; the theorem holds.
For d ≥ 1 + c, we consider three choices of S to reach as
many other servers as possible within two hops (server-to-
server-direct hop(s) and/or server-to-server-via-switch hop(s)).
The first one is to reach other servers only by server-to-server-
direct hops; in this case, it can reach at most four other servers
(if possible), 2 of which have one port remaining for further
outreaching, and S’s remaining outreaching distance is d− 2.
The second choice is connecting S’s two ports to two switches;
by doing this, it can reach 2(n − 1) > 4 other servers, all of
which have one port remaining for further outreaching, and
S’s remaining outreaching distance is d − (1 + c) > d − 2.
Thus, compared with the first choice, the second one is always
better. The third choice is to connect S’s two ports to two other
servers first; next, the two new servers connect to two switches,
each of which connecting n−1 other servers, if d ≥ 1+(1+c).
By the third choice, S can reach at most 2+2(n−1) = 2n other
servers, of which 2(n−1) have one port remaining. However, if
the next step of the third choice is possible, i.e. d ≥ (1+c)+1,
in the second choice, the 2(n− 1) servers can also connect to
2(n− 1) other servers within distance (1+ c)+1. The second
choice results in 4(n − 1) > 2n new servers; there are also
2(n − 1) servers with one port remaining. Thus, the second
choice is also better than the third one. Based on the analysis
of these three choices, we can see that S should always try
to reach other servers via server-to-server-via-switch hops, if
the remaining outreaching distance allows it to do so. Within
⌊d/(1+c)⌋ server-to-server-via-switch outreaching hops, S can
reach at most 2(n− 1) + 2(n− 1)2 + · · ·+ 2(n− 1)⌊d/(1+c)⌋

other servers. Exploiting the remaining outreaching distance
d − (1 + c)⌊d/(1 + c)⌋, S can reach at most another 2(n −
1)⌊d/(1+c)⌋ servers, if possible. Thus, the maximal number of
servers in any network with diameter less than or equal to d is
Nv ≤ (2(n−1)⌊d/(1+c)⌋+1−n)/(n−2)+2(n−1)⌊d/(1+c)⌋ ≤
(2(n− 1)⌈d/(1+c)⌉+1 − n)/(n− 2) = Nub

v .


