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a b s t r a c t

Network coverage is an important Quality of Service (QoS) measurement for many sensor network

applications. Many existing studies on network coverage are based on the knowledge of sensor node

distributions in sensing fields, which are often represented by given probability distributions. In this

paper, we study the impacts of sensor node distributions on network coverage. We first show the

impacts on network coverage by adopting different sensor node distributions through both analytical

and simulation studies. We observe that assumed different sensor location distributions may lead to

significant differences in coverage estimation. Then, we adopt a distribution-free approach to study

network coverage, in which no assumption of probability distribution of sensor node locations are needed.

The proposed approach has yielded good estimations of network coverage. Though only network coverage

is studied in this paper, we believe that this methodology can be generalized and extended to estimation

of other sensor network performance metrics.

© 2011 Published by Elsevier Inc.

1. Introduction1

Wireless sensor networks (WSNs) have a wide range of2

applications. Making use of mobile nodes carried by animals [26]

Q1

3

or automobiles [38] or deterministically deployed sensor nodes in4

fixed locations [104], many trials have demonstrated the potential5

of WSNs. Continuous miniaturization of sensor nodes can lead6

to future WSN applications where a large number of battery-7

powered sensor nodes are randomly and densely deployed and8

the network is left unattended to perform monitoring, tracking,9

and reporting functions [2,110]. One fundamental issue related to10

those applications is coverage, which, in general, can be considered11

as a quality of service measurement of the WSNs [69]. The WSN12

coverage problems can be generally divided into three types: area13

coverage where the objective is to monitor an area or a region,14

point coverage where the objective is to monitor a set of points or15

targets, and barrier coverage where the objective is to minimize16

the probability of an undetected penetration through a barrier17

monitored by a WSN [15].18
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The coverage problems have been widely studied in conjunc- 19

tion with energy efficiency and lifetime of WSNs. A sensor node can 20

be in the off-duty cycle or can enter power-save mode to conserve 21

battery power. We refer to a sensor node that is in duty to sense 22

its surroundings as an active sensor node and to a sensor that is 23

off duty or enters power-save mode as an inactive sensor node. In 24

a densely deployed WSN, since multiple sensor nodes may cover 25

a subarea or a target, it may not affect the coverage to deactivate 26

and activate sensor nodes alternatively; however, the lifetime of 27

the WSN will be extended. 28

In recent work concerning network coverage problems where 29

sensor nodes are deployed randomly, researchers assume that the 30

spatial distributions of sensor nodes are known when evaluating 31

their proposed algorithms or protocols. For instances, in [86], 32

the coordinates of sensor nodes are generated using the pseudo- 33

uniform distribution in an area; in [49], sensor nodes are deployed 34

randomly with the Poisson distribution in a barrier. 35

Previous work using given sensor node distributions provides 36

deep insight into the performance of the WSNs. However, the 37

sensor node distributions may either not hold true or be difficult 38

to obtain beforehand in some applications. For example, for 39

battle field surveillance, sensor nodes can be airdropped either 40

by aircrafts or by rockets. The sensor nodes are distributed along 41

the route of an aircraft when the sensors are dropped by the 42

aircraft, while the sensors are usually within a circle centered 43

under the location where the rocket releases the sensors when 44
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a rocket is used. In either of these two cases, sensor nodes will1

not distribute uniformly in the desired sensing field. Instead, more2

sensors are expected to be found along the route of the aircraft or3

close to the center of the circle. Moreover, due to wind and other4

factors, such as environmental, human, and mechanical factors,5

the distributions of sensor nodes can be difficult to determine6

beforehand.7

There are a few potential disadvantages when sensor node8

distributions are assumed to be known beforehand. (1) It is very9

difficult to choose an accurate sensor node location distribution;10

(2) inaccurate distribution assumption will result in poor analysis11

of protocols or algorithms; and (3) changes in sensor node12

distributions may lead to variations in system performance and13

may sometimes even invalidate the whole analysis.14

Motivated by this intuition, we propose a network coverage15

analysis approach in which no assumption on sensor location16

distribution is required beforehand. Thus, the approach is in effect17

a distribution-free approach. The approach is suitable to solve18

network coverage problems concerning a great number of sensors19

which are deployed randomly.20

The contributions of this work are three-fold. First, we provide21

an evaluation on the effects of sensor location distribution via22

both analytical modeling and computer simulations. Our results23

show that inaccurate sensor location distribution can lead to non-24

neglectable error of network coverage estimation. Second, we then25

propose a distribution-free sensor network modeling approach, in26

which, we take a small sample of the actual deployment, and then27

apply Kernel-Density Estimator (KDE), a non-parametric statistical28

analysis, to capture the distribution of the deployment. In practice,29

this small sample could be a set of enhanced sensor nodes with GPS30

receivers, and thus their locations can be known after deployment.31

Based on the estimated sensor node distribution knowledge, the32

network coverage metrics can be calculated. The last, but not the33

least, we verify the proposed approach by using our previous work34

in [106] as an example and the analytical and simulation results35

show that the distribution-free approach leads to much accurate36

estimation of network coverage.37

The rest of this paper is organized as follows. Section 2 discusses38

the related work. Section 3 defines the network coverage problem39

we are dealing with: randomized scheduling algorithm and cov-40

erage intensity. In this section, we also formulate the coverage in-41

tensity using general probability distribution, in other words, no42

assumption on sensor location distribution is assumed. We pro-43

pose the distribution-free approach in Section 4. We use computer44

simulations to verify the coverage intensity formulization using45

general probability distribution in Section 5. Section 6 studies the46

impacts of sensor location distribution on network coverage es-47

timation, and shows that inaccurate sensor location distributions48

can render network coverage estimation worthless. In Section 7,49

we present a concrete example to demonstrate the application and50

effectiveness of the distribution-free approach. We conclude our51

paper in Section 8 with a summary of findings and a brief discus-52

sion of future work.53

2. Related work54

A sensor network may contain a large number of simple sensor55

nodes. Sensor nodes are often powered by batteries, and hence56

have to operate on limited energy budgets. Furthermore, it is57

difficult to replace batteries in the sensors deployed in inaccessible58

or inhospitable environments. Thus, many research efforts have59

studied the energy conservation of sensor nodes to extend sensor60

network life time [101]. The network lifetime is defined as the61

time between the initialization of the network and the first62

case of battery exhaustion among sensor nodes. Extending the63

network lifetime has been extensively studied [77,16,67]. Many64

protocols keep a subset of sensor nodes vigilant for sensing and 65

communication tasks while putting the others in power-save 66

mode [1]. On the other hand, energy efficiency should not be 67

achieved at the cost of reduced network coverage and connectivity. 68

Thus, the network coverage and connectivity have also been 69

considered simultaneously in some studies [64,31,102,111]. 70

In [81], the authors studied a network with sensor nodes 71

deployed strictly in grids. A great deal of work focuses on 72

sensor networks, in which sensor locations follow a Poisson point 73

process and sensors are uniformly distributed in sensing fields 74

(e.g., [9,103]). In [76], barrier coverage problems are studied when 75

sensors are distributed along the line with random offsets due 76

to wind and other environmental factors. In [111], the authors 77

investigate energy efficiency in more general sensor networks 78

where the sensor nodes are deployed randomly. In [106], the 79

authors study a randomized scheduling algorithm where sensors 80

are uniformly distributed.
∧
Paper [69] proposes a worst and average 81

case algorithm for coverage calculation from the perspective of 82

computational geometry where no sensor location distribution is 83

required. Nevertheless, little work has been done where no prior 84

knowledge of sensor node location distribution is required. 85

Sensor nodes can be deployed incrementally. The deployment 86

approach proposed in [55] adds sensor nodes
∧
one at a time into 87

the network in the most energy-efficient way identified. It is
∧
a 88

greedy algorithm that avoids combinatory complexity while pro- 89

viding possible sub-optimal deployment for minimizing power 90

consumption for communications. In [37], an incremental deploy- 91

ment algorithm deploys nodes one at a time such that network 92

coverage is maximized while full line-of-sight connectivity is 93

maintained. The algorithm utilizes information gathered by pre- 94

viously deployed nodes to determine the deployment location of 95

a node. Both
∧
current and incremental deployment methods are 96

proposed in [47]. Relying on geometric sampling theory, it
∧
provi- 97

des a lower bound of the number of sensors required for coverage 98

and connectivity. There is also other related work in
∧
[109,99,25,42, 99

20,43,93,92,29,65,27,108,19,45,57,28,12,62,10,113,73,75,89,59,90, 100

24,74,88,22,68,23,91,48,116,18,94,7,52,30,71,72,84,100,58,61,97, 101

117,60,6,66,95,63,53,50,80,83,34,112,11,114,96,41,98,21,4,46,107, 102

105,85,87,33,5,56,79,44,3,54,32] 103

Our approach differs from previous work. This paper studies the 104

impact of sensor location distributions on network coverage and 105

provides a distribution-free approach in which no assumption of 106

sensor location distribution is required and sensor locations can 107

be in any distribution. To the best of our knowledge, no existing 108

literature applies the distribution-free approach to sensor network 109

coverage problems. 110

3. Coverage intensity 111

As indicated in [69,15], the concept of WSN coverage (network 112

coverage) has a wide range of interpretations due to a variety 113

of sensors and applications. As a result, many different coverage 114

formulations have been proposed. We provide a network coverage 115

formulation by defining the concept of network coverage intensity 116

and by formulizing the coverage intensity using general probability 117

distribution. In other words, we formulize the coverage intensity 118

without using actual sensor location distribution as a priori. To 119

show the impacts of sensor location distributions, we then study 120

and compare the network coverage intensity of a few sensor 121

location distributions in Section 6. To verify the effectiveness of 122

our distribution-free approach, we need to compare the coverage 123

intensity estimation obtained by using the distribution-free 124

approach with the estimation obtained when actual distributions 125

are known in Section 7. Therefore, we apply the formula of 126

coverage intensity derived using general probability distribution to 127

three specific probability distributions to obtain the corresponding 128

results used in Sections 6 and 7. 129
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(a) Uniform distribution. (b) Gaussian distribution. (c) GU distribution.

Fig. 1. Sensor node location distributions.

3.1. Coverage intensity1

Assume that n sensors are randomly deployed to form a wire-2

less sensor network to cover a field, which we refer to as the3

sensing field. The sensor network runs a randomized scheduling4

algorithm. The randomized scheduling algorithm is given as fol-5

lows. Let S denote the set of all the n sensor nodes. Let S be divided6

into k disjoint subsets Sj (j = 1, 2, . . . , k) with each sensor node7

being randomly assigned to one of these subsets. At any time, only8

one subset of sensor nodes is active and the rest are inactive. The9

objective is to extend the network lifetime and maintain satisfac-10

tory coverage. We measure the coverage using coverage intensity.11

Network coverage intensity is the ratio of the time when a12

point in the field of the sensor network is covered by at least one13

active sensor node to the total time. We model the sensor node14

deployment field as a two-dimensional Cartesian coordination15

system. The field ranges from 0 to X and from 0 to Y on the X- and16

Y -axes, respectively. Assume that the sensing area of a sensor is17

the area of a circle and the sensing range of sensors is R, the radius18

of the circle. Let f (x, y) denote the probability density function of19

sensor node locations. Actual deployment of sensor nodes may be20

unknown, and f (x, y) can be any distribution. Let P(g, h) denote21

the probability that a given point, (g, h), is covered by at least one22

sensor node. We have23

P(g, h) =

��

(x−g)2+(y−h)2≤R2

f (x, y)dxdy. (1)24

Since n sensors are divided into k disjoint subsets, which take25

turns waking up and performing sensing tasks while the rest of the26

subsets are in power-save mode. Then the probability that point27

(g, h) is covered by an active sensor can be written as28

C(g, h) = 1 − [1 − P(g, h)/k]n. (2)29

Coverage intensity is the detection metric for the whole30

network. Note that point (g, h) is randomly chosen from the31

sensing field. Thus, the network coverage intensity for the network32

is33

Cn = E(C(g, h)). (3)34

It is worth noting that, in the above discussion, no assumption35

of sensor location distribution is given, and that the sensor location36

distribution can be any distribution, even one which has no explicit37

form.38

The above derivation does not consider the edge effect. Since39

the whole sensing field must have boundaries, the coverage area40

of a sensor node may not be completely inside the sensing field,41

which we refer to as the edge effect. The computer simulations42

in Section 5 show that the error rate between the simulation and43

analytical results is very small and can be neglected when the44

number of sensors is large.45

3.2. Uniform distribution 46

Assume that sensors are uniformly deployed in the sensing 47

field. Fig. 1(a) shows an example deployment. This case is studied 48

in detail in [106]. For comparison purposes, we reformulate 49

the coverage intensity using the result obtained in the previous 50

subsection. Sensor location (g, h) follows a two-dimensional 51

uniform distribution, namely f (x, y) = 1/(XY ). By plugging this 52

into Eqs. (1)–(3), we can obtain the network coverage intensity of 53

the
∧
two-dimensional uniform distribution. 54

PU(g, h) =

��

(x−g)2+(y−h)2≤R2

1

XY
dxdy =

πR2

XY
(4) 55

CU(g, h) = 1 −

�

1 −
πR2

kXY

�n

(5) 56

CU
n = E(C(g, h))

=

� Y

0

� X

0

1

XY

�

1 −

�

1 −
πR2

kXY

�n
�

dxdy

= 1 −

�

1 −
πR2

kXY

�n

(6) 57

where we use superscriptU to indicate that sensor locations follow 58

a two-dimensional uniform distribution. 59

3.3. Two-dimensional Gaussian distribution 60

Assume that sensor nodes deployed in the sensing field follow 61

a two-dimensional Gaussian distribution. Fig. 1(b) shows an 62

example deployment. The probability density function of the two- 63

dimensional Gaussian distribution is given as 64

f (x, y) =
1

2πσ 2
e−[(x−X/2)2+(y−Y/2)2]/2σ 2

. 65

Plugging this into (1), we have 66

PG(g, h) =

��

(x−g)2+(y−h)2≤R2

1

2πσ 2
e−[(x−X/2)2+(y−Y/2)2]/2σ 2

dxdy 67

where subscript G indicates that sensor locations follow a two- 68

dimensional Gaussian distribution. 69

Let x� = x − g and y� = y − h, 70

PG(g, h) =

��

x�2+y�2≤R2

1

2πσ 2
e−[(x�+g−X/2)2+(y�+h−Y/2)2]/2σ 2

dx�dy�. 71

Let x� = l sin θ , y� = l cos θ , and |J| = | ∂(x�,y�)

∂(l,θ)
| = l, 72

PG(g, h) 73

=

� R

0

� 2π

0

1

2πσ 2
e−[(l sin θ+g−X/2)2+(l cos θ+h−Y/2)2]/2σ 2

|J|dldθ 74

=

� R

0

� 2π

0

1

2πσ 2
e−[(l sin θ+g−X/2)2+(l cos θ+h−Y/2)2]/2σ 2

ldldθ. (7) 75
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Plug (8) into (2) and (3), and we have
∧

1

CG(g, h) = 1 − [1 − PG(g, h)/k]n (8)2

CG
n = E(CG(g, h)). (9)3

3.4. GU distribution4

In this subsection, we assume that the known sensor location5

distribution is the one along the x-axis, where sensor locations6

follow a Gaussian distribution with a mean of X/2, and along7

the y-axis, where sensor locations follow a uniform distribution8

with a mean of Y/2. Fig. 1(c) shows an example deployment. For9

simplicity, we name this two-dimensional distribution as a GU10

distribution. As in the above, we need to calculate the probability11

P(g, h) to obtain coverage intensity under a GU distribution. Thus,12

we have13

PGU(g, h) =

��

(x−g)2+(y−h)2≤R2

f (x)f (y)dxdy14

where
∧
f (x) = 1√

2πσx
e
− (x−X/2)2

2σx2 and f (y) = 1

Y
. Note that superscript15

GU indicates that sensor locations follow a GU distribution.16

Following steps similar to those in the previous subsection, we17

have18

PGU(g, h) =

� R

0

� 2π

0

1
√

2πσx

e
− (l sin θ+g−X/2)2

2σx2
1

Y
ldldθ (10)19

CGU(g, h) = 1 − [1 − PGU(g, h)/k]n (11)20

CGU
n = E(CGU(g, h)). (12)21

4. Distribution-free approach22

In this section, we introduce the distribution-free approach for23

estimating coverage intensity. The approach uses a non-parametric24

statistical method [35,13]. It does not require the sensor location25

distribution to be known. Instead, it requires the locations of a few26

sensors among the deployed sensors.27

There are many studies regarding sensor node localization.28

Common localization approaches [8,14,36,51,70,82] rely on a few29

sensor anchor or beacon nodes whose locations are known in30

advance, e.g., via GPS signals. Thus, we can have a few sensors31

whose locations can be accurately determined. Due to random32

factors in the real world, such as wind, it is impossible for33

sensor location distributions to be exactly the same as assumed34

distributions. Since inaccurate knowledge of sensor location35

distributions can yield misleading or invalid network coverage36

estimations, we propose a distribution-free approach to estimate37

the network coverage intensity. The approach is not based on an38

assumed distribution. Instead, it is based on the locations of a39

sample of sensor nodes whose locations are known.40

In the rest of this section, we first present how we infer41

sensor location distribution from the locations of a sample of42

sensor nodes using a non-parametric statistical method, called43

∧
kernel-density estimation [35,13]. KDE is one of the mostly used44

∧
non-parametric techniques. It provides an estimation of arbitrary45

distribution from empirical data without much prior knowledge.46

KDE-based methods have been shown to be robust and effective47

methods in distributed systems and computer networks [39,115,48

40]. Although other non-parametric statistical methods exist and49

are worth investigating, as a step forward, we focus our effort on50

evaluating the effectiveness of KDE-based method for scheduling51

and coverage problem in large sensor networks.52

4.1. Infer sensor location distribution from locations of sample sensor 53

nodes 54

Denote the locations of randomly selected sample nodes as 55

(Xi, Yi), i = 1, 2, . . . ,N , where N is the sample size. From [35], 56

the probability density at any point (x, y) can be estimated using 57

the locations of the sample of sensor nodes, i.e., 58

f̂h(x, y) =
1

Nhxhy

N�

i=1

K

�
x − Xi

hx
,
y − Yi

hy

�

(13) 59

where K(•) is some kernel and hx and hy are smoothing factors 60

or window-width. K(•) is often taken to be a standard Gaussian 61

function with mean 0 and variance 1, i.e., 62

K(u, v) =
1

2π
e− 1

2
(u2+v2). (14) 63

Plugging (14) into (13), we
∧
obtain 64

f̂h(x, y) =
1

Nhxhy

N�

i=1

K

�
x − Xi

hx
,
y − Yi

hy

�

65

=
1

Nhxhy

N�

i=1

1

2π
e
− 1

2

�
(x−Xi)

2

h2
x

+
(y−Yi)

2

h2
y

�

. (15) 66

Note that (1) window-width hx and hy indirectly control the 67

variance of the Gaussian function and that (2) probability density 68

functions to be estimated can be multi-modal [13] and by no means 69

have to be Gaussian, even though the kernel is a Gaussian function. 70

Choices of N , h, and K(•) are the factors determining the 71

efficiency and effectiveness of the estimation of the probability 72

density. 73

4.2. Distribution-free coverage intensity estimation 74

The approach has four steps: (1) obtaining the locations of the 75

sample sensor nodes; (2) analyzing the locations and obtaining 76

the window-width (hx and hy); (3) approximating sensor location 77

distribution using
∧
kernel-density estimation; (4) calculating the 78

coverage intensity based on the Kernel-density estimation. 79

Though N and K(•) are also factors related to the efficiency 80

and effectiveness of the approach, they are determined empirically 81

before sensor deployment in this paper. The above four steps are 82

carried out after sensor deployment without using any assumed 83

sensor location distribution. 84

The coverage intensity is calculated as follows. Replacing f (x, y) 85

in (1) by (13), we
∧
obtain 86

PDF (g, h) =

��

(x−g)2+(y−h)2≤R2

f̂h(x, y)dxdy 87

=

��

(x−g)2+(y−h)2≤R2

1

Nhxhy
88

×
N�

i=1

K

�
x − Xi

hx
,
y − Yi

hy

�

dxdy (16) 89

where superscript DF indicates that we are using the distribution- 90

free approach. Plugging (16) into (2) and (3), we have
∧

91

CDF (g, h) = 1 − [1 − PDF (g, h)/k]n (17) 92

CDF
n = E(CDF (g, h)). (18) 93

5. Simulation verification 94

In this section, we perform computer simulations to verify the 95

analytical model presented in Section 3. We developed our own
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Fig. 2. Coverage intensity vs. number of sensor nodes.

simulation program in C++. The program is an implementation of1

discrete event simulation. The locations of sensors and intrusions2

are either derived from a given distribution or loaded from a3

given sensor node configuration. There are three types of events,4

intrusion events, detection events, and intrusion departure events.5

An intrusion event is generated randomly. A detection event6

occurs when the associated intrusion event is detected by at least7

one sensor node. The departure event is generated whenever8

the lifetime of the intrusion event expires. In our simulations9

below, sensor nodes are deployed randomly in the sensing field.10

The purposes of this section are to demonstrate that (1) the11

analytical model in Section 3 is accurate
∧
, and that (2) the edge12

effect is neglectable. To cope with limited space, we show only13

the results for GU distributions for the first purpose. For the14

second purpose, we show only the results for the two-dimensional15

uniform distributions.16

In this section, the standard deviation (σx) of Gaussian distribu-17

tion along the x-axis is 20, the number of deployed sensor nodes18

(n) is 1000, the size of the whole sensing field is 10 000, the sens-19

ing area of each sensor is 30, and the number of subsets is 4, unless20

otherwise stated.21

Fig. 2 shows the network coverage intensity vs. the number22

of sensor nodes with both analytical and simulation results. The23

figure shows that the analytical results match the simulation24

results exactly. In addition, the network coverage intensity25

increases as the number of sensor nodes increases, and the26

network coverage intensity becomes smaller as the number of27

disjointed subsets (k) increases.28

Fig. 3 shows the coverage intensity vs. the number of disjoint29

subsets (k) with both analysis and simulation. The figure shows30

that the analytical and simulation results match exactly. Addition-31

ally, the network coverage intensity decreases as the number of32

subsets increases, and the network coverage intensity goes to 0 as33

the number of disjointed subsets goes to infinity.34

Fig. 4 shows the coverage intensity vs. the standard deviation35

of Gaussian distribution along the x-axis with both analytical36

results and simulation results for different numbers of subsets.37

This figure shows that the analytical results match the simulation38

results exactly. Furthermore, the network coverage intensity first39

increases and then decreases as the value of standard deviation40

increases. A larger k value makes the network coverage intensity41

smaller. When the value of standard deviation goes to infinity, the42

network coverage intensity goes to 0. The reason for this trend43

is that, the larger the standard deviation becomes, the lower the44

probability that the sensor can be deployed in the designated45

sensing field becomes.46

Fig. 5 shows that the error rate between the simulation results47

and the analytical results is less than 5% when n = 50, and much48

Fig. 3. Coverage intensity vs. number of subsets.

Fig. 4. Coverage intensity vs. standard deviation.

Fig. 5. Error of coverage intensity between analytical and simulation results.

less than 1% when n = 500. Error rate is defined as
�
Ca
n − Cs

n

�
/Cs

n, 49

where Ca
n and Cs

n denote the coverage intensity obtained from (6) 50

and from computer simulations, respectively. It is clear that when 51

the number of sensors is large enough, the error caused by the edge 52

effect can be neglected. 53
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Fig. 6. Coverage intensity vs. number of sensor nodes (k = 2, σ = 5).

6. Impacts of sensor node location distribution on network1

coverage estimation2

In this section, we show the impacts of inaccurate sensor lo-3

cation distribution on network coverage estimation. Intuitively,4

the discrepancy between actual and estimated network coverage5

would occur when the knowledge of the sensor location distribu-6

tion is inaccurate. We intend to demonstrate that the discrepancy7

is so great that the inaccurate sensor location distributions may in8

effect render the network coverage estimation worthless and mis-9

leading. This section is organized as follows. (1) We compare the10

calculated coverage intensity when sensor location distributions11

are uniform and two-dimensional Gaussian respectively. This case12

can be interpreted to mean that the actual sensor location distri-13

bution is a two-dimensional Gaussian distribution; however, we14

assume that the distribution is uniform
∧
, or vice versa. (2) Similarly,15

we next compare the calculated coverage intensity of uniform and16

GU distributions.17

The coverage intensity for uniform distributions is calculated18

using Eq. (6), that for two-dimensional Gaussian distributions19

using Eq. (9), and that for GU distributions using Eq. (12). We20

choose X = 100, Y = 100, and R = 3 unless otherwise stated.21

6.1. Two-dimensional Gaussian and Uniform distributions22

Figs. 6–9 show the coverage intensity vs. the number of23

sensor nodes for both Gaussian and Uniform distributions, when24

the number of disjoint subsets k and the standard deviation25

of Gaussian distributions σ vary. The discrepancy of coverage26

intensity between Gaussian and Uniform distributions when σ =27

5 is greater than that when σ = 15. Regardless of whether σ =28

5 or 15, the discrepancy of coverage intensity between the two29

distributions is apparent. Note that when the number of sensors30

goes to infinity, the coverage intensity of Uniform distribution goes31

to 1, but the coverage intensity of Gaussian distribution increases32

much more slowly.33

Figs. 10 and 11 show the coverage intensity vs. standard devi-34

ation of Gaussian distributions. A large discrepancy between uni-35

form and Gaussian distributions can be found when σ is either very36

small or very large. The reason is that sensors are concentrated at37

the center of the sensing field when σ is very small and many ar-38

eas of the field are not covered, and many sensors will be deployed39

outside of the sensing field when σ is very large.40

6.2. Gu and Uniform distributions41

Figs. 12–15 show the coverage intensity vs. the number of42

sensor nodes for both GU and Uniform distributions, when the43

Fig. 7. Coverage intensity vs. number of sensor nodes (k = 2, σ = 15).

Fig. 8. Coverage intensity vs. number of sensor nodes (k = 4, σ = 5).

Fig. 9. Coverage intensity vs. number of sensor nodes (k = 4, σ = 15).

number of disjoint subsets k and the standard deviation of 44

Gaussian distributions for x-axis σx vary. The discrepancy of 45

coverage intensity between GU and Uniform distributions when 46

σx = 5 is greater than that when σx = 15. Regardless of whether 47

in either case, the discrepancy of coverage intensity between two 48

distributions is apparent. Note that, when the number of sensors 49

goes to infinity, the coverage intensity of Uniform distribution goes 50

to 1 but the coverage intensity of GU distribution increases more 51

slowly. 52

Figs. 16 and 17 show the coverage intensity vs. standard devi- 53

ation of Gaussian distribution. A large discrepancy between uni- 54

form and Gaussian distributions can be found when σx is either 55

very small or very large. The reason is that sensors are concentrated 56

at the center of the sensing field when σx is very small, and many 57
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Fig. 10. Coverage intensity vs. standard deviation (n = 1000).

Fig. 11. Coverage intensity vs. standard deviation (n = 5000).

Fig. 12. Coverage intensity vs. number of sensor nodes (k = 2, σ = 5).

areas of the field are not covered, and many sensors will be de-1

ployed outside of the sensing field when σ is very large.2

6.3. Deploy-once and re-deploy3

Fig. 18 shows the simulation results of the coverage intensity4

vs. the standard deviation of Gaussian distribution along the5

x-axis under two different deployment assumptions. The first6

assumes that the sensor deployment follows a GU distribution.7

Under this assumption, the sensor nodes can be deployed either8

within the intended sensing field or outside of the field. In the9

Fig. 13. Coverage intensity vs. number of sensor nodes (k = 4, σ = 5).

Fig. 14. Coverage intensity vs. number of sensor nodes (k = 2, σ = 15).

Fig. 15. Coverage intensity vs. number of sensor nodes (k = 4, σ = 15).

second assumption, after deploying a set of sensor nodes, we 10

collect those sensor nodes which are outside the intended sensing 11

field and
∧
re-deploy them. We repeat this procedure until all 12

sensor nodes are deployed in the designated sensing field. As 13

illustrated in the figure, the network intensity is larger under the 14

second assumption. This figure also shows that the discrepancy 15

of coverage intensity caused by different assumptions can be 16

large. 17

From the above three cases, we can conclude that the discrep- 18

ancy of network coverage generated by inaccurate probability dis- 19

tributions is very large and cannot be neglected. 20
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Fig. 16. Coverage intensity vs. standard deviation (n = 1000).

Fig. 17. Coverage intensity vs. standard deviation (n = 4000).

Fig. 18. Comparison of two deployment strategies: deploy-once and re-deploy.

7. Example and evaluation of distribution-free approach1

In this section, we demonstrate how to apply the distribution-2

free approach to estimate network coverage intensity. As discussed3

in Section 4, three factors affect the effectiveness and efficiency4

of the approach. The three factors are kernel K(•), sample size5

N , and windows-widths hx and hy. Literature has shown that6

Gaussian function is a good choice for estimating the probability7

density of continuous random variables using the
∧
kernel-density8

estimation method [13]. Note that probability density functions9

to be estimated can be multi-modal and by no means have10

to be Gaussian, though the kernel is a Gaussian function.11

Nevertheless, we have to determine sample size and windows-12

widths beforehand. In Section 7.1, we present some discussion on13

the sample size and the window-width. In Section 7.2, we present a 14

complete example of the distribution-free approach and compare 15

the result obtained from the distribution-free approach with that 16

obtained from actual distribution. 17

7.1. Sample size and window-width 18

7.1.1. Sample size 19

A larger number of sample sensor nodes leads to better 20

estimation of network coverage. A large sample can be obtained 21

by deploying large numbers of anchor or beacon sensor nodes, 22

or by determining accurate locations of a large number of sensor 23

nodes, which is difficult to do. However, when too few sample 24

sensor nodes are chosen, the network coverage estimation can be 25

inaccurate. In this paper, we use a simple method to determine the 26

sample size. The main idea is to choose a sample size so that the 27

difference of the sample mean and the population mean is within 28

a threshold with a large probability or confidence. The method 29

requires many field experiments and proceeds as follows, 30

1. Deploy N sensors in a sensing field via a desirable vehicle, e.g., 31

an aircraft or a rocket. Obtain the locations of all the sensors. 32

The sensors are treated as a population, and we calculate the 33

mean and the variance of the locations of the sensors. Denote 34

the population mean and the population variance as Ȳ and S2
35

respectively. 36

2. Randomly select a small number of sensors. The sensors con- 37

stitute a sample. Obtain their locations. Calculate the mean and 38

the variance of the locations. Denote the sample mean and the 39

sample variance as ȳ and s2, respectively. 40

3. Calculate the error between the sample mean and the popula- 41

tion mean, and denote it as r = (ȳ − Ȳ )/Ȳ . 42

4. As suggested in [17], the proper sample size is estimated as 43

n =
�
uα/2S

rȲ

�2
��

1 + 1

N

�
uα/2S

rȲ

�2
�

, where uα/2 is the value of 44

the vertical boundary for the area of α/2 in the right tail of the 45

standard normal distribution. 46

Repeat the above steps a few times to reach a consensus. 47

The work of deciding sample size is implemented in a test 48

field where we can easily collect the data of sensor locations. In 49

reality, the sensor network is usually deployed in a hostile field 50

or a rough area where it is hard to collect the locations of many 51

sensors. However, based on the result of sample size obtained from 52

our experiment in the test field, we can choose a small group of 53

sensors as samples before the real deployment and equip these 54

sample sensors as beacons which have the functions to know their 55

coordinates after deployment from satellite information [78]. After 56

deployment in reality, we can estimate the distribution of sensor 57

deployment based on sample sensor locations which will introduce 58

in the following section. 59

7.2. Window-width 60

For simplicity, let hx = hy = h in this subsection. In the 61

following, we will show the impact of window-width (h) for the 62

coverage intensity estimation in three different cases, (1) two- 63

dimensional Gaussian distribution, (2) two-dimensional Uniform 64

distribution, and (3) GU (X-Gaussian Y -Uniform) distribution. 65

Fig. 19 shows the probability density function of
∧
two-dimen- 66

sional Gaussian distribution on the whole sensing field. Fig. 20 67

shows the estimated distribution when window-width (h) is cho- 68

sen as 1. From the figure, we can see many interferences. From 69

Fig. 22, where the window-width (h) is chosen as 25, we can see 70

that the estimation is too flat because we ignore too much random 71

interference in locality. Finally, from Fig. 21, where the window- 72

width (h) is chosen as 10, we see that the approximated estimation 73

is the best. 74
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Fig. 19. Two-dimensional Gaussian distribution.

Fig. 20. Estimation (window-width (h) = 1).

Fig. 21. Estimation (window-width (h) = 10).

Fig. 22. Estimation (window-width (h) = 25).

Fig. 23 shows two-dimensional uniform distribution on the1

whole sensing field. Fig. 24 shows the estimated density function2

when window-width (h) is chosen as 1. From the figure, we can see3

many interferences. From Fig. 26, where the window-width (h) is4

chosen as 25, we can see that the estimation is too curved because5

we ignore too much random interference in locality. Finally, from6

Fig. 25, where the window-width (h) is chosen as 10, we see that7

the approximated estimation is the best.8

Fig. 23. Two-dimensional uniform distribution.

Fig. 24. Estimation (window-width (h) = 1).

Fig. 25. Estimation (window-width (h) = 10).

Fig. 26. Estimation (window-width (h) = 25).

Fig. 27 shows GU distribution on the whole sensing field. 9

Fig. 28 shows the estimated distribution when window-width (h) is 10

chosen as 1. From the figure, we can see many interferences. From 11

Fig. 30, where the window-width (h) is chosen as 25, we can see 12

that the curve face is too flat because we ignore too much random 13

interference in locality. Finally, from Fig. 29, where the window- 14

width (h) is chosen as 10, we see that the approximated estimation 15

is the best. 16
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Fig. 27. x-Gaussian, y-uniform distribution.

Fig. 28. Estimation (window-width (h) = 1).

Fig. 29. Estimation (window-width (h) = 10).

Fig. 30. Estimation (window-width (h) = 25).

7.3. Example and evaluation of distribution-free approach1

7.3.1. Step 1: obtain locations of sample sensors2

First, before deployment, according to the number of sensor3

nodes deployed in the sensor network, we decide how many4

samples we need to provide based on the results obtained from5

the sample size section. Then we randomly choose the number6

of sample nodes and set them as anchor nodes. Second, after7

random deployment, the sample sensors’ location coordinates can8

Table 1

Locations of sample sensors.

Sample Sample

(X1, Y1) 44.95, 19.34 (X26, Y26) 48.83, 70.27

(X2, Y2) 53.07, 68.22 (X27, Y27) 50.59, 54.66

(X3, Y3) 52.54, 30.28 (X28, Y28) 51.57, 44.49

(X4, Y4) 58.46, 54.17 (X29, Y29) 57.22, 69.45

(X5, Y5) 52.96, 15.09 (X30, Y30) 48.25, 62.13

(X6, Y6) 46.78, 69.79 (X31, Y31) 53.17, 79.48

(X7, Y7) 51.90, 37.84 (X32, Y32) 53.99, 95.68

(X8, Y8) 44.95, 86.00 (X33, Y33) 54.70, 52.26

(X9, Y9) 49.90, 85.37 (X34, Y34) 45.04, 88.01

(X10, Y10) 49.76, 59.36 (X35, Y35) 51.06, 17.29

(X11, Y11) 50.00, 49.66 (X36, Y36) 51.19, 97.97

(X12, Y12) 48.41, 89.98 (X37, Y37) 44.96, 27.14

(X13, Y13) 55.48, 82.16 (X38, Y38) 46.29, 25.23

(X14, Y14) 40.63, 64.49 (X39, Y39) 55.41, 87.57

(X15, Y15) 52.14, 81.80 (X40, Y40) 49.34, 73.73

(X16, Y16) 54.48, 66.02 (X41, Y41) 51.95, 13.65

(X17, Y17) 53.65, 34.20 (X42, Y42) 50.44, 1.17

(X18, Y18) 52.89, 28.97 (X43, Y43) 46.82, 89.39

(X19, Y19) 50.20, 34.12 (X44, Y44) 47.20, 19.91

(X20, Y20) 53.38, 53.40 (X45, Y45) 52.22, 29.87

(X21, Y21) 52.84, 72.71 (X46, Y46) 45.25, 66.14

(X22, Y22) 48.72, 30.93 (X47, Y47) 53.91, 28.44

(X23, Y23) 48.11, 83.85 (X48, Y48) 52.84, 46.92

(X24, Y24) 48.52, 56.81 (X49, Y49) 45.89, 6.48

(X25, Y25) 42.62, 37.04 (X50, Y50) 48.67, 98.83

be obtained via a sensor localization protocol. Here, the locations 9

of the sample sensors are (Xi, Yi), i = 1, 2, . . . ,N , where N is 10

the sample size. Table 1 shows an example of the locations of 11

the sample sensors. In the example, the whole deployment area is 12

X × Y = 100 m × 100 m, the sensing area of each sensor is 30 m2, 13

the number of sample sensor nodes is N = 50, and the standard 14

deviation of GU distribution along the x-axis is 5. 15

7.4. Step 2: window-width (h) 16

In
∧
kernel-density estimation, the window-width plays an 17

important role. Many numerical methods have been developed to 18

find h, and they mostly minimize the so-called Mean Integrated 19

Squared Error [13]. In our experiment, we use a fast and accurate 20

bivariate
∧
kernel-density estimator as in [13] to obtain the window- 21

width values (hx and hy). For example, based on the sample sensor 22

location data in Fig. 19, the bivariate window-width we obtained 23

is (hx, hy) = (3.88, 16.71). 24

7.5. Step 3: distribution estimation 25

Based on the sample location coordinates from Step 1 and the 26

bivariate window-width from Step 2, the density function can be 27

calculated using Eq. (15) since we use Gaussian function as the 28

kernel. 29

The sensor location distribution in the real world (GU distribu- 30

tion) is given in Fig. 31(a), and the estimation based on the loca- 31

tions of sample sensors as shown in Table 1 is given in Fig. 31(b). 32

Through comparing these two distribution figures, we can see that 33

the estimated distribution is quite close to the actual distribution. 34

Note that a better estimation can be achieved by increasing the size 35

of the sample of sensor nodes. 36

7.6. Step 4: system performance evaluation 37

In this step, we can use the distribution estimation result 38

to study the network performance metrics of interest. In our 39

experiment, the coverage intensity is the studied network metric. 40

Based on (16)–(18), the estimated coverage intensity can be 41

obtained. Fig. 32 shows the estimation results. 42
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(a) GU distribution (standard deviation = 5). (b) Distribution estimation.

Fig. 31. Estimation evaluation.

Fig. 32. Estimation performance (size of sample = 50).

Fig. 33. Estimation performance (size of sample = 100).

Fig. 32 shows the network coverage intensity vs. the number1

of sensor nodes for Uniform distribution, GU distribution, and2

the Estimated GU distribution, where the standard deviation of3

Gaussian distribution along the x-axis is 5 and the number of4

disjointed subsets is 2. In the experiment, the size of the whole5

sensing field is 10 000 and the sensing area of each sensor is 30.6

In Fig. 32, in the sensor network, the number of whole deployed7

sensors varies from 500 to 2500; but we only use 50 sample sensors8

to estimate the distribution through the
∧
kernel-density estimation9

method.10

By increasing the size of the sample, we can improve our 11

estimation accuracy, as illustrated in Fig. 33; the estimation of 12

coverage intensity using 100 sensor nodes is better than the 13

performance estimation shown in Fig. 32, where 50 sensor nodes 14

are used. 15

8. Conclusion and future work 16

Network coverage is an important problem of WSNs. Previous 17

works are largely based on assumed probability density functions 18

that govern the distribution of sensor nodes in the sensing field. 19

However, the actual distribution of sensor nodes may be very 20

different from the assumed one. Our analytical and simulation 21

study shows that, when a different assumption is used, the 22

introduced error in the network coverage metrics is very large and 23

cannot be neglected. 24

In this paper, we first reformulated the network coverage in- 25

tensity using general probability distribution. In other words, 26

we did not assume that the sensor location distributions were 27

known. We verified the formulization using computer simulations, 28

which showed that the analytical results and computer simula- 29

tions matched exactly. 30

Most importantly, we proposed a distribution-free approach for 31

estimating network coverage intensity. In our proposed method, 32

no assumption on sensor location distribution was required. 33

Instead, we take a small sample of the actual deployment, and 34

carry out a statistical analysis to capture the distribution function 35

of the deployment. In practice, this small sample could be a set of 36

enhanced sensor nodes with GPS receivers, and thus their locations 37

can be known. Furthermore, we used the
∧
kernel-density estimator 38

to estimate the deployment distribution. Based on the obtained 39

knowledge, the network coverage metrics can be calculated. 40

The results show that a small sample of sensor nodes yields 41

fairly good estimates of the distribution used. In particular, com- 42

pared to the case in which a different assumption (the uniform 43

distribution) than actual sensor location distribution (GU distri- 44

bution) is used, the distribution-free approach yields far better
∧

45

results. 46

Future work in this direction includes, but is not limited to: 47

(1) minimizing the number of sample sensors while maintaining 48

certain estimation precision; (2) proposing an
∧
in situ method to 49

determine the number of sample sensors needed (which is em- 50

pirically determined beforehand); (3) developing and evaluating a 51

complete set of protocols that integrate sensor network location 52

discovery, routing discovery, and distributed scheduling where 53

network coverage is estimated using the proposed approach. 54

Finally, though this paper only studies sensor network coverage, 55

we believe that this methodology can be generalized and extended 56

to study many other sensor network metrics. 57
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