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Abstract—Traffic flow monitoring systems aim to measure
and monitor vehicle trajectories in smart cities. Their critical
applications include vehicle theft prevention, vehicle localization,
and traffic congestion solution. This paper studies an RoadSide
Unit (RSU) placement problem in traffic flow monitoring systems.
Given some traffic flows on streets, the objective is to place a min-
imum number of RSUs to cover and distinguish all traffic flows. A
traffic flow is covered and distinguishable, if the set of its passing
RSUs is non-empty and unique among all traffic flows. The RSU
placement problem is NP-hard, monotonic, and non-submodular.
It is a non-trivial extension of the traditional set cover problem
that is submodular. We show that, to cover and distinguish an
arbitrary pair of traffic flows (f and f ′), two RSUs should be
placed on streets from two different subsets of f\f ′, f ′\f , and
f ∩ f ′. Three bounded RSU placement algorithms are proposed.
Their approximation ratios are n ln n(n−1)
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, respectively. Here, n is the number of given traffic
flows. Extensive real data-driven experiments demonstrate the
efficiency and effectiveness of the proposed algorithms.

Index Terms—Traffic flow tracking systems, RSU placement,
coverage and distinguishability, smart city.

I. INTRODUCTION

Recent breakthroughs on Traffic Flow Monitoring Systems
(TFMSs) have enabled accurate measurements and monitors
of vehicle trajectories in smart cities. Important applications of
TFMSs include: (i) vehicle theft preventions by the trajectory
monitoring [1, 2], (ii) vehicle localizations by the trajectory
analysis and prediction [3], and (iii) traffic congestion solu-
tions by the traffic flow management [4]. Due to the growing
popularity of location-based vehicle services, the measurement
and monitoring capacity of the TFMS would further benefit
intelligent transportation systems [1]. Currently, most TFMSs
are implemented through WiFi technologies [5], Bluetooth low
energy radios [6], or GSM [7]. These implementations need to
deploy RoadSide Units (RSUs) as the infrastructure to measure
and monitor passing traffic flows. Since RSUs are expensive,
the manufacturing cost of a TFMS depends heavily on the
placement (or deployment) of the RSU.

This paper focuses on an RSU placement problem to reduce
the manufacturing cost of the TFMS in a smart city. The
problem scenario is shown in Fig. 1, which involves multiple
streets and intersections. On streets, there exist some given
traffic flows, which are composed of moving vehicles. The
TFMS should measure and monitor these given traffic flows.
An RSU can be placed on a street to communicate the wireless
devices on the passing vehicles. A traffic flow is said to be
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Fig. 1. An illustration of the RSU placement scenario.

covered, if it goes through at least one RSU. Clearly, all
given traffic flows should be covered in the TFMS. Otherwise,
some given traffic flows may not be monitored. However, even
if all traffic flows are covered, the TFMS cannot measure
and monitor different traffic flows. The reason is that an
RSU cannot distinguish its passing vehicles that belong to
different traffic flows. A covered traffic flow is said to be
distinguishable, if the set of its passing RSUs is unique among
all traffic flows. The status (e.g., flow rate) of a distinguishable
traffic flow can be calculated from the information collected
by all the deployed RSUs. To accurately monitor and measure
the traffic flow status, the TFMS should be able to cover and
distinguish all given traffic flows in the smart city.

To satisfy the coverage and distinguishability requirements,
we can simply place an RSU on each street that is passed by
each given traffic flow. However, this placement strategy is
impractical, since RSUs are expensive. We should minimize
the number of placed RSUs to reduce the manufacturing cost
of the TFMS. The objective of this paper is to minimize the
number of placed RSUs, and the constraint is that all given
traffic flows are covered and distinguishable. Challenges come
from the difference between coverage and distinguishability:
some given traffic flows can be indistinguishable, even if all
given traffic flows are covered. An example is shown Fig. 1,
which involves six streets (e1 to e6) and four given traffic flows
(f1 to f4). As an RSU placement strategy, three RSUs are
placed on e1, e3, and e6, respectively. Clearly, all given traffic
flows are covered, since each traffic flow goes through one
RSU. However, f2 and f3 are indistinguishable, since they go
through the same set of placed RSUs (i.e., the RSU placed on
e3). Consequently, we should place one more RSU on e4 or e5
to distinguish f2 and f3. The coverage and distinguishability
requirements pose unique challenges on our problem.



The RSU placement problem is NP-hard, monotonic, but not
submodular [8]. It is a non-trivial extension of the traditional
set cover problem that is submodular [9]. Let f and f ′ denote
an arbitrary pair of traffic flows (in terms of their sets of
passing streets). We demonstrate that, to cover and distinguish
f and f ′, two RSUs are necessary and sufficient to be placed
on streets from two different subsets of f\f ′, f ′\f , and
f ∩ f ′. Three RSU placement algorithms are proposed. They
are bounded with respect to the number of given traffic flows
(denoted by n). The first algorithm iteratively places a pair of
streets to cover and distinguish maximum pairs of traffic flows,
resulting in a ratio of n ln n(n−1)

2 that belongs to O(n lnn).
The second algorithm places redundant RSUs on streets from
each subset of f\f ′, f ′\f , and f∩f ′. Its approximation ratio is
n+1
2 ln 3n(n−1)

2 , which also belongs to O(n lnn). However, it
has a lower time complexity than the first algorithm. The third
algorithm has the lowest time complexity, as well as the best
ratio of ln n(n+1)

2 that belongs to O(lnn). It avoids redundant
RSU placements by subtly redefining subsets.

Our main contributions are summarized as follows:
• We address the coverage and distinguishability require-

ments in the RSU placement problem, which is proven
to be NP-hard, monotonic, and non-submodular.

• We propose three RSU placement algorithms with ratios
of n ln n(n−1)

2 , n+1
2 ln 3n(n−1)

2 , and ln n(n+1)
2 . They have

different intuitions and time complexities.
• Extensive real data-driven experiments are conducted to

evaluate the proposed solutions. The results are shown
from different perspectives to provide conclusions.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III, describes the model, and
then, formulates the problem. Section IV analyzes the problem.
Section V proposes bounded solutions. Section VI includes the
experiments. Finally, Section VII concludes the paper.

II. RELATED WORK

In the past decade, TFMSs have brought multiple promising
and emerging applications to pedestrians and vehicles [1]. One
successful application is vehicle theft preventions through the
trajectory monitoring. Lee et al. [2] designed a vehicle tracking
system using GPS/GSM/GPRS technologies and smartphone
applications. Perera et al. [10] monitored traffic flows based
on vehicle trajectory predictions. Autowitness [11] can track
stolen properties (e.g., vehicles) with robust tolerances of GPS
outages. TFMSs can be applied to localize passing pedestrians
and vehicles [3]. Jin et al. [12] studied a pedestrian tracking
system with sparse infrastructure supports. Sivaraman et al.
[13] surveyed recent vehicle detection and localization tech-
nologies through RSUs and cameras. Kyun queue technology
[14] monitored and localized road traffic queues to manage
traffic congestion. Janecek et al. [15] estimated the bus travel
time based on cellular data and vehicular traffic theory.

This paper studied the RSU placement problem, where
the TFMS places RSUs on streets to monitor passing traffic
flows. Similar scenarios include Xu’s work [16] that places
RSUs for vehicle communications. Randomized and bounded

algorithms were introduced for the RSU placement. Zheng and
Wu [17] uses RSUs to disseminate advertisements to passing
vehicles. Reis et al. [18] placed RSUs as intermediate relays
to improve communications in sparse vehicular networks. This
paper differs from classic placement problems [19] in terms
of the coverage and distinguishability requirements.

Our RSU placement problem extends the traditional set cov-
er problem [9] in terms of the coverage and distinguishability
requirements. Given some elements and a collection of sets
of elements, the traditional set cover problem aims to select
minimum sets to cover all given elements [20]. Elements in
a set are covered, if this set is selected. Our RSU placement
problem is not submodular, and is a non-trivial extension of
the traditional set cover problem that is submodular [21].

III. MODEL AND PROBLEM FORMULATION

The RSU placement scenario is based on a directed graph
G = (V,E), where V is a set of nodes (i.e., street intersec-
tions), and E ⊆ V 2 is a set of directed edges (i.e., one-way
and two-way streets). We use ei to denote the ith edge. The
graph G includes n given traffic flows of F = {f1, f2, ..., fn}
on the streets. Each given traffic flow is represented as a
walk, which is a sequence of edges, i.e., f = (e1, e2, ...). An
example is shown in Fig. 1, where f1 = (e6, e5), f2 = (e3, e5),
f3 = (e3, e4), and f4 = (e1, e2). Both nodes and edges can be
repeated in a walk. All given traffic flows are unique, i.e., we
have f 6= f ′ for ∀f, f ′ ∈ F . A given traffic flow is composed
of moving vehicles that need to be monitored by the TFMS.
Applicable scenarios include vehicle theft prevention, vehicle
localization, and traffic congestion management in smart cities.

The TFMS places RSUs on streets (edges) to monitor and
measure passing vehicles. Let S denote an RSU placement
strategy, which is the variable in our problem. S is the set
of edges with placed RSUs. For example, in Fig. 1, we have
S = {e1, e3, e6}. Let S(f) denote the subset of S, the edges
in which f goes through. In Fig. 1, we have S(f1) = {e6},
S(f2) = S(f3) = {e3}, and S(f4) = {e1}. A traffic flow is
said to be covered, if it goes through at least one RSU. To
monitor all given traffic flows in F , each given traffic flow
should be covered, meaning that S(f) 6= ∅ for ∀f ∈ F . How-
ever, the coverage requirement is insufficient to distinguish
different traffic flows. A covered traffic flow is said to be
distinguishable, if the set of its passing RSUs is unique among
all traffic flows. To accurately monitor different given traffic
flows, a covered traffic flow should also be distinguishable,
meaning that S(f) 6= S(f ′) for ∀f, f ′ ∈ F, f 6= f ′.

Since RSUs are generally expensive, the manufacturing cost
of a TFMS depends heavily on the placement of the RSU. To
reduce the manufacturing cost, our objective is to minimize the
number of placed RSUs, and the constraint is that all given
traffic flows are covered and distinguishable. Our problem can
be formulated as follows (|S| is the set cardinality of S):

minimize |S|
subject to S(f) 6= ∅ for ∀f ∈ F (1)

S(f) 6= S(f ′) for ∀f, f ′ ∈ F, f 6= f ′



IV. PROBLEM ANALYSIS

A. Problem Hardness

Theorem 1: The RSU placement problem is NP-hard.
Proof: The proof is done through one special assumption,

under which our problem is equivalent to a variation of the set
cover problem [21]. Given some elements and a collection of
sets of elements, the set cover problem aims to select minimum
sets to cover all given elements. The special assumption is
that each given traffic flow goes through exactly two streets.
We denote two different traffic flows as overlapped, if they go
through one same street. Since each traffic flow is unique, two
different traffic flows can only be overlapped for one street.

Let us discuss two cases. In the first case, a given traffic
flow does not overlap with the other traffic flows. Then, one
RSU can cover and distinguish it. In the second case, a traffic
flow overlaps with the other traffic flows. Suppose that f and
f ′ are overlapped at one street of e. According to the special
assumption, each flow goes through exactly two streets (say
f goes through e and e′, while f ′ goes through e and e′′). To
cover f and f ′, we can simply place one RSU on e. In contrast,
to distinguish f and f ′, two RSUs should be placed among e,
e′, and e′′. In order to unify the coverage and distinguishability
requirements, we add a virtual traffic flow of f ′′ = (e′, e′′)
as the third party. As a result, two RSUs should be placed
among e, e′, and e′′ to cover and distinguish f , f ′, and f ′′.
Note that the virtual traffic flow is conceptual, and may not
be practical on streets. An example is shown in Fig. 1, where
f1 = (e6, e5), f2 = (e3, e5), f3 = (e3, e4), and f4 = (e1, e2).
A virtual flow of f5 = (e3, e6) is added for f1 and f2, and a
virtual flow of f6 = (e5, e4) is added for f2 and f3.

Since virtual flows unify the coverage and distinguishability
requirements, the RSU placement problem can be converted
to the set cover problem through the following mappings: a
traffic flow (including the virtual one) is mapped to an element,
and a street is mapped a set of all passing traffic flows. In the
converted set cover problem, two different sets of e, e′, and e′′

are selected to cover three elements of f , f ′, and f ′′. Hence, a
minimum set cover serves as an optimal RSU placement. For
example, the mapping results for Fig. 1 are:

sets e1 e2 e3 e4 e5 e6

elements f4 f4 f2, f3, f5 f3, f6 f1, f2, f6 f1, f5

Here, e1, e3, and e5 provides a minimum set cover, which
is an optimal RSU placement. S(f) should be non-empty for
the coverage requirement and unique for the distinguishability
requirement. This example satisfies S(f1) = {e5}, S(f2) =
{e3, e5}, S(f3) = {e3}, and S(f4) = {e1}. Due to the special
assumption on the traffic flow length and the additional virtual
traffic flows, the converted set cover problem is a variation of
the traditional one. It has a bounded element frequency and
satisfies the element transitivity. Such a variation of the set
cover problem remains NP-hard according to [21, 22]. In the
same manner, we can also reduce the set cover problem back
to the RSU placement problem. Therefore, the RSU placement
problem is also NP-hard. �
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Fig. 2. An example to illustrate Theorem 3.

The key intuition behind this proof is that the coverage and
distinguishability requirements can be unified under a special
assumption. This proof also indicates that our problem is a
non-trivial extension of the traditional set cover problem.

B. Monotonicity and Non-submodularity

This subsection presents two basic properties of the RSU
placement problem: monotonicity and non-submodularity. Let
N(S) denote the number of covered and distinguishable traffic
flows, under the RSU placement strategy of S. By definition,
0 ≤ N(S) ≤ n. Let T denote a superset of S, i.e., S ⊆ T .
The monotonicity is shown in the following theorem:

Theorem 2: The RSU placement problem is monotonic,
meaning that N(S) ≤ N(T ) for ∀S ⊆ T, T ⊆ E.

Proof: Let us consider a pair of given traffic flows (say f
and f ′), which are covered and distinguishable under the RSU
placement strategy of S. Clearly, f and f ′ are also covered
under the RSU placement strategy of T , since S(f) ⊆ T (f)
and S(f ′) ⊆ T (f ′) by S ⊆ T . For the same reason, we have:

S(f) ∩ (T (f ′)\S(f ′)) = ∅ (2)
S(f ′) ∩ (T (f)\S(f)) = ∅ (3)

The distinguishability means that S(f) 6= S(f ′). We obtain
T (f)=S(f)∪(T (f)\S(f)) and T (f ′)=S(f ′)∪(T (f ′)\S(f ′))
by definition. Eqs. 2 and 3 indicate that T (f) 6= T (f ′) when
S(f) 6= S(f ′). Therefore, f and f ′ are also distinguishable
under the RSU placement strategy of T . Since f and f ′ are
arbitrarily selected, we conclude that a given traffic flow, which
is covered and distinguishable in S, must also be covered and
distinguishable in T . As a result, we have N(S) ≤ N(T ), and
the proof completes. �

Theorem 2 shows that more RSUs can always cover and
distinguish no less traffic flows. Since the RSU placement
problem is monotonic, it can be solved by greedy algorithms.
However, the monotonicity is insufficient to obtain bounded
solutions. In general, the submodularity [21] is desired. N(S)
is submodular, if it satisfies

N(S ∪ {e})−N(S) ≥ N(T ∪ {e})−N(T ) (4)

for ∀e ∈ E,S ⊆ T, T ⊆ E. Here, e is an arbitrary edge (street
to place an RSU). The submodularity means that the marginal
gain of N(S) decreases with respect to the size of S. It is also
known as the diminishing return property [21]. Unfortunately,
the RSU placement problem is not submodular:

Theorem 3: The RSU placement problem is not submodu-
lar, meaning that N(S ∪{e})−N(S) < N(T ∪{e})−N(T )
for ∃e ∈ E,S ⊆ T, T ⊆ E.
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Fig. 3. An example to illustrate Theorems 4 and 8.

Proof: The proof is done via a counter-example in Fig. 2,
which includes five streets (e1 to e5) and four given traffic
flows (f1 to f4). We set S = {e1}, T = {e1, e4}, and e = e2.
In this counter-example, we have N(S) = N(S ∪ {e2}) =
N(T ) = 1, since only f1 is covered and distinguishable. In
contrast, we have N(T ∪ {e2}) = 4, since all given traffic
flows are covered and distinguishable. Clearly, N(S∪{e2})−
N(S) < N(T ∪{e2})−N(T ). Therefore, the RSU placement
problem is not submodular. �

Due to the non-submodularity, simple greedy algorithms are
not bounded [20]. Non-submodularity clearly differentiates our
RSU placement problem from the traditional set cover problem
that is submodular [21]. The coverage and distinguishability
requirements pose unique challenges for our problem.

C. Key Observation and Trivial Bound

This paper minimizes the number of placed RSUs under the
coverage and distinguishability requirements. For a traffic flow
(say f ), S(f) should be non-empty and unique. Note that S(f)
is unique, if and only if S(f) 6= S(f ′) for ∀f, f ′ ∈ F, f 6= f ′.
The distinguishability requirement should be analyzed in a
pairwise manner. The key observation is that two RSUs are
necessary and sufficient to cover and distinguish an arbitrary
pair of given traffic flows (say f and f ′). In the following
paper, we slightly abuse the notation, where f can also denote
the set of streets (edges) it goes through. Then, we can divide
the set of f ∪ f ′ into three disjoint subsets of f\f ′, f ′\f , and
f ∩ f ′. These subsets are depicted in the following:

f f

ff 

ff \ ff \

traffic 

flow

passing 

street

The key observation is formally presented in the following:
Theorem 4: To cover and distinguish an arbitrary pair of

traffic flows (f and f ′), two RSUs should be placed on streets
from two different subsets of f\f ′, f ′\f , and f ∩ f ′.

The proof of Theorem 4 is omitted, since it can be done by
checking all the combinational possibilities. RSUs, which are
not placed on streets in f ∪ f ′, will not cover or distinguish
f and f ′. An example is shown in Fig. 3, where we have:

three disjoint subsets for f1 ∪ f2 f1\f2 f2\f1 f1 ∩ f2

corresponding streets (edges) e1, e5 e3, e4, e7 e2, e6

To satisfy S(f1) 6= ∅, S(f2) 6= ∅, and S(f1) 6= S(f2), we can
have S = {e1, e3}, S = {e2, e4}, or S = {e5, e6}. In contrast,
we cannot have S = {e1, e5}, S = {e3, e4}, or S = {e2, e6}.
Theorem 4 results in a trivial bound as follows:

Algorithm 1 Pair-Based Greedy (PBG)
Input: A graph, G, and a set of traffic flows, F .
Output: A RSU placement strategy, S.

1: Initialize S = ∅.
2: Initialize F 2 as the set of all pairs of traffic flows.
3: for each pair of streets, e ∈ E and e′ ∈ E do
4: Initialize a counter of Cee′ = 0.
5: while F 2 6= ∅ do
6: for each pair of traffic flows, f and f ′, in F 2 do
7: for a pair of streets, e and e′, in f ∪ f ′ do
8: if (e /∈ S or e′ /∈ S) and (e and e′ are in two

different subsets of f\f ′, f ′\f , and f ∩ f ′) then
9: Update Cee′ = Cee′ + 1.

10: Update S = S ∪ {arg maxee′ Cee′}.
11: Remove f and f ′ for arg maxee′ Cee′ from F 2.
12: Reset Cee′ = 0 for each pair of streets, e and e′.
13: return S as the RSU placement strategy.

Theorem 5: The minimum number of placed RSUs, which
can cover and distinguish all n given traffic flows, should be
no smaller than dlog2 ne, and no larger than n(n− 1).

Proof: We start with the lower bound, which is proven via
the information theory [23]. The RSU placement problem is
analogized to an encoding process. Each RSU is mapped to a
bit, and each traffic flow is mapped to a bit string. If a traffic
flow goes through an RSU, then the corresponding bit is one.
Otherwise, it is zero. Since at least dlog2 ne bits are needed
to describe n numbers, we can conclude that dlog2 ne RSUs
are necessary to distinguish n given traffic flows.

The upper bound is based on Theorem 4. Note that we have
n(n−1)

2 pairs of given traffic flows in total. Since two RSUs
are sufficient to cover and distinguish an arbitrary pair of given
traffic flows, at most n(n−1)

2 ×2 = n(n−1) RSUs can satisfy
the coverage and distinguishability requirements. �

V. ALGORITHMIC DESIGN

This section proposes three RSU placement algorithms with
different time complexities and approximation ratios.

A. Pair-Based Greedy

This subsection presents a bounded greedy algorithm, based
on Theorem 4. Two RSUs are necessary and sufficient to cover
and distinguish an arbitrary pair of given traffic flows. The key
idea is to place a pair of RSUs in each greedy iteration. Such
pairwise placements convert our problem to be submodular,
and thus, have a bounded performance.

Algorithm 1 is proposed to pairwisely place RSUs. In lines
1 and 2, it initializes S as an empty set and F 2 as the set of
all traffic flow pairs. A counter is maintained for each pair of
streets (lines 3 and 4). Algorithm 1 iteratively updates a pair
of RSUs to the current S though a greedy placement (lines 5
to 12). The iteration terminates, when all pairs of given traffic
flows are covered and distinguishable (F 2 6= ∅ in line 5). In
each iteration (lines 6 to 9), Algorithm 1 calculates Cee′ for
each pair of streets that are not both in S (i.e., the street of e or
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Fig. 4. An example to illustrate Algorithms 1, 2, and 3.

e′ may already in S, but not both of them are in S). Cee′ is the
number of covered and distinguishable pairs of traffic flows, if
two RSUs are placed on the pair of streets of e and e′. Based
on Theorem 4, f and f ′ are covered and distinguishable, if e
and e′ are in two different subsets of f\f ′, f ′\f , and f ∩ f ′

(line 8). e and e′ may cover and distinguish multiple pairs
of traffic flows. The pair of streets, which maximize Cee′ ,
are greedily added to S as the RSU placement (line 10). The
corresponding pairs of traffic flows are removed from F 2 (line
11). We reset Cee′ = 0 for the next iteration (line 12). Finally,
S is returned when the iteration terminates (line 13).

An example is shown in Fig. 4 to illustrate Algorithm 1.
For each traffic flow pair, it can be covered and distinguished
by placing RSUs on the following pairs of streets:

f and f ′ pairs of streets that can cover and distinguish f and f ′

f1 and f2
{e1, e2} {e1, e3} {e1, e4} {e2, e4}
{e2, e6} {e3, e4} {e3, e6} {e4, e6}

f1 and f3
{e1, e2} {e1, e5} {e1, e6} {e1, e7} {e2, e3} {e2, e5}
{e2, e7} {e3, e5} {e3, e6} {e3, e7} {e5, e6} {e6, e7}

f2 and f3
{e1, e2} {e1, e5} {e1, e6} {e1, e7} {e2, e4} {e2, e6}
{e4, e5} {e4, e6} {e4, e7} {e5, e6} {e6, e7}

Algorithm 1 initializes F 2 to include three traffic flow pairs.
In the first iteration (lines 5 to 12), we have maxee′ Cee′ = 3
for e1 and e2, since they can cover and distinguish three traffic
flow pairs (f1 and f2, f1 and f3, f2 and f3). Hence, e1 and e2
is added to S, and the corresponding three traffic flow pairs are
removed from F 2. After the first iteration, F 2 becomes empty
and the iteration terminates. Algorithm 1 returns S = {e1, e2},
which is the optimal RSU placement for this example. To
satisfy the coverage and distinguishability requirements, we
have S(f1) = {e1, e2}, S(f2) = {e1}, and S(f3) = {e2}. For
each traffic flow of f , S(f) is non-empty and unique.

The time complexity of Algorithm 1 is O(n2|E|3), resulting
from O(|E|) iterations. This is because Algorithm 1 adds at
least one new street to S in each iteration, while we have at
most |E| streets. Then, each iteration takes O(n2|E|2) to go
through each pair of traffic flows to compute Cee′ for each
pair of streets. In total, we have O(n2) pairs of traffic flows
and O(|E|2) pairs of streets. Algorithm 1 has a high time
complexity, since it computes Cee′ for each pair of streets.
We claim that Algorithm 1 is bounded:

Theorem 6: Algorithm 1 achieves a ratio of n ln n(n−1)
2 to

the optimal algorithm for the number of placed RSUs.
The proof of Theorem 6 is shown in Appendix. n ln n(n−1)

2
belongs to Θ(n lnn). The next subsection will present another
greedy algorithm, which has a similar bound but a lower time
complexity than Algorithm 1.

Algorithm 2 Subset-Based Greedy (SBG)
Input: A graph, G, and a set of traffic flows, F .
Output: A RSU placement strategy, S.

1: Initialize S = ∅ and F † = ∅.
2: for each pair of traffic flows, f and f ′ do
3: Add three subsets of f\f ′, f ′\f , and f ∩ f ′ to F †.
4: for each street, e ∈ E do
5: Initialize a counter of Ce = 0.
6: while F † 6= ∅ do
7: for each subset, f† ∈ F † do
8: for e ∈ f† and e ∈ E\S do
9: Update Ce = Ce + 1.

10: Update S = S ∪ {arg maxe Ce}.
11: Remove f† for arg maxe Ce from F †.
12: Reset Ce = 0 for each street, e.
13: return S as the RSU placement strategy.

B. Subset-Based Greedy

This subsection describes another greedy algorithm. Theo-
rem 4 states that, to cover and distinguish f and f ′, two RSUs
are placed on streets from two different subsets of f\f ′, f ′\f ,
and f ∩ f ′. As a relaxation, our idea is to place an RSU on
a street from each of f\f ′, f ′\f , and f ∩ f ′. In other words,
three RSUs are placed for each pair of traffic flows.

Algorithm 2 is proposed. After the initialization (line 1), it
decomposes each pair of traffic flows into three subsets (lines 2
and 3). These subsets are added to F †. A counter is maintained
for each street (lines 4 and 5). Then, Algorithm 2 iteratively
updates an RSU to the current S though a greedy placement
(lines 6 to 12). The iteration terminates, when all pairs of given
traffic flows are covered and distinguishable (F † 6= ∅ in line
6). In each iteration, Algorithm 1 calculates Ce for each street
(lines 7 to 9). Ce represents the number of included subsets in
F †, if an RSU is placed on the street of e. An RSU is placed
on a street from each of three subsets of each traffic flow
pair. However, a street, e, may include multiple subsets from
different traffic flow pairs. The street, which maximize Ce, is
greedily added to S (line 10). The corresponding subsets in
F † are removed (line 11). Algorithm 2 resets Ce = 0 for the
next iteration (line 12). Finally, S is returned (line 13).

The same example in Fig. 4 is used to illustrate Algorithm 2.
The subsets corresponding to each traffic flow pair are shown
as follows (nine subsets in total for three traffic flow pairs):

f and f ′ f\f ′ f ′\f f ∩ f ′

f1 and f2 {e2, e3} {e4} {e1, e6}
f1 and f3 {e1, e3} {e5, e7} {e2, e6}
f2 and f3 {e1, e4} {e2, e5, e7} {e6}

These subsets are added to F † by Algorithm 2 (lines 1 to 3).
In the first iteration (lines 6 to 12), we have maxe Ce = 3 for
e6, since e6 appears in three subsets of {e1, e6}, {e2, e6}, and
{e6}. Hence, e6 is added to S, and the corresponding three
subsets are removed from F †. In the following iterations, e3,
e4, and e5 are added to S according to the same principle. A
random street can be selected in a tie. The iteration terminates



Algorithm 3 Improved Subset-Based Greedy (ISBG)
Input: A graph, G, and a set of traffic flows, F .
Output: A RSU placement strategy, S.

1: Same as Algorithm 2, except the subtle change in line 3:
Add three subsets of f , f ′, and f 4 f ′ to F †.

when F † = ∅. Algorithm 2 returns S = {e3, e4, e5, e6}, where
S(f1) = {e3, e6}, S(f2) = {e4, e6}, and S(f3) = {e5, e6}.
The coverage and distinguishability requirements are satisfied,
since S(f) is non-empty and unique.

The time complexity of Algorithm 2 is O(n2|E|2), since
it has O(|E|) iterations, while each iteration takes O(n2|E|).
Each iteration of Algorithm 2 scans each pair of traffic flows
to compute Ce. Algorithm 2 has a lower time complexity than
Algorithm 1, since it scans streets rather than pairs of streets
(computes Ce rather than Cee′ ). The insight is that Algorithm 2
uses redundant placements to reduce the problem complexity.
Algorithm 2 has a bound that is similar to Algorithm 1:

Theorem 7: Algorithm 2 achieves a ratio of n+1
2 ln 3n(n−1)

2
to the optimal algorithm for the number of placed RSUs.

The proof of Theorem 7 is shown in Appendix.

C. Improved Subset-Based Greedy

This subsection improves the ratio of Algorithm 2 through
a subtle change. Algorithm 2 is based on Theorem 4, which
places two RSUs on streets from two different subsets of f\f ′,
f ′\f , and f ∩ f ′. Let f 4 f ′ = (f\f ′)∪ (f ′\f), we find that
Theorem 4 can be rephrased as follows:

Theorem 8: To cover and distinguish an arbitrary pair of
traffic flows (f and f ′), each of f , f ′, and f 4 f ′ should
include a street with a placed RSU.

Proof: Theorem 8 is not obvious, but can be easily proven
by checking all the combinational possibilities. We have three
cases in total, based Theorem 4. In the first case, two RSUs
are placed on two streets from f\f ′ and f ′\f , respectively.
Then, Theorem 8 validates, since f\f ′ ⊆ f , f ′\f ⊆ f ′, and
f\f ′ ⊆ f 4 f ′. In the second case, two RSUs are placed on
two streets from f\f ′ and f∩f ′, respectively. Theorem 8 also
validates, since f\f ′ ⊆ f , f ∩ f ′ ⊆ f ′, and f\f ′ ⊆ f 4 f ′.
In the third case, two RSUs are placed on two streets from
f ′\f and f ∩ f ′, respectively. Theorem 8 remains valid, since
f ∩ f ′ ⊆ f , f\f ′ ⊆ f ′, and f\f ′ ⊆ f 4 f ′. Though checking
all the combinational possibilities, the proof completes. �

The insight of Theorem 8 is that f (also f ′) should include a
street with a placed RSU for the coverage requirement, while
f 4 f ′ should include a street with a placed RSU for the
distinguishability requirement. Note that f = (f\f ′)∪(f∩f ′),
f ′ = (f ′\f)∪(f ∩f ′), and f4f ′ = (f\f ′)∪(f ′\f). Each of
f , f ′, and f4f ′ is an union of two different subsets of f\f ′,
f ′\f , and f ∩ f ′. Therefore, Theorem 8 validates, according
to the pigeonhole principle. If we go back to the example in
Fig. 3, we have the following subsets for Theorem 8:

subsets f1 f2 f1 4 f2

streets (edges) e1, e2, e5, e6 e2, e3, e4, e6, e7 e1, e3, e4, e5, e7

(a) The Dublin map. (b) The vehicle trace.
Fig. 5. The map and vehicle trace for Dublin’s central area.

(a) The Seattle map. (b) The bus trace.
Fig. 6. The map and bus trace for Seattle’s central area.

To satisfy Theorem 8, we have S = {e1, e3}, S = {e2, e4},
or S = {e5, e6}. In contrast, we cannot have S = {e1, e5},
S = {e3, e4}, or S = {e2, e6}. It can be seen that, the result
for Theorem 8 is the same as the result for Theorem 4.

Algorithm 3 is proposed as a simple but subtle variation
of Algorithm 2. The only difference is that Algorithm 3 uses
f\f ′, f ′\f , and f ∩ f ′ rather than f\f ′, f ′\f , and f ∩ f ′.
The same example in Fig. 4 is used to illustrate Algorithm 3.
Algorithm 3 includes six subsets in F † as follows:

subsets f1 f2 f3

streets e1, e2, e3, e6 e1, e4, e6 e2, e5, e6, e7

subsets f1 4 f2 f1 4 f3 f2 4 f3

streets e2, e3, e4 e1, e3, e5, e7 e1, e2, e4, e5, e7

Algorithm 3 iteratively selects the street that is included in the
most subsets. In the first round, we have Ce = 4 for e1 and
e2, which appear in the most subsets. Suppose that the first
iteration adds e1 into S, and then, the corresponding subsets
are removed (f1, f2, f1 4 f3, and f2 4 f3 are removed).
The second iteration adds e2 into S, since it appears in all
remaining subsets of f3 and f14f2. The iteration terminates,
since F † = ∅. Algorithm 3 returns S = {e1, e2}, which is
also the optimal RSU placement strategy for this example.
We have S(f1) = {e1, e2}, S(f2) = {e1}, and S(f3) = {e2},
i.e., S(f) is non-empty and unique for each traffic flow.

The time complexities of Algorithms 2 and 3 are the same,
i.e., O(n2|E|2). This is because their difference is only the
definitions for subsets. Algorithms 2 and 3 have lower time
complexities than Algorithms 1, since they scan streets rather
than pairs of streets. Algorithm 2 uses redundant placements to
reduce the problem complexity. It has a bound that is similar to
Algorithm 1. In contrast, Algorithm 3 does not use redundant
placements, and thus, has the best bound:

Theorem 9: Algorithm 3 achieves a ratio of ln n(n+1)
2 to

the optimal algorithm for the number of placed RSUs.
The proof of Theorem 9 is shown in Appendix.
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(a) Dublin vehicle trace.
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(b) Seattle bus trace.
Fig. 7. The distribution of the number of passing streets for a traffic flow.

VI. EXPERIMENTS

In this section, real data-driven experiments are conducted
to evaluate the performances of the proposed algorithms. After
presenting the datasets and settings, the results are shown from
different perspectives to provide insightful conclusions.

A. Real Trace-Driven Datasets

This section conducts experiments based on two real traces,
the Dublin vehicle trace [17] and the Seattle bus trace [24]. For
the Dublin vehicle trace, we focus on the part within Dublin’s
central area, which is an 80, 000×80, 000 square foot area, as
shown in Fig. 5. The Dublin vehicle trace includes longitude,
latitude, and vehicle journey ID. The vehicle journey is a given
run on a journey pattern, which corresponds to our concept of
the given traffic flow. The Dublin vehicle trace includes 628
given traffic flows on 3,657 streets. For the Seattle bus trace,
we also focus on the part within Seattle’s central area, which
is a 10, 000×10, 000 square foot area, as shown in Fig. 6. The
Seattle bus trace includes x-coordinate, y-coordinate, and bus
route ID. Each bus route is a given traffic flow. The Seattle
bus trace includes 135 given traffic flows on 2,283 streets.

The distributions of the Dublin vehicle trace and the Seattle
bus trace are analyzed. Fig. 7 shows the distribution of the
number of passing streets for a traffic flow. In both traces, a
traffic flow can go through as many as about 300 streets. In the
Dublin vehicle trace, most traffic flows go through less than
40 streets. In contrast, in the Seattle bus trace, most traffic
flows go through 40 to 80 streets. Traffic flows in the Seattle
bus trace, on average, go through more streets than those in
the Dublin vehicle trace. On the other hand, Fig. 8 shows the
distribution of the number of passing traffic flows for a street.
A street in the Dublin vehicle trace can have up to 240 passing
traffic flows, while a street in the Seattle bus trace has no more
than 50 passing traffic flows. In other words, traffic flows are
more dense on a street in the Dublin vehicle trace.

Real-world TFMS applications in the Dublin vehicle trace
can include the traffic congestion solution by managing the
traffic flows captured by the TFMS. Since our RSU placement
can cover and distinguish all given traffic flows, the rate of
each traffic flow can be collected by the TFMS for vehicle
redirections. Real-world TFMS applications in the Seattle bus
trace can include the dynamic bus arrival time estimation
through TFMS’s trajectory predictions, under the assumption
of a fixed bus speed. They are applicable in smart cities.
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(a) Dublin vehicle trace.
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(b) Seattle bus trace.
Fig. 8. The distribution of the number of passing traffic flows for a street.

B. Experimental Settings

Algorithms 1 to 3 are evaluated in the experiments. They
are denoted as PBG, SBG, and ISBG, respectively. In addition
to the proposed algorithms, four baseline algorithms are used
according to different ideas:
• Coverage-Oriented Greedy (COG). It iteratively places an

RSU on the street that covers maximum uncovered traffic
flows. The iteration terminates when both coverage and
distinguishability requirements are satisfied.

• Distinguishability-Oriented Greedy (DOG). For each traf-
fic flow pair (f and f ′), it iteratively places an RSU on the
street that covers the maximum number of subsets created
by f 4 f ′. The iteration terminates when both coverage
and distinguishability requirements are satisfied.

• Select Unique Coverage (SUC). It iteratively places an
RSU on a street that uniquely covers a traffic flow. If such
a street is not found, it performs an exhaustive search to
optimally places RSUs for the uncovered traffic flows.

• Two Stage Placement (TSP). In the first stage, it greedily
places RSUs to cover all traffic flows. In the second stage,
it greedily places RSUs to distinguish all traffic flows.

Our experiments study the relationship between the number
of placed RSUs and the percentage of traffic flows, under nine
different scenarios that are defined by three different flow loca-
tions and three different flow lengths. Streets are classified into
downtown and suburb, depending on the number of passing
traffic flows. If a traffic flow goes through more downtown
streets than suburb streets, then it is in downtown. Otherwise,
it is in suburb. We have three different flow locations of
downtown, suburb, and both of them (i.e., all locations). After
determining the flow location, we filter traffic flows by their
lengths. The length of a traffic flow is defined as the number
of its passing streets. We have three different flow lengths of
top half, bottom half, and both of them (i.e., all lengths). Once
the scenario is decided, a given percentage of traffic flows are
uniform-randomly selected for RSU placements. The results
are averaged over 1,000 times for the smoothness.

C. Evaluation Results

The evaluation results of the Dublin vehicle trace are
shown in Fig. 9, which has three rows and three columns of
subfigures. Rows are scenarios with different flow locations of
downtown (first row), suburb (second row), and all locations
(third row). Columns are scenarios with different flow lengths
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(a) Downtown traffic flows (top half lengths).
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(d) Suburb traffic flows (top half lengths).
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(g) All traffic flows (top half lengths).
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(b) Downtown traffic flows (bottom half lengths).
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(e) Suburb traffic flows (bottom half lengths).
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(h) All traffic flows (bottom half lengths).
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(c) Downtown traffic flows (all lengths).
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(f) Suburb traffic flows (all lengths).
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(i) All traffic flows (all lengths).
Fig. 9. Experimental results in the Dublin vehicle trace (nine different scenarios defined by three different flow locations and three different flow lengths).

of top half (first column), bottom half (second column), and
all lengths (third column). Experiments focus on the algorithm
performance with respect to different percentages of randomly-
selected traffic flows in these nine scenarios. A smaller number
of placed RSUs means a better performance.

Fig. 9 shows that, in all scenarios, a larger percentage of
given traffic flows always brings a larger number of placed
RSUs. ISBG significantly outperforms all the others among all
nine scenarios. This is because ISBG avoids redundant RSU
placements, based on Theorem 8. TSP and PBG have second-
best performances. TSP fails to jointly consider the coverage
and distinguishability requirements. PBG has redundant RSUs
due to its pairwise placement. PBG is better and worse than
TSP for downtown and suburb traffic flows, respectively. This
is because PBG has redundant RSUs when traffic flows are
densely overlapped on streets (i.e., downtown traffic flows).
COG, DOG, and SUC do not have good performances, since
(i) COG ignores the distinguishability requirement, (ii) DOG
ignores the coverage requirement, and (iii) SUC do not utilize
traffic flow overlaps to minimize the number of placed RSUs.
SBG also performs poorly, especially for suburb traffic flows.
This is because it may place one more redundant RSUs for

each traffic flow pair. Another notable point is that different
flow locations and different flow lengths have some impacts on
the number of placed RSUs. For ISBG, slightly more RSUs
should be placed for downtown short-length traffic flows in
Fig. 9(b) than suburb long-length traffic flows in Fig. 9(d).
COG and DOG have the worst performances for downtown
traffic flows in Figs. 9(a) and 9(b), while SBG has the worst
performance for suburb traffic flows in Figs. 9(d) and 9(e).
This is because SBG has many redundant placements that are
unnecessary for sparse traffic flows in suburb.

The evaluation results of the Seattle bus trace are shown in
Fig. 10, which has the same settings as Fig. 9. The Seattle
bus trace has less and sparser traffic flows than the Dublin
bus trace. While ISBG keeps to have the best performance,
SBG has the worst performance, except for SUC in Fig. 10(a).
Such a performance gap results from Theorem 8, which avoids
redundant RSU placements. A notable point is that, COG and
DOG outperform TSP and PBG, since the traffic flows in the
Seattle bus trace has longer lengths. This differs from the result
in the Dublin bus trace. We also find that more RSUs should
be placed for downtown short-length traffic flows in Fig. 10(b)
than suburb long-length traffic flows in Fig. 10(d).
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(a) Downtown traffic flows (top half lengths).
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(d) Suburb traffic flows (top half lengths).
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(g) All traffic flows (top half lengths).
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(b) Downtown traffic flows (bottom half lengths).
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(e) Suburb traffic flows (bottom half lengths).
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(h) All traffic flows (bottom half lengths).
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(c) Downtown traffic flows (all lengths).
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(f) Suburb traffic flows (all lengths).
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(i) All traffic flows (all lengths).
Fig. 10. Experimental results in the Seattle bus trace (nine different scenarios defined by three different flow locations and three different flow lengths).

VII. CONCLUSION

This paper studies an RSU placement problem for the TFM-
S. Given some traffic flows on streets, the objective is to place
a minimum number of RSUs to cover and distinguish all traffic
flows. The coverage and distinguishability requirements means
that, for each traffic flow, the set of its passing RSUs should
be non-empty and unique. Our problem is NP-hard, mono-
tonic, and non-submodular. Three approximation algorithms
are proposed to place RSUs with different insights. Extensive
real data-driven experiments demonstrate the efficiency and
effectiveness of the proposed algorithms.
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APPENDIX

A. Proof of Theorem 6

The proof is done through an intermediate problem, which
is defined as follows: (i) we map each pair of streets to a
set, and map each pair of given traffic flows to an element;
(ii) an element is included in a set, if the corresponding
pair of traffic flows could be covered and distinguished by
placing two RSUs on the corresponding pair of streets; (iii)
the intermediate problem is the traditional set cover problem
that selects minimum sets to cover all elements [21].

The key observation is that Algorithm 1 also solves the
intermediate problem by iteratively selecting the set that in-
cludes maximum uncovered elements. Such a greedy selection

can obtain a ratio of ln n(n−1)
2 to the optimal set cover [21],

where n(n−1)
2 is the number of elements. Let S∗ and S∗opt

denote the RSU placement strategies returned by Algorithm 1
and the optimal algorithm, respectively. For the intermediate
problem, let I∗ and I∗opt denote the set covers returned by
Algorithm 1 and the optimal algorithm, respectively. We have:

1

2
|S∗| ≤ |I∗| ≤ ln

n(n− 1)

2
× |I∗opt| (5)

1
2 |S
∗| ≤ |I∗| is because a selected set corresponds to at most

two streets in each iteration of Algorithm 1 (line 10). We
have |I∗opt| ≤ 1

2 |S
∗
opt|(|S∗opt|−1) ≤ n

2 |S
∗
opt|, since the optimal

RSU placement strategy has 1
2 |S
∗
opt|(|S∗opt|−1) pairs of streets

that are a non-optimal set cover in the intermediate problem.
Combining 1

2 |S
∗| ≤ ln n(n−1)

2 × |I∗opt| and |I∗opt| ≤ n
2 |S
∗
opt|,

we conclude that |S∗| ≤ n ln n(n−1)
2 × |S∗opt|.

B. Proof of Theorem 7

Similar to the proof of Theorem 6, we prove through an
intermediate problem, which is defined as follows: (i) we
map a street to a set, and map each of three subsets of each
traffic flow pair to an element; (ii) an element is included in
a set, if the corresponding subset includes the corresponding
street; (iii) the intermediate problem is the traditional set cover
problem that selects minimum sets to cover all elements [21].

Since 3n(n−1)
2 is the number of subsets in F †, Algorithm 2

solves the intermediate problem with a ratio of ln 3n(n−1)
2 . Let

S∗ and S∗opt denote the RSU placement strategies returned by
Algorithm 2 and the optimal algorithm, respectively. Let I∗

and I∗opt denote the set covers returned by Algorithm 2 and
the optimal algorithm, respectively. We have:

|S∗| = |I∗| ≤ ln
3n(n− 1)

2
× |I∗opt| (6)

We have |I∗opt| ≤ |S∗opt| + 1
2 |S
∗
opt|(|S∗opt| − 1) ≤ n+1

2 |S
∗
opt|,

since a non-optimal set cover for the intermediate problem
can be obtained by extending S∗opt. Note that S∗opt covers at
least two of three subsets for each traffic flow pair. Combining
|S∗| ≤ ln 3n(n−1)

2 × |I∗opt| and |I∗opt| ≤ n+1
2 |S

∗
opt|, we have

|S∗| ≤ n+1
2 ln n(n−1)

2 × |S∗opt|.

C. Proof of Theorem 9

Similarly, we prove it through an intermediate problem,
which is used in the proof of Theorem 7. The key difference is
that, for Algorithm 3, an optimal set cover in the intermediate
problem can exactly represent the optimal RSU placement
strategy. Theorem 8 states that, to cover and distinguish f and
f ′, each of f , f ′, and f 4 f ′ should include a street with a
placed RSU. Since the optimal set cover uses minimum sets to
cover all elements, the optimal RSU placement strategy places
minimum RSUs on streets to be included in each of f , f ′, and
f4f ′ of each traffic flow pair. Note that Algorithm 3 is also a
greedy approach for the intermediate problem. Since the total
number of subsets is n + n(n−1)

2 = n(n+1)
2 , Algorithm 3 has

an approximation ratio of ln n(n+1)
2 , and the proof completes.


