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Abstract—Cloud computing is an increasingly important so-
lution for providing services deployed in dynamically scalable
cloud networks. Services in the cloud computing networks may
be virtualized with specific servers which host abstracted details.
Some of the servers are active and available, while others are
busy or heavy loaded, and the remaining are offline for various
reasons. Users would expect the right and available servers to
complete their application requirements. Therefore, in order to
provide an effective control scheme with parameter guidance
for cloud resource services, failure detection is essential to meet
users’ service expectations. It can resolve possible performance
bottlenecks in providing the virtual service for the cloud com-
puting networks. Most existing Failure Detector (FD) schemes
do not automatically adjust their detection service parameters
for the dynamic network conditions, thus they couldn’t be
used for actual application. This paper explores FD properties
with relation to the actual and automatic fault-tolerant cloud
computing networks, and find a general non-manual analysis
method to self-tune the corresponding parameters to satisfy
user requirements. Based on this general automatic method,
we propose a specific and dynamic Self-tuning Failure Detector,
called SFD, as a major breakthrough in the existing schemes.
We carry out actual and extensive experiments to compare the
quality of service performance between the SFD and several
other existing FDs. Our experimental results demonstrate that
our scheme can automatically adjust SFD control parameters
to obtain corresponding services and satisfy user requirements,
while maintaining good performance. Such an SFD can be
extensively applied to industrial and commercial usage, and it
can also significantly benefit the cloud computing networks.

Index Terms—Application requirements, Cloud computing net-
works, Fault tolerance, Quality of service, Self-tuning failure
detection

I. INTRODUCTION

Cloud computing provides resources to satisfy large num-
bers of user applications across networks [1-3]. Cloud com-
puting networks [4-5] link users across the globe. For instance,
they are being developed to support an education infrastructure
for student courses, learning labs, or connecting teachers
and students to expert mentors [6]. Cloud models should
maintain high levels of Quality of Service (QoS) in accessing
information remotely in network environments, and should
ensure users’ application security and dependability.

In the cloud computing networks, some of the servers
may be active and available, while others are busy or heavy

loaded, and the remaining may be offline or even crashed
for various reasons. Therefore, the cloud service environment
can be dynamic and unexpected [7], and users would expect
the right and available servers to complete their application
requirements. We must be able to address the variability
and provide an effective control scheme with parameters
guidance to guide service conditions and cloud resources. Thus
fault-tolerant schemes are designed to provide reliable and
continuous services in cloud computing networks despite the
failures of some of their components [8-19]. As an essential
building block for the cloud computing networks, a Failure
Detector (FD) plays a critical role in the engineering of such
dependable network systems [19]. Effective failure detection
is essential to ensure acceptable QoS, and it is necessary to
find an optimized FD that can detect failures in a timely and
accurate way before a generic FD service can actually be
implemented for cloud computing network applications [20].
For example, PlanetLab is a global cloud computing network
that supports the development of new network services and
it currently consists of 1076 nodes at 494 sites. While lots
of nodes are inactive at any time, yet we do not know the
exact status (active, slow, offline, or dead). Therefore, it is
impractical to login one by one without any guidance.

The design of reliable FDs is a very difficult task. One of the
main reasons is that the statistical behavior of communication
delays is unpredictable. The other reason is that asynchronous
(i.e., no bound on the process execution speed or message-
passing delay) distributed systems make it impossible to
determine precisely whether a remote process is failed or has
just been very slow [21]. An unreliable FD [21] can make
mistakes like falsely suspecting correct processes or trusting
crashed processes. To ensure acceptable QoS for such an
unreliable FD, parameters should be properly tuned to deliver
a desirable QoS at the upper layers, because the QoS of an
FD greatly influences the QoS that upper layers may provide.
Many fault-tolerant algorithms have been proposed (e.g., [19,
22-27]), which are never-the-less based on unreliable FDs.

A set of metrics are proposed to quantify the QoS of
an FD by Chen et al. in [28]: how fast it detects actual
failures and how well it avoids false detections. In order to
improve the QoS of an FD, a lot of adaptive FDs have been
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proposed [29-32], such as Chen FD [28], Bertier FD [29, 33],
and the φ FD [30-31]. Chen et al. in [28] proposed several
implementations relying on the probabilistic behavior of the
network systems. The protocol uses arrival times sampled in
the recent past to compute an estimation of the arrival time
of the next heartbeat. However, a timeout that is set according
to this estimation plus a constant safety margin, does not
match the dynamic network behavior well [29]. Subsequently,
Bertier FD [29, 33] provides an optimization of the safety
margin for Chen FD. It uses a different estimation function,
combining Chen’s and Jacobson’s estimation of the Round-
Trip Time (RTT). Bertier FD is primarily designed to be
used over wired local area networks (LANs), where messages
are seldom lost [30]. The self-tuned FDs in [34-35] use the
statistics of the previously-observed communication delays to
continuously adjust timeouts. In other words, they assume
a weak past dependence on communication history. These
three FDs dynamically predict new timeout values based on
observed communication delays to improve the performance
of the protocols.

Even though the above FDs had important technical break-
throughs, their success was limited. As far as we know, there
are three main reasons [30]: (1) an FD provides an information
list of suspects about which processes have crashed. This
information list is not always up-to-date or correct (e.g.,
an FD may falsely suspect a process that is alive), due to
the high unpredictability of message delays, the dynamic
and changing topology of a network system, and the high
probability of network message losses; (2) The conventional
binary interaction (i.e., trust and suspect) makes it difficult to
satisfy the requirements of several distributed applications run-
ning simultaneously. In practice, many classes of distributed
network applications require the use of different QoS of
failure detection to trigger different reactions (e.g., [36-37]).
For instance, an application may take precautionary network
measures when the confidence in a suspicion reaches a given
low level, while it takes successively more drastic actions
once the doubt progresses to higher levels [10]. However, the
traditional output of the FDs (Chen FD [28] and Bertier FD
[29, 33]) is of a binary nature1. (3) Most existing schemes
can not automatically adjust their parameters for dynamic
network conditions, though users with an awareness of the
scheme’s internal core functions and parameters can provide
suitable values for the parameters based on the output QoS,
which should satisfy the users’ expectation of QoS (QoS).
This tuning may be very complex, and it is best done by
professional engineers. Essentially, we are unable to use
fixed parameters for FDs to satisfy user requirements in a
reliable way, where networks are dynamic and unexpected. In
sum, the parameters used by existing failure detectors require
adjustment by hand, and so are not suitable for dynamic
networks, especially in large scale distributed networks or
unstable networks2. Therefore, we seek to further explore the
FD properties and their inter-relations in providing an actual

1Bertier FD and Chen FD were aimed at other problems, which they both
solved admirably well.

2Here it means the networks have the high unpredictability of message
delays, the great dynamic changing topology of system, or the high probability
of message losses.

fault-tolerant distributed system.
To attack the above problems, this paper firstly proposes

a general self-tuning failure detection method in the fault-
tolerant cloud computing networks, and it can be extensively
used for industrial and commercial purposes. In contrast, other
schemes could blindly provide different output QoS: some are
just temporarily suitable for the requirements; yet some are
never, then engineers have to manually change the relevant
parameters. These schemes must try all the possible parameter
values, and get a performance output graph to know which
parameter values are acceptable for the network (manually
choose relevant parameters). If the network has significant
changes, the engineers have to change the relevant parameters
manually again. Secondly, based on the above general method,
we propose an automatic Self-tuning Failure Detector (SFD)
to optimize the existing FDs, as an accural FD3. Thirdly, we
explore the implementation of SFD, which, briefly speaking,
works as follows: A sliding window maintains the most recent
samples of the arrival time, similar to conventional adaptive
FDs [10, 28-29]. The next timeout delay τ approximation (for
next sample) is adjusted by the sliding window and feedback
information from the output. With this dynamic feedback
information, the relevant parameters are computed to match
recent network conditions. By design, SFD can adjust well to
handle unexpected network conditions and the requirements
of any number of concurrently running applications. Finally,
we comparatively evaluate our failure detection scheme and
existing schemes (Chen FD [28], Bertier FD [29, 33], and φ
FD [30-31]) by extensive experiments in seven representative
Wide Area Network (WAN) cases. The experimental results
show the properties of the different FDs, and demonstrate that
our scheme can automatically adjust SFD control parameters
to obtain corresponding services and satisfy user requirements,
while maintaining good performance. Such an SFD can be
extensively applied to industrial and commercial usage, and it
can also significantly benefit the cloud networks.

The remaining content of the paper is organized as follows:
In Section II, the system model and failure detection QoS
metrics are introduced. Section III introduces several adaptive
FDs. In Section IV, we present a general self-tuning failure
detection method for applicable engineering of such fault-
tolerant cloud computing networks. Based on the general
method, we propose a SFD to optimize the existing FDs, and
explore the implementation of SFD. Section V carries out ex-
periments in different network conditions (seven representative
WAN cases). In Section VI, we discuss more work related to
FDs. Finally, we conclude our work and discuss further work
in Section VII.

II. SYSTEM MODEL AND BASIC CONCEPTS
In this section, we first propose the practical cloud comput-

ing network model (see Fig. 1) and academic cloud computing
network analysis model (see Fig. 2), and then define the failure
detection QoS metrics.
A. Practical Cloud Computing Network Model

As shown in Fig. 1, we explore a dynamic cloud computing
network model4, which is based upon the United States south-

3Accrual FD is when an FD service outputs a suspicion level on a
continuous scale rather than information of a boolean nature (trust vs suspect).

4In particular, we note that the general model can include multiple clouds.
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Fig. 1. Dynamic cloud computing network model: U.S. southern state
education cloud consortium (sponsored by IBM, SURA & TTP/ELC).

ern states education cloud consortium and a network structure
for data centers [7]. Currently, five southern states (Georgia
(GA), South Carolina (SC), North Carolina (NC), Virginia
(VA), Maryland (MD)) have education cloud initiatives un-
derway (Fig. 1). The multiple clouds could provide services
to each other, such as depicted with users from the African-
American Colleges and Universities (HBCU) community and
users from the Southeastern Universities Research Association
(SURA), who may access the others’ resource (the curved
dotted lines in Fig. 1). Guo et al. [7] has presented a similar
fault-tolerant network structure for data centers, called DCell,
where a DCell with a small server node degree can support
up to several million servers, just like the “Education cloud”
in Fig. 1. Thus, Fig. 1 is an actual and representative cloud
computing network model.

As mentioned above, servers’ statuses may vary in cloud
computing networks: some are active, some busy or very slow,
and some may be dead or crashed. Thus, a cloud failure
detection model is important to address failures of expected
services by the corresponding servers, and initiate measures to
ensure appropriate service response. There are several existing
FD schemes that could provide some detection services, while
not by automatically adjusting their parameters for dynamic
network conditions. Therefore, this paper presents a general
self-tuning method to solve the above problem, and also gives
an exact example based on the general method and the above
model.

B. A Theoretical Cloud Computing Network Model

Here we consider a partially synchronous cloud computing
network system consisting of a finite set of processes Π =
{p1, p2, p3, ..., pn}5. A process may fail by crashing, here a
crashed process does not recover. A process behaves correctly
(i.e., according to the specification) until it (possibly) crashes.

5This model is based on the above IBM cloud computing networks in Fig. 1.
A user, a manager, or a total education cloud is regarded as a process.

By definition, a correct process is a process that does not crash,
and a faulty process is a process that is not correct.

It is assumed that every pair of processes is assumed to
be connected by one unidirectional unreliable communication
channel [17]. An unreliable channel is defined as a commu-
nication channel: there is no message creation, no message
alteration and no message duplication, while it is possible
to lose some messages. Processes are completely connected
via unidirectional communication channels. Without loss of
generality, this paper considers a simple system model (same
as [28-31, 33]) with only two processes, called p and q, which
are arbitrarily taken from the large system Π, where process q
monitors process p (see Fig. 2): p may periodically send a
message to q, perform local computation, or is subject to
crash6. Here the sending period is called the heartbeat interval
∆t. Process q may receive a message from p, or perform
local computation. q suspects process p if it can’t receive any
heartbeat message from p for a period of time determined by
the freshpoint (FP), which is given by the parameter (timeout
τ ).

As illustrated in Fig. 2, di is the transmission delay of
heartbeat mi from p to q, and the sending period is called
the heartbeat interval ∆t. For the incoming heartbeat mi, q
dynamically gives a response based on the new freshpoint
FPi. This model describes four cases that may occur. The
first one is that heartbeat message m1, from the sending time
σ1 of process p, arrives at q before q’s freshpoint FP1, then
q trusts p from the m1 arrival time (here we assume that p is
trusted in the initial case). The second case is that the heartbeat
message m2 from p is lost, then q waits for that heartbeat until
its freshpoint FP2; after that, q starts to suspect p. The third
case is that heartbeat mi from p arrives at q after q’s freshpoint
FPi, then q suspects p from FPi until the mi arrival time.
In the fourth case, after p sends out the heartbeat m(i+1), p
is crashed. For the incoming heartbeat m(i+1), q computes a
new freshpoint FPi+1 based on different FD schemes, and
then gives a response based on the heartbeat arrival time.

Our SFD assumes the existence of some global time (un-
known to processes) denoted by global stabilized time, and
that processes always make progress. Furthermore, at least
δ > 0 time units elapse between consecutive steps (the purpose
of the latter is to exclude the case where processes take an
infinite number of steps in finite time) [31]. The inter-process
communication model is based on message exchanges over
the User Datagram Protocol (UDP) communication protocol.
We don’t consider the relative speed of processes; however, we
consider that processes have access to a local clock device used
to measure the passage of time. Furthermore, every process has
access to a failure detection service.

It is commonly believed that the period ∆t is a factor
that contributes to the detection time. However, Müller [38]
indicates that ∆t is little determined by QoS requirements on
several different networks, but much by the characteristics of
the underlying system, and the work in [30] suggests that there
exists some nominal range for the parameter ∆t with little or
no impact on the accuracy of the FD in every network.

6Based on the theoretical cloud model in Fig. 1, here process q is like
a manager, and process p is like an education cloud. Then every education
cloud service environment is given by the monitoring results.
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Fig. 2. Basic heartbeat failure detection model.

The freshpoint is fixed in the conventional implementation
of this model. If the time between two next freshpoints is too
short, the likelihood of a wrong suspicion rate is high, though
crashes are detected quickly. In contrast, if the time is too
long, there will be too much detection time, although there
are fewer inaccurate suspicions.

Alternatively, this model can set the freshpoint based on the
transmission delay of the heartbeat. The advantage is that the
maximal detection time is bounded, but the disadvantage is
that it relies on physical clocks with a negligible drift7 and a
shared knowledge of the heartbeat interval ∆t. The drawback
is a serious problem in practice: when the regularity of the
sending of heartbeats cannot be guaranteed, and the actual
sending interval is different from the target one (e.g., timing
inaccuracies due to irregular OS scheduling) [30]. Both of the
methods have their respective advantages and disadvantages,
and it is difficult to conclude which one is better [30].

C. Failure detection QoS metrics

To quantitatively evaluate the QoS of FDs, we use three
main QoS metrics (i.e., detection time, mistake rate, and
query accuracy probability) that are independent [28]. The first
metric measures the impact on the model from the speed of
the FD, and the other two metrics relate to accuracy. In detail,
considering two processes p and q where q monitors p, the
QoS of the FD at q (called fdq) can be determined from
its transitions between the “trust” and “suspect” states with
respect to p (see Fig. 38).

Detection Time (TD): This is a random variable that
represents the length of a period from the time when p starts
crashing to the time when q starts suspecting p permanently
by fdq . Mistake Rate (MR): This is a random variable that
represents the number of mistakes that the failure detector
makes in a unit of time, i.e,. it represents how frequently the
failure detector makes mistakes. Query Accuracy Probability
(QAP): This is a probability that, when queried at a random
time, the FD at q indicates correctly that process p is up [28].

Failure Detection QoS Definition Based on the work in
[39], a particular FD performance is defined in terms of its
completeness and accuracy properties, and the QoS provided

7A straightforward implementation of clocks requires synchronized clocks.
Chen et al. [28] shows the method to do it with unsynchronized clocks, but
this still requires the drift between clocks to be negligible.

8In this Fig. 3, TM (Mistake duration) measures the time that elapses from
the beginning of a wrong suspicion until its end (i.e., until the mistake is
corrected). TMR (Mistake recurrence time) measures the time between two
consecutive wrong suspicions, it is a random variable representing the time
that elapses from the beginning of a wrong suspicion to the next one.

up

down

suspect

trust

MT

MRT

DT

p

qfd

Fig. 3. Basic Metrics for the QoS evaluation of an FD [28].

by each of its constituent failure detection modules is a tuple
[39]:

QoS = (TD, MR, QAP ). (1)

The QoS quantifies both how fast a detector suspects a failure
and how well it avoids false detection.

III. EXISTING ADAPTIVE FAILURE DETECTORS

Recently, research studies have focused on the adaptive
FDs, whose goal is to adapt to changing network conditions
and application requirements [30]. In general, most adaptive
FDs are based on a heartbeat strategy, where recent historical
information is used to predict the arrival time of the next
heartbeat. Existing main adaptive FDs (Chen FD [28], Bertier
FD [29, 33], and φ FD [30-31]) work as follows:

Chen FD Chen et al. [28] assumes that process p sends
heartbeat messages periodically to process q (see Fig. 2). The
most recent n heartbeat messages in a sliding window, denoted
by m1, m2, ..., mn, are considered by process q. A1, A2, ...,
An are their actual receiving times according to q’s local clock.
When at least n messages have been received, the theoretical
arrival time EA(k+1) can be estimated by:

EA(k+1) =
1

n

k
∑

i=k−n−1

(Ai − ∆i ∗ i) + (k + 1)∆i, (2)

where ∆i is the sending interval. The next timeout delay
(which expires at the next freshness point τ(k+1)) is composed
of EA(k+1) and constant safety margin α. One has

τ(k+1) = α + EA(k+1). (3)

This technique provides an estimation for the next arrival time
based on a constant safety margin.

Bertier FD Bertier et al. [29, 33] estimated the safety
margin is dynamically based on Jacobson’s estimation of the
RTT [39]. Bertier FD adapts the safety margin α based on the
variable error in the last estimation. The recursive algorithm
[29, 33] is as follows:

errork = Ak − EA(k) − delay(k), (4)

delay(k+1) = delay(k) + γ · error(k), (5)

var(k+1) = var(k) + γ · (|error(k) | − var(k)), (6)

α(k+1) = β · delay(k+1) + φ · var(k), (7)

and τ(k+1) = EA(k+1) + α(k+1), (8)

where the parameter γ represents the importance of the new
measure with respect to the previous ones, the variable delay
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Fig. 4. Feedback architecture in self-tuning failure detector with the target
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represents the estimate margin, and var estimates the magni-
tude of errors. β and φ are used to adjust the variance var.
Typical values of β, φ and γ are 1, 4 and 0.1, respectively.
Bertier’s estimation provides a short detection time.

φ FD Different from the above schemes, the φ FD [30-
31] outputs a suspicion level on a continuous scale, instead of
providing information of a conventional binary nature (trust or
suspect). In this scheme, Tlast denotes the time when the most
recent heartbeat was received; tnow is the current time; and
Plater(t) denotes the probability that a heartbeat will arrive
more than t time units after the previous one. Then, the value
of φ is calculated as follows:

φ(tnow) = −lg(Plater(tnow − Tlast)). (9)

Here,
Plater(t) =

1

σ
√

2π

∫ +∞

t

e−
(x−µ)2

2σ2 dx = 1 − F (t), (10)

where F (t) is the cumulative distribution function of a normal
distribution with mean µ and variance σ2, and µ and σ2

parameters of the distribution are estimated from the sampling
window, where inter-arrival times are saved. The value of φ
at time tnow is computed by applying the Equation (9).

When the value of φ is returned to the applications, every
application compares the value of φ with its threshold Φ,
which is given by users based on different applications. If
φ > Φ, a certain action is triggered. Therefore, for different
applications with various Φ, corresponding explanations are
provided; for the same application, a different value of φ
can trigger various actions. Thus, in φ FD, Φ should be
careful to be chosen to achieve good performance in an actual
engineering application systems.

IV. A GENERAL SELF-TUNING FAILURE DETECTION
SCHEME

Here we first present a general self-tuning failure detection
method for the applicable engineering of such fault-tolerant
cloud computing networks. Then SFD, an optimization of the
existing FDs, is presented as an effective example. Finally, the
implementation of SFD is described precisely.

A. A General Self-tuning Failure Detection Method
Based on the system mode in Fig. 2, the user p hopes FD

in process q detects p with a certain QoS requirement. In
addition, the SFD in q can adjust its parameters by itself to
satisfy the QoS.

In Fig. 4, we show the feedback architecture in SFD, where
QoS is the target QoS for the heartbeats. The initial QoS
requirements (TD, MR, QAP) and QoS are known and sent
to the SFD, and the network behaviors (for example, the

QoS
Requirements

MR

0
0

DT

QoS

Fig. 5. Parameter relation of self-tuning failure detection, QoS is the target
QoS for the heartbeats.

heartbeat information: arrival time, heartbeat sending inter-
arrival time ∆t) are also sent into the SFD. Combining the
feedback information from the output, the SFD could adjust
its parameters to match the target QoS requirement.

If the output QoS of the SFD does not satisfy the target
QoS (for example, we could define it as QoS > QoS), then
the feedback information (QoS − QoS) is returned to SFD.
Based on the feedback information, SFD adjusts its parameters
(for example, timeout τ for the timeout-based schemes). Then,
eventually SFD can satisfy the QoS (if there is a certain range
for this SFD, where SFD can satisfy the QoS). Otherwise, if
the QoS is too high, and this SFD could not find suitable
parameters for it, then the SFD will give a response: “This
SFD can not satisfy the QoS for the application”.

For more details, if we focus on the three main parameters
in QoS: TD, MR, and QAP (the performance parameters for
a period experiment, not for a time slot), then the output QoS
of SFD is based on all the former time periods.

In Fig. 5, we show the parameter relation of self-tuning
failure detection, where the target MR and TD should be
smaller than the required values of MR and TD, and the QAP
should be larger than the required values of QAP.

In effect, in a specific time slot, we adjust the parameters of
SFD only one time, based on feedback information, to improve
the output QoS of SFD to close the QoS. Usually we have
to repeatedly adjust the parameters of SFD in multiple time
slots to improve the output QoS gradually, and finally find the
proper parameters to satisfy the QoS. At that time, the SFD
stabilizes the parameters of SFD and cloud communication
network systems. If systems have great changes and the
responding output QoS does not satisfy the QoS, then the
SFD will give feedback information to improve output QoS
of SFD gradually again until the output QoS of SFD satisfies
the QoS. Here we assume the experimental time is long
enough to let output QoS of SFD satisfy the QoS for the
applications and the proper control parameters are existing and
available. This method is general, and can be applied to the
other adaptive timeout-based FD schemes (see Algorithm 1).
For Algorithm 1, we should first get the output QoS (TD, MR,
and QAP ) based on the traditional detection scheme [28], and
then try to get the feedback information to adjust the relevant
parameters in SFD.

B. Self-tuning Failure Detector
Based on the above general self-tuning failure detection

method, here we present a material SFD for the engineering
application, which also optimizes the existing failure detectors
as an example.
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Here, we combine the Chen FD [28] and φ FD [30-31]
schemes. Because Chen FD [28] has an extensive performance
range, it could achieve better performance in a conservative
range than φ FD and Bertier FD [29, 33], and also achieve
similar performance to φ FD in an aggressive range. φ FD
is available in only the aggressive range because its rounding
errors prevent to compute points in the conservative range.
Bertier FD has no dynamic parameter, and has only one
aggressive performance value. Furthermore, φ FD outputs a
suspicion level on a continuous scale (not traditional binary
information), and could provide different QoS of failure de-
tection to trigger different reactions.
Algorithm 1 A General Self-tuning Failure Detection Method

1: Begin
2: Initialization:
3: QoS: Set the target QoS;
4: Define a self-tuning FD and its basic and initial parameters;
5: Steps: Self-tuning Failure Detection
6: Get the output QoS (TD, MR, QAP);
7: Get the feedback information (QoS − QoS);
8: If the feedback information is an alarm response (this SFD

can not get this high QoS requirement): show this response to
users and stop SFD (go to line 10 in this algorithm);

9: Adjust the relevant parameters in SFD if the output QoS does
not satisfy QoS; otherwise, fix the parameters.

10: End

SFD adjusts the next predictable freshness point τ(k+1)

based on the feedback information. Therefore, we have

τ(k+1) = SM(k+1) + EA(k+1), (11)

where EA(k+1) is the same as the parameter in Chen-FD,
while SM is the dynamic safety margin, and can be adjusted
to satisfy the predefined QoS. Here, we have

SM(k+1) = SMk + Satk{QoS, QoS} · α, (12)

where the α (α ∈ (0, 1)) is the same as the constant safety
margin in Chen-FD, and we set

Satk{QoS, QoS} =

{

±β, QoS > QoS;
0, QoS ≤ QoS.

(13)

where β is a constant value, and β ∈ (0, 1), and based on the
specific output QoS status, Satk{QoS, QoS} could be set as
β, −β, or 0. The value β is for the adjusting rate, and it could
be dynamically chosen by users.

From Functions (11-13), a larger α value will lead to larger
TD, shorter MR, and larger QAP in our SFD (because a
larger α value provides a larger safety margin). To this point,
our scheme is similar to Chen-FD. To choose the Satk{QoS,
QoS}, we focus on the two aspects: response time (TD)
and detection precision (MR and QAP ) (see Algorithm 2).
We should make a compromise between response time and
detection precision to match the target QoS QoS. For example,
if we try to shorten response time, and then this adjusting will
worsen the detection precision, and vice versa.

From a theoretical view, SFD satisfies the property of
the accrual failure detector [31], and also belongs to the
class ♦Pac (accruement property and upper bound property),
which is sufficient to solve the consensus problem.

Theorem 1: SFD implements an FD of class ♦Pac, on the
condition that the system is in accordance with the system

model defined in Section II (see the proof of Theorem 1 in
the Appendix).

C. The Implementation of SFD

This section first describes the architecture of SFD, then
presents its specific implementation algorithm.

1) The Architecture of SFD: Conceptually, the implemen-
tation of SFD can be decomposed into three basic parts:
Monitoring, Interpretation, and Action [30].

In traditional timeout-based FDs (Chen FD [28] and Bertier
FD [29, 33]), the monitoring and the interpretation are com-
bined within the FD, and the output is binary. However, SFD,
as an accrual FD [30-31], provides a lower-level abstraction
that avoids the interpretation of monitoring information. Some
values, the suspicion level associated with each process, are
left for the applications to interpret [30].

Application processes set a suspicion threshold according to
their own QoS requirements: a low threshold generates many
wrong suspicions, but quickly detects an actual crash. Con-
versely, a high threshold is prone to generate fewer mistakes,
but needs more time to detect actual crashes.

2) The Implementation of SFD: As an accrual FD, the
method used in SFD is quite simple. After a warm-up period,
when a new heartbeat arrives, the inter-arrival time is put into
a sampling sliding window, and at the same time, the previous
oldest one is pushed out of the sampling window. Then the
arrival time in the sampling window is used to compute the
distribution of inter-arrival times, and get the average inter-
arrival time ∆t in this sliding window. After that, based on
Equations (11-13), we compute the current value of timeout τ ,
which gives the next freshness point (see Fig. 2). Applications
will perform some actions, or start to suspect the process by
comparing the τ value and its current heartbeat arrival time
(see Fig. 2).

We are unable to get the communication delay from the
sender to the receiver when it is lost (see the second case in
Fig. 2). In order to ensure the effectiveness of the proposed
approach, and considering the influence of message loss, we
use the time series theory to fill in the gap. In detail, we fill
in the gaps with a value computed by di = (∆t ·nag)+di−1,
where nag is the average number of observed adjacent gaps
[18].

The detailed information for the implementation of SFD
is shown in Algorithm 2. Here we first set some initial
parameters, including an initial safety margin value for SM1.
After that, SFD could get the feedback information (Step 2
in Algorithm 2): If SM1 is the proper parameter for SFD to
obtain the expected output QoS, then the feedback information
is 0, and the SFD is stable. This means the current parameters
are proper for the network system; If SM1 is not the exact
proper parameter for SFD to acquire the expected output
QoS and the output QoS matches the control rules, then the
feedback information is ±β based on specific output QoS
status; If SM1 is not the exact proper parameter for SFD to
acquire the expected output QoS and the output QoS does not
match the control rules, then the SFD give a response about
this mistake (all the possible values are not proper for SM1).
Finally, if the SFD does not show “give a response”, SFD
adjusts the parameter SM until gets the expected output QoS.
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For Chen FD [28], they have to find the exact proper
parameter value for its initial safety margin to achieve the
expected output QoS (because they could not automatically
adjust the parameter); Otherwise, the output QoS can not
satisfy the QoS (users’ requirements). The φ FD [30-31] and
Bertier FD [29, 33] also have same drawback, which is solved
by our SFD.
Algorithm 2 A Method to Adjust the Parameters

1: Begin
2: Initialization:
3: TD: Set the detection time;
4: MR: Set the mistake rate;
5: QAP : Set the query accuracy probability;
6: Set the initial safety margin value for SM1;
7: Set the constant parameters α, and β;
8: Step 1: Get the relevant data
9: Get the output QoS (TD, MR, QAP).

10: Step 2: Get the feedback information
11: If TD > TD, MR < MR, and QAP > QAP :

Satk{QoS, QoS} = β;
12: If TD < TD, MR < MR, and QAP > QAP :

Satk{QoS, QoS} = 0;
13: If TD < TD, MR > MR, and QAP < QAP :

Satk{QoS, QoS} = −β;
14: Others (for example, if TD > TD, and MR > MR): “Give

a response” (this SFD can not get this high QoS requirement),
and stop SFD (go to line 18).

15: Step 3: Adjust parameters
16: Send Satk{QoS, QoS} to the SFD;
17: Adjust SFD relevant parameters based on the value of

Satk{QoS, QoS};
18: End

V. PERFORMANCE EVALUATION

In order to demonstrate that the presented general non-
manual analysis method in this paper is effective, we evaluate
and comparatively analyze the performance of SFD, φ FD
[30-31], Chen FD [28], and Bertier FD [29, 33] in general
experimental environments (seven WAN cases: all are real
data, one is obtained between Japan and Switzerland, the
others are from PlanetLab), which are representative as general
cloud computing networks (see Fig. 1).

The experiments are performed based on the model in
Fig. 2. One (process p) sends heartbeat messages periodically
to the other one (process q) for an arbitrarily long period,
and the other one q receives the messages from process p. In
each experiment, the heartbeat sending and arrival times are
logged into the log files in the monitoring computer q. These
logged arrival time is used to replay the execution for each FD
scheme. That implies all the FDs are compared in the same
experimental condition: the same network model, the same
heartbeat traffic, and the same experiment parameters (sending
interval, sliding window size, communication delay, input,
etc.). Thus, it provides a fair experimental platform for every
FD. The logged sending time is used only for statistics. All
heartbeat messages use the UDP/IP protocol. A low-frequency
ping process runs in parallel with the experiment as a means
to obtain a rough estimation of the round-trip time, and also
to make sure the network is connected.

In the experiments, each FD scheme uses a sliding window
to save past samples for computing future estimations. All the
experiments for the four FDs use the same fixed window size

(WS = 1, 000). It is reasonable to analyze the sampled data
only after the sliding window is full because the network is
unstable during the warm-up period. In these experiments, the
heartbeats are generated at a target rate of one heartbeat every
100 ms.

The main parameters are as follows: In order to find the best
QoS and compare with the others, here we set SM1 = α for
SFD; For Chen FD, the parameters are set the same as in [28]:
α ∈ [0, 10000]; For φ FD, the parameters are set the same as
in [30-31]: Φ ∈ [0.5, 16]; For Bertier FD, the parameters are
set the same as in [29, 33]: β = 1, φ = 4, γ = 0.1. In each
experiment, the other basic experimental parameters of FDs
are the same.

In these experiments, after discarding some initial period,
we have measured the following three key QoS metrics for
the entire execution: TD, MR, QAP. It is not easy to compare
parametric failure detectors because, depending on the value
set for their parameter, their behaviors can be completely
different. A common mistake is to set some arbitrary values
for the parameters and then compare two parametric failure
detectors based on the measured detection time and accuracy.
This almost always leads to the erroneous conclusion that one
is better for detection time while the other provides higher
accuracy.

In contrast, we use the developed approach when conducting
experiments for the φ FD [30-31]. The idea is based on the
following question: given a set of QoS requirements, can the
failure detector be parameterized to match these requirements?
To answer this question, we consider a space of QoS defined
by the detection time on one axis and an accuracy metric (e.g.,
MR, or QAP ) on the other axis. Then, we measure the area
covered by the failure detector when we vary its parameter
from a highly aggressive behavior to a very conservative one
(i.e., TD becomes larger and larger9.). The area covered by a
failure detector is the area that corresponds to a set of QoS
requirements that can possibly be matched by that failure
detector. In each experiment, different output values (MR,
QAP and TD) were obtained from the following respective
parameters: For SFD, a list about the initial safety margin SM1

is given, and other parameters including α and β are not listed
for that they only impact the rate of self-tuning adjustability;
For Chen FD, a list about the initial safety margin is given;
For φ FD, a list about the threshold parameter Φ is given.

We find that when the parameter continuously changes in
sequential order (for example, from the small value to the large
value), the graph is serially developing, and we can obtain
plenty of points, which can be fitted on this curve graph.

A. Experiment in a WAN

This experiment involves two computers: one was located at
the Swiss Federal Institute of Technology in Lausanne (EPFL),
in Switzerland, and the other was located in JAIST, Japan. The
two computers communicate with each other through a normal
intercontinental Internet connection.

9Here each point in the graph is corresponding to a parameter in this FD
scheme. When we choose the parameter in order (for example, from the small
value to the large value), we could get a lot of points which can be fitted with
a serial curve.
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Fig. 6. Mistake rate vs. detection time in a WAN.

In this experiment, we use exactly the same trace files from
the paper about φ FD [30-31], and these trace files are publicly
available on the lab website [40]. Therefore, this provides a
common ground for evaluating the performances of SFD, Chen
FD [28], Bertier FD [29, 33], and φ FD [30-31].

1) Experiment Setting: Hardware/software/network: In de-
tail, the trace files and relevant data were obtained from the
following experiment setting.

Heartbeat sampling The experiment was over in one week
(started on April 3 at 2:56 UTC, and finished on April 10
at 3:01 UTC). During the experimental period, the aver-
age sending rate actually measured was one heartbeat every
103.501 ms (standard deviation: 0.189 ms; min.: 101.674 ms;
max.: 234.341 ms). Furthermore, only 5, 822, 521 out of the
5, 845, 713 heartbeat messages sent out were received, thus
the message loss rate was about 0.399 %. After checking the
trace files more carefully, the messages losses were due to 814
different bursts. The majority of total bursts were short length
bursts, while the maximum burst-length was 1, 093 heartbeats
(only one), and it lasted about 2 minutes. Furthermore, most
of the heartbeats were not directly from Asia to Europe, but
actually, routed through the United States.

Round-trip time The average RTT is 283.338ms, with a
standard deviation of 27.342ms, a minimum of 270.201ms,
and a maximum of 717.832ms. By analyzing the trace files,
we found the average CPU load rate for the sending host, and
the receiving hosts were 1/67 and 1/22, respectively, so they
were below the full capacity of the computers.

2) Experimental Results: The experimental results for TD,
MR and QAP are shown in Figs. 6-7. Fig. 6 shows MR
comparison of FDs, where the vertical axis is on a logarithmic
scale. The best values are located at the lower left corner,
which means this FD provides short detection time and has
a low mistake rate. Fig. 7 shows QAP comparison of FDs,
where the vertical axis is on a linear scale. The best values
are located at the upper left corner, which means that the FD
provides short detection time with a high QAP .

In Fig. 6, when TD < 0.3 s, the Chen FD and φ FD can
obtain the similar MR and TD. When 0.3 s< TD < 0.9 s,
SFD and Chen FD have similar results and are slightly better
than φ FD. When TD > 0.9 s, Chen FD can obtain the lowest
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Fig. 7. Query accuracy probability vs. detection time in a WAN.

MR with the same TD. For SFD, there is no data in the
too aggressive range (TD < 0.3 s) and the too conservative
range (TD > 0.9 s). Since SFD can dynamically adjust its
parameters.

At the beginning, the initial safety margin SM1 was set as
a very small value, then output QoS in our SFD had a short
detection time TD (TD < TD) and a large mistake rate MR
(MR > MR). It implies the output QoS does not satisfy the
QoS, and we should take multiple steps to increase SM in
order to reduce the MR. Then, our scheme gradually increased
SM in next multiple freshness points τ to reduce the MR of
output QoS. Eventually, we satisfy the QoS for the application.

For the next SM1 value, which is slightly larger than the
former one10, SFD first had a lower MR than the former
one (with a lower SM1 value), which was still larger than
MR. Then our scheme multiple increases SM to gradually
get lower MR of output QoS, as far as the output QoS satisfies
the QoS. So for the total output QoS, usually a larger SM1

leads to a larger TD, a lower MR and a higher QAP . But
it is not absolute, because the SFD could automatically adjust
the SM to satisfy the QoS.

Interestingly, there are some bursts in this WAN experiment,
so for every SM1 value, after the output QoS of SFD has been
adjusted to satisfy the QoS, due to the bursts, there were some
fluctuations for the output QoS of SFD.

For those SM1 values with TD > 0.9 s in SFD, our scheme
can reduce the SM in next freshness point τ to get shorter
TD gradually, though it leads to slightly larger MR. If the
first output TD is greater than 0.9 s in SFD (because the
SM1 is very large), we should spend more steps to reduce
the SM to reduce TD, and let TD < TD eventually. Then in
total performance, output MR is larger and TD is shorter. It
is reasonable for those SM1 values with TD > 0.9 s that,
when SFD’s SM1 increases, TD becomes larger and MR
becomes lower. The graphs of φ FD are stopped early (at
2.43 s), due to the rounding error preventing the graphs to the
very conservative case. For Bertier FD, it has only one point
because it has no dynamic parameters. This is the same status
in other experimental environments. In Fig. 7, we have similar

10In our SFD experiments, SM1 gradually increases from a list of possible
values.



9

TABLE I
SUMMARY OF THE WAN EXPERIMENTS

WAN case Sender Sender-hostname Receiver Receiver-hostname

WAN-1 USA planet1.scs.stanford.edu Japan planetlab-03.naist.ac.jp

WAN-2 Germany planetlab-2.fokus.fraunhofer.de USA planet1.scs.stanford.edu

WAN-3 Japan planetlab-03.naist.ac.jp Germany planetlab-2.fokus.fraunhofer.de

WAN-4 China planetlab2.ie.cuhk.edu.hk USA planet1.scs.stanford.edu

WAN-5 China planetlab2.ie.cuhk.edu.hk Germany planetlab-2.fokus.fraunhofer.de

WAN-6 China plab1.cs.ust.hk Japan planetlab1.sfc.wide.ad.jp

TABLE II
SUMMARY OF THE EXPERIMENTS: STATISTICS

Experiment Heartbeats Heartbeats period RTT

case total (#msg) loss rate send (Avg.) send (stddev) receive (Avg.) receive (stddev) (Avg.)

WAN-1 6, 737, 054 0% 12.825 ms 13.069 ms 12.83 ms 14.892 ms 193.909 ms

WAN-2 7, 477, 304 5% 12.176 ms 1.219 ms 12.206 ms 19.547 ms 194.959 ms

WAN-3 7, 104, 446 2% 12.21 ms 1.243 ms 12.235 ms 4.768 ms 189.44 ms

WAN-4 7, 028, 178 0% 12.337 ms 9.953 ms 12.346 ms 22.918 ms 172.863 ms

WAN-5 7, 008, 170 4% 12.367 ms 15.599 ms 12.94 ms 16.557 ms 362.423 ms

WAN-6 7, 040, 560 0% 12.33 ms 10.185 ms 12.42 ms 17.56 ms 78.52 ms

results to the Fig. 6.

B. Extensive PlanetLab WAN Experiments

We have analyzed the behavior of the implementation of
the SFD in a large collection of environments. Here we
focus on the most relevant WAN environments in order to
obtain the general experimental analysis. The main goal of
our experiments was to observe the performance of the SFD
to be automatically configured well to match the QoS. In this
case, we compare SFD against Chen-FD, Bertier-FD, and φ-
FD. Here we first describe the various WAN environments, and
then make comparison between SFD and existing FDs using
feasible methods, and finally the relevant results are discussed.

1) Experiment Settings: The experimental environments
are described below, and the corresponding statistics are
summarized in Table I and Table II. Here six representa-
tive WAN experiments were conducted on the PlanetLab
(http://www.planet-lab.org/), using nodes located in USA, Eu-
rope (Germany), Japan, and China (Hong Kong). Each location
communicates with the other three locations (see Fig. 8 and
Tables I-II). The locations and hostnames are summarized in
Table I. Each WAN experiment was set to last for about 24
hours, with a target heartbeat interval set to 10 ms.

Environment 1 (WAN-1). This set was from Stanford
University, USA to Nara Institute of Science and Technology,
Japan, starting from March 12, 2007. The effective heartbeat
interval was 12.825 ms, and total 6, 737, 054 heartbeats were
sent. The mean heartbeat arrival time was 12.83 ms (thus
showing a slight clock drift) with a standard deviation of
14.892 ms. The average round-trip time was 193.909 ms.

Environment 2 (WAN-2). This set was from Germany to
USA, starting from March 8, 2007. Total 7, 477, 304 heartbeats
were sent, and the loss rate was 5%.

Environment 3 (WAN-3). This set was from Japan to
Germany, starting from March 6, 2007. Total 7, 104, 446
heartbeats were sent, and the loss rate was 2%.

Environment 4 (WAN-4). This set was from Hong Kong
(China) to USA, starting from March 10, 2007. Total 7, 028,
178 heartbeats were sent, and the loss rate was 0%.

Environment 5 (WAN-5). This set was from Hong Kong
(China) to Germany, starting from March 11, 2007. Total 7,
008, 170 heartbeats were sent, and the loss rate was 4%.

Environment 6 (WAN-6). This set was from Hong Kong
University of Science and Technology, Hong Kong to Mural
Labolatory, Keio University Shonan Fujisawa Campus, Japan.
Total 7, 040, 560 heartbeats were sent, and the loss rate was
0%.

As a final note, we use the ping process conducted in
parallel with the experiments to obtain the ping log files, which
demonstrate that the Network was always connected during
experiments.

2) Experimental Results and Discussions: A similar behav-
ior can be observed in the different experimental settings. The
experimental results from WAN-2 to WAN-6 obtained on the
PlanetLab are similar to WAN-1. For the limited space for
this paper, here we only show the experimental results from
WAN-1 in Figs. 9-10.

We observe the results obtained in the experiment WAN-1
between USA and Japan (see Figs 9-10). Bertier FD behaves
as an aggressive failure detector with only one point because it
has no dynamic parameters. While Chen FD is a conservative
failure detector, and can get the 0 MR finally. For φ FD, the
rounding errors prevent to compute points in the conservative
range, and the curve for φ FD stops with a TD of 1.58 s, a
MR of 0.002, and a QAP of 99.8%. While the three schemes
have similar beginning point, none of these schemes could
automatically adjust parameters based on the dynamic network
case. Obviously, it is solved by SFD.

The curve for SFD is from 0.10 s to about 0.87 s. First
it obtains the beginning point with a TD of 0.10 s, a MR of
0.31, and a QAP of 99.5%. The SFD curve gradually changes
to the point (a TD of 0.87 s, a MR of 0.00041, and a QAP
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Fig. 8. PlanetLab WAN Hosts Fig. 9. WAN1: MR vs TD Fig. 10. WAN1: QAP vs TD

of 99.8%) with the parameter SM1 rising. After that, when
initial safety margin rises again, Chen FD will get longer TD

in its output QoS, while SFD does not. Because SFD finds
this output TD is larger than the requirement, it automatically
adjusts the other parameters (by setting Sat{QoS, QoS} =
−β to reduce SM ) to reduce the TD, though leads to the
expenditure of larger MR. During this adjusting period, SFD
should repeatedly adjust the parameter Sat{QoS, QoS} = −β
to achieve smaller output TD gradually. Finally, the output
TD has TD < TD with the expected output MR and QAP
(MR < MR and QAP > QAP ). With increasing value of
SM1, the SFD graph gradually develops to the point with a
TD of 0.10 s, a MR of 0.0.31, and a QAP of 99.5%, which
is very close to the beginning point.

The optimization of SFD over φ FD, Bertier FD, and Chen
FD is significant: Although sometimes SFD does not provide
the better performance than other FDs (for example, when
DT is smaller than about 0.2 s, φ FD get lower MR than
SFD does at the same DT ), yet only SFD could automatically
adjust its parameters to match the QoS. Specifically, with
initial safety margin SM1 rising, SFD can always automati-
cally adjust Sat{QoS, QoS} and find suitable SM to get a
satisfactory output QoS for users’ requirements. In contrast,
other schemes could blindly provide different output QoS:
some are just temporarily suitable for the requirements; yet
some are never, then engineers have to manually change the
relevant parameters. These schemes must try all the possible
parameter values, and get a performance output graph to
know which parameter values are acceptable for the network
(manually choose relevant parameters). If the network has
significant changes, the engineers have to change the relevant
parameters manually again. In conclusion, SFD has good
self-tuning property, and it can be more effectively used in
cloud computing environments for extensive industrial and
commercial usage.

The parameter settings in each FD are key factors, since a
different parameter setting could lead to a completely different
results. For a qualitative analysis, when the parameter contin-
uously changes in a fixed order (for example, from the small
value to the large value), the graph serially monotonously
develops in most cases11. There is no quantitative relationship
between the parameter change and the results change, because

11The possible reason for the abnormal cases is that some burst data and
too old data affect the output QoS.

they are independent.
In summary, we evaluate the performance of SFD in a

variety of WAN environments (see Fig. 8). Experimental
results have shown that the SFD can automatically adjust
parameters to provide good performance at general network
cases over other state-of-the-art failure detectors.

C. Comparative Analysis of the Four FDs

All our above experiments cover the most representative
application environment found at present. Based on them, we
conclude the following:

Self-tuning property: The experiments demonstrate that SFD
outperforms the existing FDs (φ FD [30-31], Bertier FD [29,
33], and Chen FD [28]) in terms of self-tuning capacity.
Specifically, in cloud computing networks, with initial safety
margin SM1 rising, SFD can always automatically adjust
Sat{QoS, QoS} and find suitable SM to get a satisfactory
output QoS for users’ requirements. In contrast, other schemes
could blindly provide different output QoS. If the network has
significant changes, the engineers have to change the relevant
parameters manually again.

Effect of window size: We analyze the effect of window
size on QoS of FDs. For φ FD, a larger window size tends to
achieve better performance [41]. The possible reason is that
historical information is important for φ FD to get good QoS.
φ FD is based on the normal distribution function, so the larger
size window could obtain more historical data, and so compute
more adaptive normal distribution function for the relevant
network case. For Bertier FD, the effect of window size on
their QoS can be negligible. The possible reason is that Bertier
FD has no tuning parameters. For Chen FD and SFD, a lower
window size leads to better performance [41]. Chen FD is
based on Functions (2) and (3), and SFD is based on Functions
(2) and (11-13). When window size increases, there are more
historical data for Chen FD and SFD based on Function (2),
and the many burst data and too old data may affect the output
QoS, making less ideal contributions (even bad contributions)
for achieving good performance. Chen FD and SFD take less
time to adapt the dynamic network with a reduced window
size.

In summary, SFD is a practical self-tuning FD which can
be effectively used for industrial and commercial application
to automatically satisfy QoS for users’ requirements. Further-
more, SFD has good scalability. Because it is able to get



11

acceptable performance with very small window size, and it
can save valuable memory resources. All the evidence supports
our conclusion that the general self-tuning failure detection
analysis of SFD is effective.

VI. CONCLUSION AND FUTURE WORK

Services in the distributed networks may be virtualized with
specific servers. Some of the servers are active and available,
while others are busy or heavy loaded, and the remaining are
offline for various reasons. Users would expect the right and
available servers to complete their application requirements.
Therefore, in order to provide an effective control scheme and
parameters guidance for service conditions, failure detection
is essential to meet users’ service expectations. Most existing
Failure Detector (FD) schemes do not automatically adjust
their detection service parameters for the dynamic network
conditions, thus they couldn’t be used for actual application.
This paper explores FD properties with relation to the actual
and automatic fault-tolerant cloud computing networks, and
find a general non-manual analysis method to self-tune the
corresponding parameters to satisfy users’ requirements. Based
on this general automatic method, we propose a specific and
dynamic Self-tuning Failure Detector scheme, called SFD,
as a major breakthrough in the existing schemes. We carry
out actual and extensive experiments to compare the qual-
ity of service performance between the SFD and several
other existing FDs. Experimental results demonstrate that our
scheme can automatically adjust SFD control parameters to
obtain corresponding services and satisfy user requirements,
while maintaining good performance. Such an SFD can be
extensively applied to industrial and commercial usage, and it
can also significantly benefit the cloud computing networks.
Our SFD is also appropriate for the “one monitors multiple”
and “multiple monitor multiple” cases based on the parallel
theory. In our future work, we would like to explore software
engineering solutions in the United States southern states ed-
ucation cloud consortium (see Fig. 1), specifically addressing
mechanisms for ensuring the QoS for resource access and
service allocations in multi-cloud scenarios.
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APPENDIX

Proof of Theorem 1 A failure detector of class ♦P , must verify
the two properties represented by Theorem 2 and Theorem 3.

Theorem 2 Strong Completeness. Eventually, every process that
crashes is permanently suspected by every correct process.

∃t0, ∀t ≥ t0, ∀p ∈ correct(t),∀q ∈ crashed, q ∈ suspectedp(t).

Theorem 3 Eventually strong accuracy. There is a time after which
a correct process is no longer suspected by any correct process.

∃tbound, ∀t ≥ tbound, ∀p, q ∈ correct(t), q 6∈ suspectp(t).

Strong Completeness
There is a time tmute after which no correct process q receives

heartbeat messages from the crashed process p, and there is a time
ttimeoutk after which all correct processes q permanently suspect p.

Lemma 1. If process p crashed at tcrash, then there is a time
tmute after which process q stops receiving messages from p.

tmute ≤ tcrash + ∆msg ,

where ∆msg means the maximum time after GST, from the sending
of a message, to the delivery, and to processing by its destination
process, we assume that the destination process has not failed.

Proof: All the time instants considered in the rest of this section
are assumed to be after GST. We also assume that, at these instants,
all the messages sent before GST have already been delivered and
processed. These assumptions allow us to consider in the rest of the
section, that the unknown bounds on process speeds and on message
transmission times, hold.

∃tGST : ∀mk|tsk ≥ tGST : (trk) − tsk < ∆msg ,

where tsk is the time when p sends mk, and trk is the time when q
receives mk.

Suppose a process p crashed at tcrash. Then, p stops sending
heartbeat messages.

6 ∃mk | tsk ≥ tcrash

The process q cannot receive message k from process p after trk +
∆msg . Hence, process q cannot receive any message from process p
after trk + ∆msg .

Lemma 2 For any sequence of k messages received by process
q from p, there is a time τk after which process q starts suspecting
process p if it does not receive any message from p.

From Step 2 in Algorithm 2, when the process q receives a message
mk−1 from process p, process q calculates a new τk after which
process q starts suspecting process p. We must prove that the τk is
always bounded. The τk is calculated as follows (Algorithm 2):

τk = SM(k) + EA(k), (14)

For this algorithm, if some process (p) crashed at time tcrash, then the
other processes (q) cannot receive any heartbeat from it. And p will
be added into the suspect list (Step 2 in Algorithm 2) and will never
be removed from the list after tcrash. Therefore, p is permanently
suspected by every correct process.

In Step 2, if k > WS, WS is the window size. EAk is equivalent
at:

EAk =
1

WS
(

k
∑

i=k−WS−1

tri − ∆i ∗ i) + k∆i.

From our model
EAk <

1

WS
(

k
∑

i=k−WS−1

tsi + ∆msg − ∆i ∗ i) + k∆i

as tsi = ts(i−1) + ∆msg + k∆i, then
EAk < ts0 + ∆msg + k∆i. (15)

The expected arrival time of the mk message is bounded by:

tsk < EAk ≤ tsk + ∆msg (16)

From Functions (12-13), the safety margin SM is obtained:

SMk = SM(k−1) + Satk{QoS, QoS} · α,

and
Satk{QoS, QoS} =

{

±β, QoS > QoS;
0, QoS ≤ QoS.

Here, we assume α < min{SM1, SM2, SM3, ..., SMk},

∵ 0 < β < 1, ∴ SM2 = SM1 + Sat1{QoS, QoS} · α,

and we also have SM1−βα ≤ SM2 ≤ SM1 +βα, ∵ SM1−βα >
0, then 0 < SM2 ≤ SM1 + βα. Based on the above, we have

0 < SMk ≤ SM(k−1) + βα. (17)

From Functions (16-17), one has 0 < SM3 ≤ SM1 + 2βα, 0 <
SM4 ≤ SM1 + 3βα, ...

0 < SMk ≤ SM1 + (k − 1)βα. (18)

From Function (16), we show that the expected arrival date for
any message mk is bounded; and from Function (18), the safety
margin SMk is bounded. All components of τk in Function (16) are
bounded, so we can deduce that τk is bounded. If for each message
mk−1 received from process p, process q activates a bound timeout,
then there is a time after which q suspects p, if it receives no new
message from p. Then, strong completeness is proved.

Eventually strong accuracy
Theorem 3 is verified if the τk of process q is large enough to

avoid the situation where process q wrongly suspects process p.
Lemma 1. Every time q times out and p is correct, β is increased.

There is a time tbound where safety margin SM is large enough to
avoid false detection, and SM stops increasing. When SM becomes
higher than ∆msg , then no false detection can occur.

∃tbound, ∀t ≥ tbound, SM(t) ≥ ∆msg, and SM(t) = SM(t + 1).

Lemma 2. There is a time after which τk is greater than (tsk +
∆msg). ∃tbound, ∀t ≥ tbound, τk ≥ tsk + ∆msg

Proof : From Lemma 1, 2 and 3, we can say that ∀mk, tsk <
EAk. With β increased, there is a time tbound, after which SM(t) ≥
∆msg . Therefore, we can conclude that ∃tbound, ∀t > tbound, τk >
tsk +∆msg . Theorem 3 is verified because if τk is larger than (tsk +
∆msg), then process p cannot be considered by process q as having
failed. �


