Mercury: Towards Optimal Accuracy-Latency
Trade-off for Collaborative Transformer Inference

Yumeng Liang?, Jianhui Chang’, Sijia Li*", Mingyuan Zang', Jie Wu'"
TChina Telecom Cloud Computing Research Institute, China
#University of Science and Technology Beijing, China
“Temple University, USA
{liangym9, changjhl}@chinatelecom.cn, lisijia@xs.ustb.edu.cn, zangmy 1 @chinatelecom.cn, jiewu@temple.edu.

Abstract—Vision Transformers (ViT) achieve remarkable per-
formance across a wide range of visual tasks but incur high
inference latency on resource-constrained mobile devices. Mobile-
cloud collaborative inference, i.e., partially offloading the work-
load to the cloud, is a promising solution for acceleration by
leveraging both mobile and cloud resources. Existing approaches
reduce token numbers in a multi-round manner to shrink the
data to be offloaded to the cloud, so as to reduce the communica-
tion latency. However, they cause imbalanced workloads, leading
to heavy latency on the resource-constrained mobile devices.
This paper presents Mercury, a collaborative ViT inference
framework that accounts for mobile-cloud resource disparity.
Unlike multi-round strategies, it performs single-round token
pruning at the initial layer on mobile devices to aggressively
reduce computation and communication overhead, and then
restores tokens in the cloud to maintain accuracy. A similarity-
based regionally decentralized token pruning method is designed
to preserve semantic features, while an efficient meta-parameter-
based token reconstruction method is used to improve accuracy
with minimal overhead. Experiments on real-world testbeds
under 4G/5G traces show that Mercury achieves up to a 2.27x
speedup and halves the mobile-side energy consumption, while
preserving comparable accuracy to state-of-the-art methods.

Index Terms—mobile-cloud collaboration, collaborative trans-
former inference, vision transformer, IoT, mobile computing

I. INTRODUCTION

The widespread deployment of cameras has enabled lots
of emerging applications on mobile devices, such as ob-
ject/person re-identification [1], [2] and anomaly detection [J3]],
[4]]. These tasks heavily rely on deep learning methods for
real-time processing. Recently, Vision Transformer (ViT) has
gained increasing attention due to its superior accuracy com-
pared to convolutional neural networks (CNNs) across various
vision tasks [5]]. However, despite the performance benefits,
ViT comes with substantial computational costs, making it
unsuitable for deployment on mobile devices where resources
are limited. To address this, various model compression meth-
ods have been proposed to reduce memory and computation
by modifying model structures [[6]—[8]. While effective in
reducing overhead, these approaches often degrade accuracy,
failing to achieve an optimal accuracy-latency trade-off.

An alternative solution is mobile-cloud collaborative infer-
ence, i.e., partially offloading the workload to the cloud by

This work was supported by Young Elite Scientists Sponsorship Program
of the Beijing High Innovation Plan. Corresponding author: Jie Wu.

offload
—_—
Model Partition

Server

(a) Existing methods: layers on mobile side have heavier computation
Model Partition

: Restoration
(b) Mercury: less computation on mobile side, more on the cloud side

Fig. 1: Comparison of collaborative frameworks. Unlike the
existing method [9]], Mercury fully considers the mobile-cloud
differences in computational resources: aggressively reducing
tokens at the initial layer and restoring them on the cloud.

transmitting intermediate features over networks to leverages
both mobile and cloud capabilities for acceleration. Existing
collaborative approaches [10]—[13] mainly focus on CNNs,
whose intermediate features shrink progressively during work-
loads, enabling reduced communication overhead. In contrast,
ViT maintains a fixed token size and large computational foot-
print throughout the inference, making traditional collaborative
strategies less effective in reducing the overall latency.
Several recent works [9]], [14]] aim to reduce ViT’s col-
laborative inference latency by gradually reducing token
counts layer-by-layer, thereby shrinking the offloading data by
splitting at later layers. However, this multi-round reduction
overlooks the mobile-cloud resource disparity and leads to
imbalanced workloads: the computation-intensive early layers
have to run on resource-constrained mobile devices, resulting
in significant computational latency. In addition, it ignores
the possibility of regenerating the pruned tokens through
restoration, which can be done in the cloud to boost accuracy.
In this paper, we propose Mercur a resource-aware

'Mercury, the Roman god with winged sandals, symbolizes swift message
delivery between cloud and mobile devices.

collaborative inference framework for ViT. As shown in Fig.[I]
Mercury differs from existing multi-round token reduction
methods by adopting single-round pruning at the initial layer
to minimize mobile-side computation and communication
latency, and then restores tokens in the cloud to preserve
accuracy. Note that the early token pruning significantly re-
duces both mobile computation and intermediate features to
be offloaded, enabling flexible layer partitioning unconstrained
by communication volume. Meanwhile, token reconstruction
incurs negligible overhead due to abundant cloud resources.

To deliver efficient mobile-cloud collaboration, i.e., signif-
icantly reducing the overall latency while preserving high
inference accuracy, Mercury addresses two main challenges:

1) How to significantly reduce the token numbers at the
initial layer while preserving semantic information? Our in-
vestigation experiments reveal that, although reducing tokens
at the initial transformer layer delivers substantial inference ac-
celeration, it drastically lowers accuracy compared to pruning
in deeper layers. This is mainly because early-stage features
are more sparse and less aggregated, which makes large-scale
pruning in these layers prone to losing important features.
Considering this, Mercury adopts a similarity-based region-
ally decentralized token pruning algorithm, which preserves
tokens with higher semantic similarity within each subregion,
ensuring semantic integrity under high pruning rates.

2) How to efficiently reconstruct tokens to enhance inference
accuracy? A straightforward approach would introduce a ded-
icated neural network to regenerate the pruned tokens, but this
adds heavy task-specific computational and storage overhead,
which is impractical for supporting diverse tasks in the cloud.
Instead, Mercury leverages the inherent attention mechanism
of transformers: the restored tokens are treated as meta-
parameters, which are trained offline and stored in the cloud.
They are concatenated with the retained tokens as input to
the cloud-side model, thereby restoring the essential semantic
features for enhanced inference accuracy. This method avoids
incurring substantial additional computational cost and adds
minimum parameters, only 0.13% of the original model size,
achieving efficient accuracy enhancement.

We evaluate Mercury using a real-world setup: a Raspberry
Pi 4B as the mobile device, a cloud server, and real 4G/5G
bandwidth traces to simulate bandwidth fluctuations during
transmission. Compared with two state-of-the-art methods [9]],
[14], Mercury achieves up to 2.27x speedup under the same
accuracy threshold and reduces the energy consumption of
mobile devices to 50% of the competing method. Moreover,
each of our two core designs independently contributes to
performance improvements: under the same cloud-side to-
ken reconstruction setting, our token pruning strategy alone
achieves a 1.73x speedup, while our token reconstruction
alone can further boost accuracy by up to 15.62%.

Our contributions can be summarized as follows:

o We propose a novel collaborative Transformer inference
paradigm that performs early token reduction on mobile
devices and token reconstruction in the cloud to achieve
both speed acceleration and accuracy preservation.

o We introduce Mercury, an efficient collaborative frame-
work with a similarity-based regionally decentralized
pruning strategy and meta-parameter-driven token recon-
struction for optimal accuracy-latency trade-offs.

o Extensive experiments under realistic settings demon-
strate that Mercury consistently outperforms existing
methods in terms of the accuracy-latency trade-offs,
whether using single-round reduction alone, token recon-
struction alone, or both combined.

II. BACKGROUND AND MOTIVATION
A. Vision Transformer and Token Reduction

ViTs [15] are a series of groundbreaking deep learning
models that adapt the Transformer architecture—originally
designed for natural language processing—to the domain of
computer vision. They begin by dividing an input image into
a series of non-overlapping patches. For instance, an image
with dimensions of H (height), W (width) can be divided
into N = HW/P? patches. Each patch has the shape P x P,
and is linearly embedded into a vector of fixed dimension dy,
referred to as tokens, which are the input to the Transformer.
Taking the tokenized features X as input, the computation
process of the Transformer with L layers is formulated as:

f(X)=ToFloFllo...oFl o X, (1)

where F'(-) denotes the transformer block at layer /, and I'(-)
is the post-processing of downstream tasks. Each block uses a
multi-head attention (MHA) layer, followed by a multi-layer
perceptron, to transform the output tokens of the previous
block:

th=F(t"") = '(0), 2

where ¢! and t'~! are the output of layer [and I — 1, and
©!(-) is the multi-layer perceptron of layer /. O} is the global
attention among all patches extracted by the MHA in layer [,
which could be formulated as:
T
Oéc = Softmax(QL)V,
Vs
A(+) is the linear projection function and generates features of
the same shape as the input.

In traditional transformers, ¢! typically has the same shape
as t!=1. Hence, the computational complexity of Eq. [3| re-
mains consistent across all layers, which is O(N?). For
high-resolution images, the number of tokens N is typically
substantial, leading to greater computation than that of CNNs.
To address this, many existing works propose to reduce the
number of tokens at runtime for faster inference speed [16]—
[18]. They either prune the less informative tokens or combine
similar tokens in a layer-wise manner so that the token length
progressively decreases:

where V,Q, K = A(t'"1). (3)

[t =t — !, where 7' >1. 4)
Specifically, the token length at layer [is constrained by:

[t < |t7|, Vje{1,2,...,1}. (5)

’g reduction=15 reduction=20 95

2.200 o

21601 (8 1 gs0

5 120 ’ l ; B Zes

- % h g

s 80 l 4 J_ Y

8 40 <8

5

E_ 0 1 2 3 4 5 6 e 0 5 10 15 20
8 Token Reduction Num per Layer

Layer
(a) On-device computation latency (b) Accuracy drop with token reduction

Fig. 2: The per-layer computation latency of ViT-Base on
Raspberry Pi 4B and the accuracy on CIFAR-100 when
progressively reducing a fixed number of tokens at each layer
following prior method [[14]. In mobile-cloud collaboration,
shallow layers are deployed on the mobile device, yet consume
longer computation latency than deep layers.

This ensures that tokens in later layers are significantly fewer
than those in early layers, reducing the quadratic complexity
O(|t']?) of self-attention computation in deeper layers.

B. Mobile-Cloud Collaborative Transformer Inference

This progressive token reduction described in Eq. [5]leads to
a gradual decrease in intermediate feature sizes across layers,
just like that of CNNs, and opens up opportunities for mobile-
cloud collaborative Transformer inference [9]], [14]]. Specif-
ically, more layers can be processed on the mobile device,
which reduces communication overhead due to reduced feature
size, especially under limited network bandwidth conditions.

However, such methods fail to sufficiently decrease the
computation overhead of shallow layers that are deployed
on the mobile device and lead to significant computational
latency. Specifically, when layers 1 to [are executed on the
mobile device and layers [+ 1 to L are offloaded to the cloud,
there exists an imbalance between computation latency on the
mobile device L,,, and cloud L., which can be formulated as:

Coogery SE oo
L - SO0 | B O)

where Vi € [1,1], j € [+ 1,L], |t'| > |t/|. P, and
P. denote the processing power of the mobile device and
cloud server, and satisfy the constraint P,, < P.. This
imbalance in token length and processing power leads to a
significant computational bottleneck on the mobile device. In
the following, we conduct experiments to investigate this issue
in real-world ToT settings.

Investigation Experiments. We use a Raspberry Pi 4B as
the mobile device, which collaborates with the cloud server via
2.4 GHz WiFi. The cloud server is equipped with an Nvidia
4090 GPU, enabling high-speed inference. On this testbed,
we evaluate the performance of ViT-Base model [[19], which
is a 12-layer ViT model. Following the prior method [14],
we apply the token reduction method [[18], i.e., progressively
reducing a fixed number of tokens. The computation latency
of each layer with a batch size of 16 is shown in Fig.] (a).
Meanwhile, we plot the inference accuracy of CIFAR-100
dataset in Fig. 2| (b) with various per-layer token reduction
settings. From the results, following limitations are observed:

N
o
wv

w12 90 ©

> 9 ~
510 \ 858 § 0.9 803
3 > 5 =
50.8 l gof 5§07 658
r=l 3 5 >
g i g = g
206 l 755 205 50<
' £

© So3

0.4 70 00 01020304050607 3>

1.2 3 4 5 6
Token Reduction Layer
(a) Impact of token reduction point

Token Reduction Rate at Layer 1
(b) Impact of token reduction rate

Fig. 3: Computation latency of the shallow 6 layers on Rasp-
berry Pi (blue bar) and accuracy (black line) when applying
token reduction at a single specific layer. Reducing more
tokens in the shallower layer significantly reduces computation
latency, yet sacrificing accuracy drastically.

1) In mobile-cloud collaboration, shallow layers are de-
ployed on the mobile device, yet consume longer computation
latency than deeper layers. For instance, on the Raspberry
Pi, the execution latency of the first three layers is 433 ms,
which is 1.71x that of Layer 4 to 6 (253 ms), when the token
reduction number is set to 20. For the model split at Layer 3,
on-device inference latency becomes the dominant component
of the overall computation latency, whereas cloud inference
latency remains below 1 ms. The primary reason is that
existing pruning strategies overlook the mobile-cloud resource
disparity, leading to inadequate pruning of the shallow layers
on the mobile device.

2) While reducing a large number of tokens can accelerate
inference, it often results in significant accuracy degradation.
When the token reduction number per layer increases from
15 to 20, the total inference latency of the 6 shallow layers
decreases by 15.4%. However, the inference accuracy drops
sharply by 6.2% (from 88.1% to 81.9%), which severely im-
pacts accuracy-critical applications such as action recognition
and medical image analysis.

Motivation. The analysis above reveals a key performance
bottleneck in mobile-cloud collaborative ViT inference: shal-
low layers executed on resource-constrained mobile devices
suffer from high computation latency. Yet existing token prun-
ing methods typically apply gradual token reduction across
layers, and can not sufficiently reduce token numbers initially
while preserving high accuracy. Inspired by this, we wonder
whether we can aggressively reduce the number of tokens in
the initial layer to lower the on-device computing delay?

C. Challenges

We conduct experiments where token reduction is applied to
only a single selected layer, instead of progressively reducing
tokens across all layers. Following the existing method [17],
we calculate the significance score of each token based on
the attention values calculated in the transformer layer and
preserve the top-K important tokens with the highest scores.
We then reduce token numbers at different layers with various
token reduction rates. The latency for computing the first
6 layers on Raspberry Pi and corresponding accuracies are
shown in Fig. |3| The following observations are obtained:

offload

ﬁ Mobile O Server

O[5 A —5| |5
=) s & |e
& §—o-|§ g |8 |
-l —_ — — (u
- D | [T) =
|08 EIEMS
(e} (e} o ==
\\4-\\'_’0—"‘5' % |B| |2
= = c >
Images © o o
—>Q %> | = ||+
\ Tokenize Reduction / @econstructlon)

Fig. 4: The illustration of Mercury. A remarkable number
of tokens are reduced at the initial transformer layer on
the mobile device to significantly reduce computation and
communication latency, and are reconstructed on the cloud
side to achieve higher inference accuracy.

1) Applying token reduction in the shallower layer remark-
ably reduces computation latency, but at the cost of substantial
accuracy degradation. For instance, pruning 50% of tokens at
Layer 1 instead of Layer 6 can reduce the total computational
latency by half (from 1.05 s to 0.52 s). However, this comes
with a drastic drop in accuracy of 13% (from 89.8% to 76.8%).
The reason behind this is that the shallower layers generate
fewer redundant intermediate features [20], which are more
severely affected by token reduction. Therefore, maintaining
accuracy is much more challenging when aggressively reduc-
ing tokens in the earlier layers.

2) As the token reduction rate increases, computation la-
tency decreases approximately linearly, while accuracy drops
non-linearly at an accelerating rate. For example, increasing
the token reduction rate from O to 0.3 reduces latency by 0.25
s, with only an accuracy drop of 4.7%. While increasing the
rate from 0.4 to 0.7 also yields a 0.25 s latency reduction,
it causes a dramatic 31.3% drop in accuracy. This indicates
that as the reduction becomes more aggressive, it becomes
increasingly difficult to preserve inference accuracy.

These findings highlight that while aggressively reducing
tokens in the initial layers can significantly lower latency, it
becomes increasingly challenging to maintain high accuracy.

III. SYSTEM DESIGN

Motivated by the above observations, we propose Mercury
to fully minimize the computational latency on mobile side,
and leverage the powerful computation resources on the cloud
side to enhance the inference accuracy.

A. Problem Formulation and System Overview

The optimization objective of Mercury is formulated as:

min Lo(7, M) = Ly (1) + Li(7) + Le(1, M),
M @)
st. AA(r,M) <e

The overall latency L,(7, M) with token reduction strategy
7 and reconstructed tokens M are composed of three parts:
latencies of mobile inference L,,(7), feature transmission

Q =

B = |t 5| | B
L = eS| (S
Ba Fp— o—{ £ 25 8 | o
Hi—o—5 TTIE|;|E
e 0— & o o
e < e+ 3| @
|mages aee wen wen E E
EB:’ O_’O—’ »@—»@ - - =
(1) Tokenize (2) Similarity (3) Token
Calculation Reduction

Fig. 5: The illustration of our token reduction method. After
global similarity among tokens is calculated, the token in each
subregion (e.g., 2x2 grid) with the highest score (purple circle)
is preserved, while others can be pruned.

Li(7), and cloud inference L (7, M). While AA(r, M) de-
notes the accuracy drop resulting from token reduction and
reconstruction with an upper bound of e.

Using the Lagrange multiplier), the overall optimization
objective of the system could be defined as:

min (Ly, (1) + Li(7) + Le(m, M) + AMAA(T, M)) . (8)

In practical systems, the optimization variables 7 (token prun-
ing strategy) and M (reconstructed tokens) affect both latency
and accuracy in complex, non-linear, and system-dependent
ways, which are difficult to model analytically in a tractable
form. To cope with this challenge, Mercury adopts a two-stage
framework (as shown in Fig.[d) that decouples the optimization
of 7 and M. In the first stage, 7 is optimized to significantly
reduce the number of tokens on the mobile side while retaining
task-relevant information to mitigate accuracy degradation. In
the second stage, the pruned tokens are reconstructed on the
cloud side via M to further compensate for accuracy loss, with
minimal additional cost.

Problem Definition. Given a tokenized image feature set
X = {z1,22,...,xN}, the first stage, token reduction, aims
to decrease the number of tokens N while preserving the
essential information required for downstream tasks. Formally,
the objective is to find an optimal strategy 7 that minimizes:

arg min/(X) = f(r(X))]| ©)
where 7(X) C X is a selected subset after token pruning. The
Transformer f is composed of a mobile-side component f,
and a cloud-side component f.. The token features transmitted
to the cloud, denoted by X’ = f,,(X — X,.), have length
N — K, where K is the number of pruned tokens.

In the second stage, token reconstruction aims to generate
tokens M = {my,ma,...,mg} that match the shape of the
removed tokens X, and satisfy the following optimization:

argﬂf[nin“f(X)_fc(X/+M)||7 (10)
where X’ and M are concatenated and passed into the cloud-

side Transformer f..

Algorithm 1: Regionally Decentralized Token Pruning

Input: Tokenized features X = {z1,22,..., 2N},
Global attention values Oy = {01,02,...,0n}.
Output: Tokens to prune X, = {x1,x2,..., 2Tk }.

1 fori=1to N do

2 for j=1to N do

3 | Compute the cosine similarity via Eq.

4 Compute semantic score for each token via Eq.
5 for u =1 to VN do

6 for v = 1 to /N do

7 | Perform 2D gridding via Eq.

8 forpzotog—ldo

9 forq:Oto‘/I—N—ldo

10 Partition into subregions via Eq.

11 Find token with maximum score via Eq.
12 Calculate the global index as Eq. ,

13 Determine the preserved tokens X* as Eq.
14 Determine the pruned tokens X, as Eq.
15 return X,

B. Token Reduction at the Initial Transformer Layer

Motivation. Existing methods [9], [14] adopt the similarity-
based pairing strategy to reduce tokens [18], [21]], which
randomly divides all tokens into two groups, then selects
the most similar tokens from each group for merging. This
random bipartition method only supports small-scale pruning
(less than 50%), and cannot be applied to our scenario of large-
scale (e.g., 70%) pruning in the initial layers. Alternatively,
the significance score based token pruning methods [[17], [22]]
can support any pruning ratio, but cause severe accuracy
degradation when applied to initial layers as shown in recent
literature [23]]. Therefore, in Mercury, a novel token reduction
method is required. Inspired by the fact that features extracted
by initial layers exhibit low aggregation and are scattered
across various subregions of the image, we propose to preserve
tokens of higher similarity scores within each subregion, as
illustrated by purple circles in Fig.[5] It performs token pruning
in a regionally decentralized manner while maintaining the
scattered semantic features for higher inference accuracy.

Algorithm Design. Inspired by [31]], we identify the impor-
tant tokens to be preserved in each region and prune the other
tokens as shown in Fig. [5] The selection of important tokens is
mainly based on the semantic similarity scores computed from
the attention of the initial transformer layer. After tokens with
the highest similarity are selected to be preserved, the other
tokens are sorted by their similarity to the preserved ones:
pruning tokens with higher similarity incurs less semantic in-
formation loss. Given that semantic features in the early layer
are less aggregated, i.e., scattered across various subregions
of the image, we propose the Regionally Decentralized Token
Pruning Algorithm, as described in Algorithm [T]

Input and similarity score calculation. Besides the tokenized
image features X = {z1,22,...,2n}, We reuse the global

attention features Oy = {01,02,...,0n} that are already
calculated by the initial transformer layer, which is described
in Eq. 3] It is then used to calculate the semantic similarity
among all tokens in the following:

Oi'Oj

" lloillllos 1

(11
where Sim; ; denotes the cosine similarity among the 4, and
Jin token features.

For each token, semantic similarity score s; is calculated:

Si:Z,

J=

1 Slmz’ je (12)
A higher score indicates more semantic similarity to others,
and thus is more representative of the global context.

Subregion partition and preserved tokens selection. After-
wards, as shown in Fig. 5] during the token selection, we fully
consider the unaggregated features scattered across various
regions of the image, and divide the similarity score matrix
into grids to preserve scattered tokens across different regions.
Using k£ = v/N to denote the width and height of the 2D-grid
transformed from the score set s, each element in the grid at
position (u, v) is defined as:

G(u,v) = S(u—1)k+v- (13)

They are further partitioned into subregions with the scale
size of [. A subregion in row p and column ¢ maintains the
following elements:

Subregion,, , = {G(pl +u,ql +v) | u,v € {1,2,...,1}},
(14)
where p,q € {O, 1,..., % — 1}. For each subregion, we only
preserve the one with the maximum score. The index of
preserved tokens in Subregion,, . is given by:

* * :
Uy 43 Vp, = argmax Subregion, (u,v), (15)
u,weq{l,2,...,l}
where wuy, ., vy . are the row and column offsets within the

Subregion,, .. They are then converted to the global index in
the original token set X:

index, , = (p-l+wu,) k+(qg-1+v,,) (16)

Leveraging the index, the preserved tokens X* are selected:

X" = {xindexp,q | VP, q}

In this way, the most informative tokens are preserved within
each subregion. In our experiments, [is set to 2, which selects
25% tokens to preserve.

Pruned Token Selection. Through the above approach, up to
75% of the tokens can be pruned. To enable a more flexible
token reduction rate, e.g., any proportion from 0% to 75%, we
then sort the prunable set of tokens X — X™* according to their
similarity to X*, and prune the top-K ones, denoted as X,.:

a7)

X, = argtop-K < (18)

max Sim(z;, 1:])) .
T, EX-X* *

r;€X

After selecting the pruned tokens X,., the other tokens X — X,
are further processed by remaining transformer layers on the
mobile device and then transmitted to the cloud for inference.

As described in Sec. by effectively preserving critical
semantic features that are sparsely distributed at the initial
layer, our method achieves an accuracy improvement of 10.4%
to 23.1% compared to the existing pruning method [17] under
a token reduction rate of 50% to 75%.

C. Token Reconstruction on the Cloud Server

Motivation. Although our token pruning method achieves
significant improvements, a high reduction rate still causes a
sharp drop in accuracy (verified in Sec. [V-C). The underlying
reason lies not only in the loss of semantic information,
but also in the drastic reduction of computational load. For
instance, when 75% of tokens (V) are reduced, transformer’s
computational complexity of O(N?) is reduced by 93.75%
(to 1/16th of the original), which limits the model’s ability to
extract information. To verify this, we zero-pad the received
tokens to the original length N on the cloud, and observe that
the inference accuracy with a 75% pruning rate at the initial
layer improves from 67.8% to 75.1% on CIFAR-100. This
verifies the importance of recovering the number of tokens for
inference accuracy. Note that, given the substantial disparity
in computational resources between mobile devices and the
cloud, the computational overhead incurred by the increased
token count on the cloud side results in only negligible latency.
Hence, token reconstruction on the cloud server is quite
favorable for the accuracy-latency trade-off.

Reconstruction Method. The intuitive and straightforward
approach is to introduce numerous additional parameters to
learn the mapping, such as introducing additional neural
networks with heavy parameters like RCNet [24]. However,
such methods ignore the inherent architecture and capacity
of the existing Transformer model f.. Inspired by [25], we
adopt a more efficient strategy: introduce M as trainable meta-
parameters in the cloud-side Transformer f., and learn to
mitigate the adverse effects of token reduction. This enables
implicit learning of feature completion through the Trans-
former’s native attention operations across all layers.

The additional tokens M are randomly initialized as train-
able parameters: M € RE*ds where K is the number of
reduced tokens (same as the length of X,). Then M are
concatenated with the cloud-received token features X' as
the input of cloud-side Transformer component f.. During the
training process, we employ a standard cross-entropy loss for
the classification task using the training set data:

1 N

Lcg = N, 2 ¥ log(pi),
where y; denotes the ground-truth label, p; represents the
predicted class probability, and Ny is the number of data
samples. This classification loss serves as the sole supervision
signal for end-to-end optimization. Note that, during training,
we freeze the parameters of each transformer layer in f,,
and only fine-tune the small number of parameters in the

19)

classification head (I" in Eq[T), as well as the added parameters
of M. As for inference, the well-trained M are directly
concatenated with X’ as prefixes to the input of f..
Analysis of Overhead. Our reconstruction method incurs
minimal computational latency and storage overhead on the
cloud side. As for computational latency, the supplemen-
tary features M are stored as hyperparameters on the cloud
server and are directly used during inference, introducing
no generation-related computational overhead. Since the ex-
panded token sequence (M + X’) maintains the same length
as the original input tokens X, the cloud-side Transformer
fc incurs the same computational complexity as the unpruned
case. Given the powerful computational resources in the cloud
server, this results in negligible overhead of inference latency.
As for storage overhead, the only additional parameters come
from M, which is minimal in size. For instance, reconstructing
75% tokens for a ViT-Base model only introduces 0.11M extra
parameters, which is just 0.13% of the original model.

IV. EVALUATION

In this section, we introduce the implementation details of
Mercury and compare it with state-of-the-art methods in terms
of latency, accuracy, and energy consumption.

A. Implementation

Hardware. We utilize a Raspberry Pi 4B with §GB RAM
and Cortex-A72 (ARM v8) SoC as the mobile device, where
the shallow transformer layers are deployed to perform mobile-
side computation. The quad-core 1.5GHz processor is a typical
resource-constrained environment for on-device computation.
The calculated intermediate features are then transmitted to
the cloud server via wireless networks. On the cloud server,
an NVIDIA 4090 GPU and Intel(R) Xeon W7-3455 @3.3
GHz processors are deployed to provide typical cloud-side
computing resources, which are capable of completing the ViT
inference in less than 1 ms. On both devices, we install Ubuntu
operating system as well as Python 3.12.7 and PyTorch 2.2.1
to support the transformer model construction.

Wireless Network Traces. To evaluate Mercury’s per-
formance under real-world scenarios, we utilize the dataset
of 4G and 5G wireless networks uplink traces to simulate
the network conditions [26] during feature transmission. The
dataset contains the bandwidth variations under three different
scenarios: static, walking, and driving. After cleaning out the
abnormal data, the dataset contains the record of 126,216
seconds 5G uplink bandwidth variation as well as 74,119
seconds of 4G performance. The average bandwidth of 5G
and 4G dataset is 48.2 Mbps and 37.3 Mbps, respectively.

Baselines. Two state-of-the-art transformer inference meth-
ods are implemented as the comparison baselines: 1)
OTAS [14], an elastic transformer serving system that flexibly
adjusts the number of tokens (either reducing [[18] or increas-
ing [25]]) to enhance throughput or improve accuracy. We adopt
its elastic strategy to modify the model, and partition the model
into mobile and cloud parts for collaborative deployment. 2)
Janus [9], a collaborative transformer inference framework

ZZzzz2 Mobile Comp.
Comm.

727} Mobile Comp.

)
— Comm.

1000

é 750 = Cloud Comp. iéi 250 == Cloud Comp.
> >

g 500 l g 500

© ©

- 250 I L — 250 :[A :

7

Mobile Cloud OTAS Janus Ours
(a) Performance on 4G

7 72

. Mobile Cloud OTAS Janus Ours
(b) Performance on 5G

Fig. 6: Comparison of mobile-only, cloud-only, OTAS [14],
Janus [9], and our method in terms of computation and
communication latency.

4001 . omas
360! o —— Janus
w —— Ours 1
E320 '
>
2280
g
©
=240
200

Bandwidth (Mbps)
N w w £
u o u o

N
o

0 20 40 60 80 100
Time (s)

Fig. 7: Overall latency comparison under real 4G traces

(yellow lines). Our method reduces the latency by 26% on

average compared to the state-of-the-art methods [9]], [[14].

that adopts an exponential token reduction strategy to reduce
more tokens on resource-constrained mobile devices, thereby
reducing the overall latency. We implement their methods
based on the timm library [27]] and the code of TOME [18§].
Tasks and Evaluation Metrics. We employ the image clas-
sification dataset of CIFAR-100 [28]] and ImageNet-1K [29]
as the task to test Mercury’s performance in terms of accuracy
and latency. We employ the well-trained DeiT model with
distillation token [19] as backbone, and train our additional
feature reconstruction parameters on the cloud using the
training dataset. The classification accuracy on the test set is
then utilized as the evaluation metric. As for the latency, we
separately measure the computation latency on the mobile and
cloud, then use the bandwidth trace in the wireless network
dataset to calculate the average communication latency.

B. System-level Evaluation

Effectiveness of Mobile-Cloud Collaborative Inference.
We first compare the collaborative methods with cloud-only
and mobile-only inference performance. The ViT-Base model
is split after Layer 1, and we apply token reduction methods to
make the recognition accuracy on ImageNet at a similar level
(2.8% accuracy loss from the original model) for compara-
bility. 1) Mobile-Only. When the whole model is conducted
on the mobile device, the latency only contains the on-device

300

250/

b 7.81% better
i 7.13% better

1.96x ifaster

Latency (ms)
N
o
o
Latency (ms)
ey
o
o

2. 27xi faster
|]

w
o
<]

OTAS
*— Janus
—*— Ours

»— OTAS
—e— Janus
—*— Ours
82 84 86 88 90 82 8 8 88 90

Accuracy (%) Accuracy (%)
(a) Spilt Layer =1 (b) Spilt Layer =3

150

'
'
|

Y

N
o
o

Fig. 8: Comparison of accuracy-latency trade-off under 5G
networks on CIFAR-100 dataset with different splitting layers.

computing latency. As shown in Fig. [6] due to the poor com-
puting resources of the mobile device, the computation latency
of mobile-only inference is as high as 1073 ms. 2) Cloud-
only. When the whole transformer inference is completed on
the cloud, the high-resolution images with an average size
of 2.2 MB require uploading. The transmission latency of
472 ms in 4G, 365 ms in 5G dominates the whole latency.
Meanwhile, the upload of original images causes a risk of
privacy leakage, which is not applicable in scenarios like face
recognition where strict privacy requirements exist. 3) Col-
laborative methods. Compared to mobile-only and cloud-only
methods, the collaborative methods significantly decrease the
computation latency by offloading partial layers to the cloud
and minimize the communication latency by transmitting the
compact and non-privacy intermediate features (less than 0.6
MB) extracted by the first transformer layer. Therefore, the
collaborative methods achieve better performance under both
4G and 5G networks. Specifically, our Mercury achieves
speedups of 5.06x and 2.23x compared to mobile-only and
cloud-only methods under 4G networks.

Comparison with the State-Of-The-Art Methods. /)
Latency comparison. We first set the splitting position after
the first layer, and adjust the token reduction rate to keep
the accuracies of the three methods at a similar level (80.5%
on ImageNet, with a 2.8% accuracy drop compared to the
original model), then compare their overall latency. As shown
in Fig. [6] the average overall inference latency of Mercury
is 212 ms under 4G and 195 ms under 5G, representing
approximately a 26% reduction compared to the comparative
methods (OTAS [14]] and Janus [9]). A more fine-grained
comparison of latency under different network bandwidths is
shown in Fig. [/} Compared with the comparative methods,
our method achieves accelerations of 1.32x and 1.23X%,
respectively. This is because our method enables substantial
token reduction in the initial layer, effectively lowering both
computation and communication latency.

2) Accuracy-latency trade-off. All three collaborative works
exhibit elastic service characteristics: they can achieve a trade-
off between accuracy and latency by adjusting the token
reduction rate, and can dynamically select the partitioning
layer to alleviate cloud burden or accelerate the inference
process. The accuracy-latency trade-off performance under 5G
networks on CIFAR-100 dataset is shown in Fig. |8} When
the token reduction rate is substantial (accuracy is lower

= OTAS Janus Ours 7771 OTAS Janus Ours
> =6 I 1
o3 T Py I
£ | & €
3 74 5 E
ok - g
S) S N
o1 52
2 z
& o & o
86.0 90.0 91.2 86.0 90.0 91.2

Accur.acy (%)

(b) Split Layer =6

Accuracy (%)
(a) Split Layer =3

Fig. 9: Comparison of the power consumption on the Rasp-
berry Pi with different accuracy thresholds and splitting layers.

TABLE I: Comparison of overhead when split after Layer 3.

Method Accuracy Latency Parameters FLOPs
On CIFAR-100 | Overall ‘ Cloud-side on cloud on cloud

Vanilla 91.2% 636 ms 0.86 ms 63.79 M 263 G
Janus [9] 89.9% 577 ms 0.85 ms 63.79 M 200 G
Ours 89.9% 407 ms 0.86 ms 63.84 M 263 G

than 86%), Janus [9] outperforms OTAS [14] serving as a
stronger baseline, due to its nonlinear pruning strategy, which
prioritizes token reduction in the shallow layers. Compared
with Janus [9], our method further accelerates the inference
speed by 1.17x up to 2.27x with the same accuracy threshold.
When adopting the same latency threshold, our method can
enhance the accuracy by 2.96% up to 7.81%. These substantial
improvements are attributed to our method’s ability to prune a
large number of tokens at the initial layer while ensuring accu-
racy through the innovative design of regionally decentralized
pruning and meta-parameter-based token reconstruction. These
results verify that Mercury achieves optimal accuracy-latency
trade-off leveraging the novel design.

3) Power consumption on the mobile device. Since IoT
devices typically rely on battery power, the power consumption
on mobile devices directly affects the device’s battery life.
Given the maximum power consumption of 6W for Raspberry
Pi 4B, the energy consumption of Janus [9]], OTAS [14], and
our Mercury is shown in Fig. 0] Without token reduction (with
91.2% accuracy), the three methods exhibit similar energy
consumption: 3.24 J and 6.05 J when executing 3 layers and 6
layers, respectively. With an accuracy loss of 1.2% on CIFAR-
100, the comparative method reduces energy consumption
by 7.4%, while our method achieves a significantly greater
reduction of over 33.6%, which is 4.54X the energy savings
of comparative methods. When the accuracy threshold is 86%,
the power consumption of our method is only half that of
the comparative methods, and 40% of the vanilla model. This
demonstrates that our method can substantially extend the
battery life of IoT devices during collaborative inference tasks.

4) Overhead. Our method’s primary overheads stem from
the increased parameters and the additional computation in-
curred during token number reconstruction. The comparison
with the vanilla model (without token reduction) and Janus [9]]
is shown in Table [Ij where Transformer is split after Layer 3
and the accuracy threshold on CIFAR-100 is set equivalently.
The cloud-side parameter increment is approximately 0.05 M,

250

250| = 80 —*— ViT-Tiny
75 < 200 ¥— ViT-Small
— IS
2200 . 703; ’g —+— ViT-Base
>150 H w2 g %0
o s f = >
C 77z Iz (9.7 3 (8]
£100| ZZZ Mobile Comp. - 60§ §100; y
— 50 Comm. 5 -
B Cloud Comp. 50 50 —-— m—
oLl 7227} I ..——k——t—'t—*“‘/r‘r‘
0.15 0.30 0.45 0.60 0.75 0!
i 60 65 70 75 80 85
Token reduction rate Accuracy (%)

Fig. 10: Token reduction after
Layer 1 on ImageNet.

Fig. 11: Effectiveness on dif-
ferent ViT models.

constituting merely 0.08% of the original cloud-side model.
This introduces an exceptionally minimal cost. In terms of
computational load, the cost of our method is identical to
that of the vanilla model of 26.3 GFLOPs. This equivalence
arises because our token reconstruction method treats the
additional tokens as hyperparameters, which are learned during
the training stage and introduce no extra computations during
the inference. Consequently, the inference latency matches the
vanilla approach, completing within 1 ms on the cloud server.
Overall, the introduced storage and computation overhead is
negligible compared to the 1.56x overall acceleration.

C. Micro-Benchmark Experiments

Impact of Token Reduction Rate. We plot the performance
on ImageNet in Fig. with various token reduction rates
applied after Layer 1. The accuracy loss remains minimal
(within 3%) when the token reduction rate is below 40%, and
accelerates after exceeding 60%. For tasks with low latency
requirements, the reduction rate can be increased to 60%,
achieving a 1.72x speedup at the cost of a 5.7% drop in
accuracy. In extreme cases, a 75% reduction rate can be used
to achieve coarse-grained but fast identification, resulting in a
2.00x speedup while maintaining a top-5 accuracy of 88.9%.

Generalization on Different ViT Models. We separately
apply our methods to various ViT models, i.e., ViT-Base, ViT-
Small, and ViT-Tiny, and plot the performance on ImageNet
in Fig. @ Across all three models, our method achieves a
favorable trade-off between accuracy and latency: compared
to the original models, a 5% reduction in accuracy leads to
speedups of 1.50x, 1.65%, and 1.43 %, respectively. These re-
sults demonstrate that our method can be universally applied to
ViT architectures of varying parameter scales, providing elastic
performance tuning with optimal accuracy-latency trade-off.

Effectiveness of Our Design. We evaluate four designs on
the ViT-Base model with CIFAR-100: 1) multi-round token
reductions without restoration (OTAS [14] and Janus [9]);
2) multi-round reductions with restoration (OTAS+R and
Janus+R); 3) single-round reduction without restoration (our
pruning strategy and the existing method [17]); 4) single-
round reduction with restoration (ours). We first compare
methods 1, 2, and 4 using the splitting point after Layer 3
as shown in Fig. [I2] Adding our reconstruction module to
OTAS and Janus improves accuracy by up to 7.9% and 4.2%.
Compared to the improved performance, our single-round
reduction with reconstruction achieves a 1.73 x speedup under
the same accuracy threshold, demonstrating the efficiency of

® 500
E
o OTAS
g'400 OTAS +R
9 | == --e-- Janus
%300 |1.73x faster _—e— Janus +R
gl IES S Ours
200 —*— Ours +R
83 85 87 89 91

Accuracy (%)

Fig. 12: Comparison of dif-
ferent token pruning strategies
under the same cloud-side to-
ken reconstruction (+R) setup.

90 *—¥=

%‘\\M"‘}

+ 15.62%!
)

o]
o

~
o

—*— Ours (with construction)
Ours (w/o construction)
—e— Existing pruning method

0 20 40 60
Token Reduction Rate (%)

[=)]
o

Accuracy (%)

v
o

80

Fig. 13: Performance with and
without token reconstruction,
compared with the existing to-
ken pruning method [17].

our early-layer pruning strategy. We then compare methods
3 and 4 splitting after the initial layer, as shown in Fig. [I3]
Unlike the existing method [17]], which prunes tokens with
lower significance scores, our regionally decentralized pruning
strategy better retains feature diversity in the early layers,
leading to a 10.4% accuracy improvement when 50% of tokens
are pruned. Based on this, integrating our token reconstruction
module provides an additional accuracy improvement: 15.62%
higher under a 75% token pruning rate. These results highlight
strengths of our token pruning and reconstruction designs.
Choice of Token Reconstruction Method. We compare
our meta-parameter-based token reconstruction method with
two alternatives: duplicating tokens for each region and
generating tokens using a deconvolutional layer. Table
presents the comparison in terms of accuracy gains and
parameters/computation overhead on CIFAR-100, where 75%
of tokens are reduced after Layer 3. The duplicate method
only replicates the remaining tokens in each region, thus
introducing almost no additional parameters or computations.
But it achieves low accuracy due to its inability to enhance
the remaining token features. The generation method achieves
a competitive accuracy of 82.55%, leveraging the abundant
parameters in deconvolutional layers for upsampling. Never-
theless, its excessive additional parameters, memory footprint,
and computational overhead make it inefficient for large-
scale deployments. In contrast, our meta-parameter-based to-
ken reconstruction method introduces 86x fewer additional
parameters, incurs no extra computation beyond vanilla ViT
inference, and achieves the highest accuracy of 83.15%.

V. RELATED WORK

Inference on Mobile Devices. Given the limited computing
resources of mobile devices, many methods employ model
compression techniques [17]], [18], [30], [31] to improve the
inference speed. However, these methods typically require
sacrificing a relatively high degree of accuracy to achieve
substantial acceleration. An emerging approach [32]-[34]
leverages multiple mobile devices for collaboration to achieve
fast and accurate inference. Nevertheless, resource constraints
in mobile networks severely limit the performance of such
collaboration, which requires frequent communication [7],
[35]]. In contrast, the mobile-cloud collaborative approach, by
harnessing the powerful resources of the cloud, can achieve

TABLE II: Comparison of token reconstruction methods to
recover 75% tokens on CIFAR-100 when split after Layer 3.

Method Accuracy ‘ Parameters ‘ FLOPs
Duplicate 57.71% 63.79 (+0.00) M | 26.3 (+0.0) G
Generation 82.55% 73.23 (+9.44) M | 28.1 (+1.8) G

Ours 83.15% 63.90 (+0.11) M | 26.3 (+0.0) G

more significant acceleration and enables full reuse of existing
models without distillation and other adjustments.
Mobile-Cloud Collaborative Inference. Partially offload-
ing the inference task to the cloud combines the advantages of
both mobile-side and cloud-side inference. It not only avoids
privacy concerns that may arise from fully offloading raw data
to the cloud, but also fully leverages the powerful resources of
the cloud for acceleration. Most existing methods are designed
for CNN inference: they either focus on selecting the optimal
split layer [10], [36]-[40] based on the computational and
communication overhead, or design redundancy and progres-
sive feature transmission algorithm [11]-[13], [24], [41] to
counter the potential packet loss and jittery bandwidth during
wireless transmission. Few existing works have focused on the
mobile-cloud collaborative inference of transformers, which
exhibits unique characteristics: intermediate features generated
by each layer during computation maintain consistent dimen-
sions. This means that, unlike CNN-based methods where
feature counts decrease as the split layer depth increases,
splitting at later layers of Transformer can not reduce the
amount of transmitted data. Janus [9] first introduces the layer-
by-layer token reduction method [18] into collaborative ViT
inference, enabling transformers to exhibit decreasing feature
counts across layers. In this paper, we point out that such a
layer-wise feature reduction framework fails to fully account
for the computational discrepancies between mobile devices
and the cloud, resulting in excessively high latency on the
mobile side. To address this issue, we propose an innovative
architecture in Mercury that drastically reduces tokens on the
mobile device at the initial layer, and reconstructs them in the
cloud, achieving an optimal accuracy-latency trade-off.

VI. CONCLUSION

In this work, we present Mercury, a novel mobile-cloud col-
laborative framework for ViT inference. By strategically prun-
ing tokens early on mobile devices and reconstructing them in
the cloud, Mercury fully considers the mobile-cloud resource
disparity and achieves optimal efficiency. The similarity-based
regional pruning preserves critical semantic information, while
the meta-parameter-based reconstruction introduces minimal
computation and parameter overhead. Experimental evalua-
tions across real network conditions validate that Mercury
outperforms existing methods in latency reduction and en-
ergy efficiency, while preserving comparable accuracy. Our
framework offers a promising solution for deploying the high-
performance ViT in real-time IoT scenarios, where an optimal
accuracy-latency trade-off is essential.

[1]

[3]

[4

=

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

C. Wang, Y. Yang, M. Qi, H. Zhang, and H. Ma, “Towards efficient ob-
ject re-identification with a novel cloud-edge collaborative framework,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39,
no. 7, 2025, pp. 7600-7608.

H. Fu, K. Cui, C. Wang, M. Qi, and H. Ma, “Mutual distillation learning
for person re-identification,” IEEE Transactions on Multimedia, 2024.
K. Liu, M. Zhu, H. Fu, H. Ma, and T.-S. Chua, “Enhancing anomaly
detection in surveillance videos with transfer learning from action
recognition,” in Proceedings of the 28th ACM International Conference
on Multimedia, 2020, pp. 4664-4668.

L. Perini, V. Vercruyssen, and J. Davis, “Transferring the contamination
factor between anomaly detection domains by shape similarity,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 4, 2022, pp. 4128-4136.

T. Yao, Y. Li, Y. Pan, and T. Mei, “Hiri-vit: Scaling vision transformer
with high resolution inputs,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

S. Mehta and M. Rastegari, “Mobilevit: light-weight, general-
purpose, and mobile-friendly vision transformer,” arXiv preprint
arXiv:2110.02178, 2021.

G. Xu, Z. Hao, Y. Luo, H. Hu, J. An, and S. Mao, “Devit: Decomposing
vision transformers for collaborative inference in edge devices,” IEEE
Transactions on Mobile Computing, vol. 23, no. 5, pp. 5917-5932, 2023.
L. Zhu, X. Wang, Z. Ke, W. Zhang, and R. W. Lau, “Biformer:
Vision transformer with bi-level routing attention,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2023, pp. 10323-10333.

L. Jiang, S. D. Fu, Y. Zhu, and B. Li, “Janus: Collaborative vision
transformer under dynamic network environment,” in IEEE INFOCOM
2025-1EEE Conference on Computer Communications. 1EEE, 2025.
Y. Duan and J. Wu, “Optimizing job offloading schedule for collabora-
tive dnn inference,” IEEE Transactions on Mobile Computing, vol. 23,
no. 4, pp. 3436-3451, 2023.

J. Huang, H. Guan, and D. Ganesan, “Re-thinking computation offload
for efficient inference on iot devices with duty-cycled radios,” in
Proceedings of the 29th Annual International Conference on Mobile
Computing and Networking, 2023, pp. 1-15.

S. Wang and X. Zhang, “Neuromessenger: Towards error tolerant
distributed machine learning over edge networks,” in IEEE INFOCOM
2022-1EEE Conference on Computer Communications. 1EEE, 2022,
pp. 2058-2067.

Y. Cheng, Z. Zhang, and S. Wang, “Rcif: Towards robust distributed dnn
collaborative inference under highly lossy iot networks,” IEEE Internet
of Things Journal, 2024.

J. Chen, W. Xu, Z. Hong, S. Guo, H. Wang, J. Zhang, and D. Zeng,
“Otas: An elastic transformer serving system via token adaptation,” in
IEEE INFOCOM 2024-1EEE Conference on Computer Communications.
IEEE, 2024, pp. 1021-1030.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

H. Yin, A. Vahdat, J. M. Alvarez, A. Mallya, J. Kautz, and P. Molchanov,
“A-vit: Adaptive tokens for efficient vision transformer,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 10809-10818.

M. Fayyaz, S. A. Koohpayegani, F. R. Jafari, S. Sengupta, H. R. V. Joze,
E. Sommerlade, H. Pirsiavash, and J. Gall, “Adaptive token sampling
for efficient vision transformers,” in European Conference on Computer
Vision. Springer, 2022, pp. 396-414.

D. Bolya, C.-Y. Fu, X. Dai, P. Zhang, C. Feichtenhofer, and J. Hoffman,
“Token merging: Your vit but faster,” in The Eleventh International
Conference on Learning Representations, 2023.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10347-10357.

X. Liu, H. Peng, N. Zheng, Y. Yang, H. Hu, and Y. Yuan, “Efficientvit:
Memory efficient vision transformer with cascaded group attention,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2023, pp. 14420-14430.

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

(30]

[31]

(32]

[33]

(34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

Y. Duan, X. Li, and J. Wu, “Topology design and graph embedding for
decentralized federated learning,” Intelligent and Converged Networks,
vol. 5, no. 2, pp. 100-115, 2024.

Z. Kong, P. Dong, X. Ma, X. Meng, W. Niu, M. Sun, X. Shen, G. Yuan,
B. Ren, H. Tang et al., “Spvit: Enabling faster vision transformers via
latency-aware soft token pruning,” in European conference on computer
vision. Springer, 2022, pp. 620-640.

X. Wu, E. Zeng, X. Wang, and X. Chen, “Ppt: Token pruning and pooling
for efficient vision transformers,” arXiv preprint arXiv:2310.01812,
2023.

Y. Liang, J. Chang, M. Zang, and J. Wu, “Rcnet: Resilient collaborative
dnn inference for wireless networks with high packet loss,” IEEE
Transactions on Network Science and Engineering, 2025.

M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and
S.-N. Lim, “Visual prompt tuning,” in European conference on computer
vision. Springer, 2022, pp. 709-727.

M. Ghoshal, Z. J. Kong, Q. Xu, Z. Lu, S. Aggarwal, I. Khan, Y. Li, Y. C.
Hu, and D. Koutsonikolas, “An in-depth study of uplink performance
of 5¢ mmwave networks,” in Proceedings of the ACM SIGCOMM
Workshop on 5G and Beyond Network Measurements, Modeling, and
Use Cases, 2022, pp. 29-35.

R. Wightman, “Pytorch image
https://github.com/huggingface/pytorch-image-models.
A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.

L. Han, Z. Xiao, and Z. Li, “Dtmm: Deploying tinyml models on
extremely weak iot devices with pruning,” in IEEE INFOCOM 2024-
IEEE Conference on Computer Communications. 1EEE, 2024, pp.
1999-2008.

E. Zhang, J. Tang, X. Ning, and L. Zhang, “Training-free and hardware-
friendly acceleration for diffusion models via similarity-based token
pruning,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 39, no. 9, 2025, pp. 9878-9886.

C. Hu and B. Li, “When the edge meets transformers: Distributed
inference with transformer models,” in 2024 IEEE 44th International
Conference on Distributed Computing Systems (ICDCS). 1EEE, 2024,
pp. 82-92.

S. Ye, J. Du, L. Zeng, W. Ou, X. Chu, Y. Lu, and X. Chen, “Galaxy:
A resource-efficient collaborative edge ai system for in-situ transformer
inference,” in IEEE INFOCOM 2024-IEEE Conference on Computer
Communications. 1EEE, 2024, pp. 1001-1010.

Y. Chen, Z. Niu, M. Roveri, and G. Casale, “Ceed: Collaborative early
exit neural network inference at the edge,” in IEEE INFOCOM 2025-
IEEE Conference on Computer Communications. 1EEE, 2025, pp. 1-10.
J. Du, Y. Wei, S. Ye, J. Jiang, X. Chen, D. Huang, and Y. Lu,
“Co-designing transformer architectures for distributed inference with
low communication,” IEEE Transactions on Parallel and Distributed
Systems, 2024.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615-629, 2017.

S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th international conference on distributed computing systems
(ICDCS). 1EEE, 2017, pp. 328-339.

Y. Duan and J. Wu, “Joint optimization of dnn partition and scheduling
for mobile cloud computing,” in Proceedings of the 50th International
Conference on Parallel Processing, 2021, pp. 1-10.

S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “Deepslicing:
Collaborative and adaptive cnn inference with low latency,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp.
2175-2187, 2021.

J. Wu, L. Wang, Q. Jin, and F. Liu, “Graft: Efficient inference serving for
hybrid deep learning with slo guarantees via dnn re-alignment,” /[EEE
Transactions on Parallel and Distributed Systems, vol. 35, no. 2, pp.
280-296, 2024.

J. Huang, C. Samplawski, D. Ganesan, B. Marlin, and H. Kwon, “Clio:
Enabling automatic compilation of deep learning pipelines across iot
and cloud,” in Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking, 2020, pp. 1-12.

models,”

	Introduction
	Background and motivation
	Vision Transformer and Token Reduction
	Mobile-Cloud Collaborative Transformer Inference
	Challenges

	System Design
	Problem Formulation and System Overview
	Token Reduction at the Initial Transformer Layer
	Token Reconstruction on the Cloud Server

	Evaluation
	Implementation
	System-level Evaluation
	Micro-Benchmark Experiments

	Related Work
	Conclusion
	References

