









# PSFL: Parallel-Sequential Federated Learning with Convergence Guarantees

IEEE INFOCOM 2025

May 20, 2025

Jinrui Zhou¹, Yu Zhao¹, Yin Xu¹, Mingjun Xiao¹, Jie Wu², Sheng Zhang³

1 School of Computer Science and Technology & Suzhou Institute for Advanced Study, University of Science and Technology of China

- 2 Department of Computer and Information Sciences, Temple University, USA
- 3 Department of Computer Science and Technology, Nanjing University, China





- 1 Introduction
- 2 System, Modeling, and Problem
- Theorem, Optimization, and Algorithm
- 4 Experimental Evaluation
- 5 Conclusion

## CON



- 1 Introduction
- 2 System, Modeling, and Problem
- 3 Theorem, Optimization, and Algorithm
- 4 Experimental Evaluation
- 5 Conclusion





### Introduction



### **Federated Learning (FL)**

#### **Concept of FL**

A novel **distributed learning paradigm** which can coordinate multiple clients to jointly train a machine learning model by using their local data samples.

#### **Procedure of Parallel FL (PFL)**

- ✓ Data stay locally on clients
- ✓ Clients train models locally in parallel
- ✓ Clients send models or updates to server
- ✓ Server aggregate local models





### Introduction



#### **Sequential FL (SFL)**

✓ Clients send models or updates to **next client** 



**Sequential Federated Learning Training Process.** 



### Introduction



#### **Motivations**

- ✓ PFL significantly reduces the training time per round, but it typically requires many more rounds to reach the target accuracy.
- ✓ SFL achieves faster accuracy improvement in fewer rounds, but each round takes much longer due to sequential updates.





- 1 Introduction
- 2 System, Modeling, and Problem
- 3 Theorem, Optimization, and Algorithm
- 4 Experimental Evaluation
- 5 Conclusion





### System, Modeling, and Problem



#### Parallel-Sequential FL (PSFL)

#### **Training Structure:**

- $\checkmark$  Denoted by  $\mathcal{A} \triangleq (\mathcal{W}, \{S_w\}_{w \in \mathcal{W}})$
- $\checkmark W$  represents a set of sequences
- $\checkmark W = |\mathcal{W}|$ : parallel width
- $\checkmark S_w$ : sequence leagth

#### Client sampling strategy:

$$\Pi_{\mathcal{A}}^{(r)} = \{\pi_1^w, \pi_2^w, \dots, \pi_{S_w}^w\}_{w \in \mathcal{W}}$$



 $\mathbf{x}_{i,j}^{(r)}$  : local model of j -th client in the i -th sequence





### System, Modeling, and Problem



#### Parallel-Sequential FL (PSFL)

- ✓ Statistical heterogeneity: the training data are distributed in an unbalanced and non-iid fashion among clients
- ✓ System heterogeneity: clients exhibit heterogeneous capabilities in both computing and communication.

### Training time: $t_n^{(r)}$

$$T_{total}^{(r)} = \max_{w \in \mathcal{W}} \sum_{m=1}^{S_w} t_{\pi_m^w}^{(r)}$$



 $\mathbf{x}_{i,j}^{(r)}$  : local model of j -th client in the i -th sequence





### System, Modeling, and Problem



#### **Problem formulation**

Our goal is to determine the optimal client sampling strategy based on a training structure, so as to minimize the expected total training time, while ensuring that the expected global loss convergences to the optimal value with an  $\epsilon$  precision.

P1:  $\min_{\Pi_{\mathcal{A}}} \mathbb{E}[\sum_{r=0}^{R-1} T_{total}^{(r)}],$  Expected total training time.  $s.t. \mathbb{E}[F(\bar{\mathbf{x}}^{(R)})] - F(\mathbf{x}^*) \le \epsilon,$  Convergence guarantee.

$$\sum_{w \in \mathcal{W}} S_w \le \widetilde{N}.$$

The number of selected clients in each round is bounded.



- 1 Introduction
- 2 System, Modeling, and Problem
- 3 Theorem, Optimization, and Algorithm
- 4 Experimental Evaluation
- 5 Conclusion





#### **Convergence Analysis**

**Theorem 1.** Let Assumptions 1 to 4 hold, and the values of L,  $\sigma^2$ ,  $\mathcal{A}$  are given. If the client sampling strategy  $\Pi_{\mathcal{A}}$  is unbiased in the PSFL framework, and the learning rate satisfies  $\eta \leq \frac{c_0}{LS}$ , where  $0 < c_0 < \frac{1}{5}$  is a constant, then the weighted average of the global parameters  $\tilde{\mathbf{x}} = \frac{1}{R+1} \sum_{r=0}^{R} \bar{\mathbf{x}}^{(r)}$  satisfies:

$$\mathbb{E}[F(\widetilde{\mathbf{x}}) - F(\mathbf{x}^*)] \le \frac{r_0}{b\tilde{\eta}R} + \frac{\tilde{\eta}}{b}(\alpha W + \beta),\tag{8}$$

where 
$$b = \frac{16c_0^3 - 28c_0^2 - 24c_0 + 6}{3(1 - 2c_0^2)}$$
,  $\tilde{\eta} = \frac{\eta N_0}{W}$ ,  $r_0 = \|\bar{\mathbf{x}}^{(0)} - \mathbf{x}^*\|^2$ ,  $\alpha = \frac{4c_0(1+2c_0)}{1-2c_0^2} \frac{(\sigma^2 + B)}{N_0} + \frac{4B}{N_0}$ ,  $\beta = \frac{4\sigma^2}{N_0}$ , and  $N_0 = \sum_{w \in \mathcal{W}} S_w$ .





#### **Convergence Analysis**

**Corollary 1.** By choosing an appropriate learning rate  $\tilde{\eta} =$ 

$$\min\{\sqrt{\frac{r_0}{R(\alpha W+\beta)}}, \frac{c_0 N_0}{LSW}\}, we can obtain the convergence bound: \\ \mathbb{E}[F(\widetilde{\mathbf{x}}) - F(\mathbf{x}^*)] \leq \mathcal{O}\left(\frac{1}{R} \frac{r_0 LSW}{bc_0 N_0} + \frac{1}{b} \sqrt{\frac{r_0(\alpha W+\beta)}{R}}\right), \quad (9)$$

where 
$$b = \frac{16c_0^3 - 28c_0^2 - 24c_0 + 6}{3(1 - 2c_0^2)}$$
,  $r_0 = \|\bar{\mathbf{x}}^{(0)} - \mathbf{x}^*\|^2$ ,  $N_0 = \sum_{w \in \mathcal{W}} S_w$ ,  $\alpha = \frac{4c_0(1 + 2c_0)}{1 - 2c_0^2} \frac{(\sigma^2 + B)}{N_0} + \frac{4B}{N_0}$ , and  $\beta = \frac{4\sigma^2}{N_0}$ .





#### **Convergence Bound**

$$\checkmark S = \max_{w \in \mathcal{W}} \{S_w\}$$
, longest sequence length

$$\mathbb{E}[F(\widetilde{\mathbf{x}}) - F(\mathbf{x}^*)] \le \mathcal{O}\left(\frac{1}{R} \frac{r_0 LSW}{bc_0 N_0} + \frac{1}{b} \sqrt{\frac{r_0(\alpha W + \beta)}{R}}\right)$$

✓ The number of training rounds.

$$\checkmark N_0 = \sum_{w \in \mathcal{W}} S_w$$

✓ The parallel width.





#### **Bound for the Expected Training Time**

✓ Subgaussian training time

**Theorem 2.** Let Assumption 5 hold, and assume that the client sampling strategy  $\Pi_A$  is unbiased, then the expected total training time is bounded as follows:

$$\mathbb{E}\left[\sum_{r=0}^{R-1} T_{total}^{(r)}\right] \ge R \frac{N_0}{W} \frac{1}{N} \sum_{n=1}^{N} t_n, \tag{10}$$

$$\mathbb{E}\left[\sum_{r=0}^{R-1} T_{total}^{(r)}\right] \le R\left[S\frac{1}{N} \sum_{n=1}^{N} t_n + \sqrt{2\kappa^2 S \log W}\right], \quad (11)$$

where  $N_0 = \sum_{w \in \mathcal{W}} S_w$  and  $\kappa$  is a constant.





#### **Problem Transformation**

P2: 
$$\min_{S,W} R(S\frac{1}{N}\sum_{n=1}^{N} t_n + \sqrt{2\kappa^2 S \log W}), \qquad (15)$$

$$s.t. \quad \frac{1}{R}(\alpha W + \beta) \le \epsilon', N_0 \le \widetilde{N}, \qquad (16)$$

$$s.t. \quad \frac{1}{R}(\alpha W + \beta) \le \epsilon', N_0 \le \widetilde{N}, \tag{16}$$

$$\alpha = \frac{4c_0(1+2c_0)(\sigma^2+B)}{(1-2c_0^2)N_0} + \frac{4B}{N_0}, \beta = \frac{4\sigma^2}{N_0}, \quad (17)$$





#### **Client Sampling Strategy**

- ✓ Unbiased
- ✓ Any unbiased sampling strategy cannot reduce the training time of a sequence.
- ✓ Minimize the variance between sequences



(3). Sample from each group



22

### Theorem, Optimization, and Algorithm



```
Algorithm 1: Parallel-Sequential Federated Learning
    input: number of total training rounds R.
    output: aggregated global model \bar{\mathbf{x}}^{(R)}.
 1 //Warm-up Phase:
 2 Initialize: the global model x^0;
 3 for training round k = 0, 1, \dots, K-1 do
         for client n = 1, ..., N in parallel do
               Initialize: \mathbf{x}_n^k = \mathbf{x}^k;
             Local update: \mathbf{x}_n^{k+1} = \mathbf{x}_n^k - \eta \nabla F_n(\mathbf{x}^k);
Estimate \hat{\sigma}_{n,k}^2 = \mathbb{E}[\|\nabla f(\mathbf{x}^k, \xi_n) - \nabla F_n(\mathbf{x}^k)\|^2];
         Global aggregation: \mathbf{x}^{k+1} = \mathbf{x}^k - \eta \frac{1}{N} \sum_{n=1}^{N} \nabla F_n(\mathbf{x}^k);
         Estimate \hat{B}_k = \mathbb{E}[\|\nabla F_n(\mathbf{x}^k) - \nabla F(\mathbf{x}^k)\|^2];
10 Estimate \hat{\sigma}^2, \hat{B}, \hat{t}, and \hat{\kappa}^2 based on Eq. (24) \sim Eq. (26);
11 Solve Eq. (21) to get optimal sequence length S and
     optimal parallel width W;
12 //Training Phase:
13 Initialize: \bar{\mathbf{x}}^{(0)} and the estimates of training time \hat{t}_n;
14 for training round r = 0, 1, \dots, R-1 do
          Sort the clients according to estimate \hat{t}_n;
15
          Sample clients \{\pi_1^w, \pi_2^w, \dots, \pi_S^w\}_{w \in \mathcal{W}} based on time-
16
           based partitioning and sampling strategy;
          for sequence w = 1, ..., W in parallel do
17
               Initialize: \mathbf{x}_{w,0}^{(r)} = \bar{\mathbf{x}}^{(r)};
18
               for client m = 1, ..., S in sequence do
19
                    Local update: \mathbf{x}_{w,m}^{(r)} = \mathbf{x}_{w,m-1}^{(r)} - \eta \mathbf{g}_{\pi_m}^{(r)};
20
                    Update the estimate of training time \hat{t}_{\pi w};
21
               Global aggregation: \bar{\mathbf{x}}^{(r+1)} = \frac{1}{W} \sum_{w=1}^{W} \mathbf{x}_{w,S}^{(r)}.
```

#### **Lines 1-11:**

Warm-up Phase: Estimate some parameters and solve the optimization problem to get optimal training structure

#### **Lines 12-22:**

**Training Phase: Based on the optimal** training structure, sample clients and train the models.

## COI



- 1 Introduction
- 2 System, Modeling, and Problem
- 3 Theorem, Optimization, and Algorithm
- 4 Experimental Evaluation
- 5 Conclusion





#### **Evaluation Setup**

| Parameter Name                   | Range                                          |
|----------------------------------|------------------------------------------------|
| number of clients N              | 500                                            |
| number of selected clients $N_0$ | 20, 50, 100, 200                               |
| Heterogeneous data               | ExDir(2,10), ExDir(1,10), ExDir(2,5), Dir(0.2) |
| Heterogeneous system, $t_n$      | {0.5, 1, 2, 4, 5}, Gaussian                    |

#### ✓ Dataset:

CIFAR-10, CIFAR-100, HAM10000

#### **✓** Baselines:

PFL (FedAvg), SFL

#### ✓ Metrics:

test accuracy, total training time





### **Comparing to baselines**

- ✓ **N**<sub>0</sub> = 20
- $\checkmark$  ExDir(2,10)
- ✓ PSFL achieves better

  convergence performance

  under the same training time
- ✓ PSFL achieves the same target test accuracy with significantly less training time







#### The efficiency of sampling strategy

- ✓ Compared strategies:
  - uniform sampling
  - weighted sampling
- ✓ Sequence lenngth: S = 3, 4, 5
- ✓ time setting:
  - ✓ discrete distribution
  - ✓ gaussian distribution





(a) Discrete Distribution

(b) Gaussian Distribution

Fig. 6. Comparison of sampling strategies under different distributions.





#### The efficiency of optimal structure





(a) Theoretical Result

(b) Experimental Result

Fig. 7. Comparison of theoretical and experimental optimal sequence length.



- 1 Introduction
- 2 System, Modeling, and Problem
- 3 Theorem, Optimization, and Algorithm
- 4 Experimental Evaluation
- 5 Conclusion



### Conclusion



- Propose a novel hybrid PSFL framework by integrating the parallel and sequential training modes together.
- Provide a theoretical analysis to derive the upper bounds of the model convergence and the expected total training time for the PSFL framework.
  - Solve the optimization problem and get the optimal training structure.
- The performance is demonstrated on extensive simulations.



### Thank you for your attention!

Jinrui Zhou, Yu Zhao, Yin Xu, Mingjun Xiao, Jie Wu, Sheng Zhang



zzkevin@mail.ustc.edu.cn



