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Abstract—Federated Learning (FL) is a novel distributed
learning paradigm which can coordinate multiple clients to
jointly train a machine learning model by using their local data
samples. Existing FL works can be roughly divided into two
categories according to the modes of model training: Parallel FL
(PFL) and Sequential FL (SFL). PFL can speed up each round of
model training time through parallel training, but it might suffer
from the convergence degradation when facing the heterogeneity
issue. SFL can deal with the heterogeneity issue well to reduce the
number of training rounds, but it will spend more time in each
round of local model training due to the sequential mode. In this
paper, we propose a novel hybrid Parallel-Sequential Federated
Learning (PSFL) framework by integrating the parallel and
sequence training modes together. We derive the upper bounds
of the model convergence and the expected total training time
for the PSFL framework through theoretical analysis. Based on
the results, we find out the optimal training structure and design
a client sampling strategy, which can balance the two training
modes and guarantee the unbiasedness. Extensive experiments
validate our theoretical analysis and demonstrate the significant
performance of the PSFL framework.

Index Terms—Sequential Federated Learning, Heterogeneity,
Client Sampling.

I. INTRODUCTION

In recent years, Federated Learning (FL) [1] has emerged as
a novel distributed learning paradigm that enables the training
of machine learning models across multiple devices (a.k.a.,
clients) holding local data samples. FL addresses the critical
issues of data security by keeping the raw data localized
and aggregating the local models under the coordination of a
central server. Many works have been devoted to investigating
different FL issues, such as heterogeneity [2]–[15], communi-
cation [16]–[18], security [19]–[24], and so on.

Existing FL works can be roughly divided into two cat-
egories according to the modes of model training: Parallel
FL (PFL) and Sequential FL (SFL) [25]. In the PFL mode,
clients train local models in parallel before aggregating them
to produce the global model, e.g., the well-known FedAvg
algorithm [1] and its diverse variants. Many techniques are
adopted to deal with the convergence degradation of model
training incurred by heterogeneous clients, such as adaptive
client or data sampling [4]–[8], grouped aggregation [9]–
[13], configuration parameter tuning [14]–[17], etc. In the
SFL mode, clients train and aggregate their local models in

Fig. 1. An example of FL with different training modes: (a). a standard FL
setting where clients train models in a parallel manner; (b). the sequential
FL setting where clients train models in a sequential manner; (c). a hybrid
parallel-sequential FL framework where clients train models in both parallel
and sequential manners.

sequence. Such mode naturally has the ability to solve the
heterogeneity issue, especially for small datasets training [26].

The PFL and SFL modes exhibit two opposing characteris-
tics when facing the heterogeneity issue. PFL can speed up
each round of model training time while SFL can reduce
the number of training rounds. Fig. 1 illustrates a typical
heterogeneous FL example with different training modes (the
detailed settings of FL are described inSec.VI), in which PFL
requires about four times as many training rounds as SFL
to achieve the same accuracy. Conversely, the single-round
training time of SFL is more than four times that of PFL. Both
training modes exhibit their extremes that are not conducive
to achieving the goal of minimizing total training time. To
fill the gap between PFL and SFL, we propose a novel hybrid
Parallel-Sequential Federated Learning (PSFL) framework that
adopts parallel and sequential training simultaneously: clients
are grouped into multiple sequences for model training and all
sequences conduct model training tasks in parallel, as shown in
Fig. 1.(c). Actually, there are two crucial challenges to design
an efficient PSFL framework.

First, there is a trade-off between parallel and sequential
training for PSFL to minimize the total training time. Specif-
ically, increasing the size of each training sequence (i.e., the
number of clients in the sequence) can reduce the number
of training rounds to make model convergence, but it will



also increase the training time per round due to the sequential
training mode. On the contrary, decreasing the size of each
training sequence will reduce the training time per round,
but it will also increase the heterogeneity of parallel training,
so that more training rounds are required to make model
convergence. Then, the first challenge is how to balance the
trade-off between parallel and sequential training so that PSFL
can minimize the total training time.

Second, PSFL needs to schedule clients onto different
training sequences by dynamically sampling partial clients for
each training round. Due to the heterogeneous capabilities
of clients in terms of computation and communication, the
scheduling issue can be transformed into a variant of the
multi-machine scheduling problem [27], where each sequence
acts as a “machine” and each client as a specific “job” to
be scheduled. However, most existing approaches, which will
schedule clients to various sequences based on their training
time, might result in biased sampling probabilities. That is, the
datasets of sampled clients might fail to accurately represent
those of all clients [28], making the trained model deviate
from the optimization objective. Thus, the second challenge is
how to develop a novel client sampling strategy that minimizes
training time while ensuring unbiasedness.

To address the above challenges, we formulate an optimiza-
tion problem of minimizing the expected total training time for
PSFL, taking into consideration the trade-off between parallel
and sequential training as well as unbiased client sampling.
Then, we derive a convergence upper bound and a closed
formula about the upper bound of the expected total training
time through theoretical analysis, whereby the problem is
converted into a non-convex integer optimization problem to
be solved. Finally, we design a training time-based partitioning
and sampling strategy to guarantee the unbiasedness of client
sampling. The major contributions are summarized as follows:

• We propose a novel hybrid PSFL framework by inte-
grating the parallel and sequential model training modes
together, which can speed up the convergence of model
training in heterogeneous scenarios.

• We conduct a rigorous theoretical analysis to derive the
upper bounds of the model convergence and the expected
total training time for the PSFL framework, based on
which we turn the balance issue between parallel and
sequential training to a non-convex integer optimization
problem to be solved.

• We design a time-based partitioning and sampling strat-
egy for the PSFL framework, which can guarantee the
unbiasedness of client sampling.

• We conduct extensive simulations to verify the theoretical
analysis results and demonstrate the significant perfor-
mance of the PSFL framework.

II. RELATED WORKS

We review the related works from the following aspects:
Parallel Federated Learning (PFL): PFL, represented by

the predominant and standard FedAvg [1], faces system and
statistical heterogeneity challenges. Statistical heterogeneity

Fig. 2. Illustration of a PSFL training round with system heterogeneity.

complicates model convergence, while the waiting time caused
by system heterogeneity hampers training speed. A large
number of works have been proposed to solve statistical
heterogeneity, such as meta-learning [29], multi-task learning
[30], knowledge distillation [31], regularization [32], and so
on. To tackle system heterogeneity, researchers have explored
solutions such as client sampling [4]–[6], adaptive training
rounds [14], compression [16]–[18], [33], [34], and joint meth-
ods [35]. Additionally, some research efforts have explored
alternative training topology, such as clustered FL [9]–[12],
hierarchical FL [13], [36]–[40], and decentralized FL [41]–
[45]. Although diverse model training designs are adopted in
these works, all of them are still based on the parallel training
mode or its variants.

Sequential Federated Learning (SFL): SFL is a new
paradigm of federated learning, which demonstrates advan-
tages on training speed (in terms of training rounds) both
empirically [26], [46]–[49] and theoretically [25]. Kamp et
al. in [26] enhanced model performance on small datasets by
periodically redistributing local models across clients through
the server. Zaccone et al. proposed an algorithm in [46]
to enable sequential training of subgroups of heterogeneous
clients. Lee et al. introduced a ring-based architecture for
model training in [47]. Overall, none of these works takes
the parallel and sequential training modes into consideration
simultaneously, unlike our PSFL framework.

III. FRAMEWORK AND PROBLEM FORMULATION

A. The PSFL Framework

We consider a typical FL system, consisting of a server
and a crowd of clients, indexed by N = {1, 2, ..., N}. Each
client n ∈ N holds its local dataset Dn = {ξni }

|Dn|
i=1 , where

ξni denotes a data sample from Dn, and |Dn| is the number
of samples. We define f(x; ξ) as a loss function to measure
how well a machine learning model x performs on the data
sample ξ. The local loss function of client n is defined as
Fn(x) ≜ Eξ∼Dn [f(x; ξ)]. The global loss function is a linear
combination of the local loss functions of all N clients, and
the goal of FL is to train an optimal model x∗ with minimum
global loss function [25], [50], i.e.,

x∗ ≜ argmin
x

F (x) ≜ argmin
x

1

N

∑N

n=1
Fn(x). (1)

Different from traditional FL systems, we propose the PSFL
framework, structured with multiple parallel sequences. As



shown in Fig. 2, several clients form a sequence, in which
the local model trained by each client is transmitted to the
next client. Multiple sequences are trained in parallel and the
local models of each sequence are finally aggregated together
to form a global model. Before the detailed training process,
we first define a concept of training structure for the PSFL
framework as follows.

Definition 1 (Training Structure). The training structure of
PSFL is described as a 2-tuple A≜ (W, {Sw}w∈W), where
W = {1, 2, . . . , w, . . .} represents a set of sequences, and
W = |W| is called the parallel width. Each sequence w ∈ W
comprises a set of clients with a cardinality of Sw, called
the sequence length. Meanwhile, we let S denote the longest
sequence length, i.e., S = maxw∈W{Sw}.

We consider the whole FL process consisting of R rounds,
and let r ∈ {0, 1, 2, . . . , R−1} indicate the rounds. Before the
training process, the set of clients participating in round r is
randomly sampled without replacement from the client set N ,
denoted as Π(r)

A ={πw
1 , π

w
2 , . . . , π

w
Sw

}w∈W , with respect to the
training structure A. Here, πw

m is the index of the m-th sampled
client in the w-th sequence. The m-th trained local model
in the w-th sequence during round r is denoted by x

(r)
w,m.

At the beginning of round r, the server distributes the global
model x̄(r) to the first client in each sequence for initialization,
setting x

(r)
w,0= x̄(r) for all w ∈ W . Subsequently, the sequences

are then trained in parallel, and the clients of each sequence
are trained sequentially. The local models in sequence w are
updated using Stochastic Gradient Descent (SGD) as follows:

x(r)
w,m = x

(r)
w,m−1 − ηg

(r)
πw
m
, m ∈ {1, 2, . . . , Sw}, (2)

where η is the learning rate, and g
(r)
πw
m

≜ ∇f(x
(r)
w,m−1; ξπw

m
)

denotes the stochastic gradient of Fπw
m

with respect to the pa-
rameter vector x(r)

w,m−1 and the sample ξπw
m

. After receiving all
local models uploaded by all sequences, the server aggregates
these local models to update the global model, i.e.,

x̄(r+1) =
1

W

∑
w∈W

x
(r)
w,Sw

. (3)

Here, we use the basic method of global aggregation. Actually,
our PSFL framework can be easily extended to incorporate
other variant algorithms of the PFL framework.

B. Problem Formulation

In the above model, we primarily consider two types of
heterogeneity: i) statistical heterogeneity: the training data
are distributed in an unbalanced and non-iid fashion among
clients; ii) system heterogeneity: clients exhibit heterogeneous
capabilities in both computing and communication. Let t(r)n be
the training time for client n in round r, which encompasses
both local model computation time and the time taken to
transmit the trained model to the next client or server. For
simplicity, we assume that the training time t

(r)
n follows an

unknown distribution with a mean value tn, and the average
expected training time is denoted by t̄ = 1

N

∑N
n=1 tn. Conse-

quently, the total training time for a sequence w is calculated

as
∑Sw

m=1 t
(r)
πw
m

. Due to the synchronization barrier, the total
time for a training round is formulated as follows:

T
(r)
total = maxw∈W

∑Sw

m=1
t
(r)
πw
m
. (4)

Our goal is to determine a client sampling strategy ΠA =

{Π(r)
A }R−1

r=0 based on a training structure A, so as to mini-
mize the expected total training time E[

∑R−1
r=0 T

(r)
total], while

ensuring that the expected global loss E[F (x̄(R))] converges to
the optimal value F (x∗) with an ϵ precision, with x̄(R) being
the aggregated global model after R rounds. Considering that
partial client participation has more practical interest than full
client participation [2], we also restrict the number of clients
sampled in each round. Therefore, the optimization problem
can be formulated as follows:

P1: min
ΠA

E[
∑R−1

r=0
T

(r)
total], (5)

s.t. E[F (x̄(R))]− F (x∗) ≤ ϵ, (6)∑
w∈W

Sw ≤ Ñ . (7)

Here, the expectations in Eqs. (5) and (6) are taken over
the potential randomness in client sampling, local SGD, and
training time. Eq. (7) means that the number of selected clients
in each round is not larger than a bound Ñ .

Solving Problem P1, however, is challenging in two aspects.
1) Before actually training the model, it is generally unclear

how the chosen training structure A, the sampling strategy ΠA,
and the number of training rounds R will affect the final model
x̄(R) and the corresponding loss function F (x̄(R)). Thus, we
need to derive an analytical expression to explore the complex
impact of A,ΠA, and R on model performance.

2) It is complicated to optimize E[
∑R

r=0 T
(r)
total]. Actually,

Problem P1 can be simplified to the mainstream multi-machine
scheduling problem. Hence, Problem P1 is NP-hard. Existing
multi-machine scheduling methods often rely on prioritization,
but we must ensure the unbiasedness of client sampling to
achieve the optimization of the global model. That is, we need
a new client sampling approach.

IV. CONVERGENCE ANALYSIS

In this section, we address the first challenge by deriving
a new convergence bound for any given training structure.
To facilitate a tractable convergence analysis, we state several
assumptions on the local objective functions Fn(x).

Assumption 1. (L-smooth). For each client n, its local
objective function Fn is L-smooth, i.e., there exists a constant
L>0 such that ∥∇Fn(x)−∇Fn(y)∥≤L∥x−y∥ for all x and y.

Assumption 2. (Convex). For each client n, its local objective
function Fn is convex, i.e., there is Fn(x) ≥ Fn(y) + (x −
y)T∇Fn(y) for all x and y.

Assumption 3. (Unbiased gradient and bounded variance).
For each client n, the stochastic gradient is an unbi-
ased estimator of the local gradient: Eξ∼Dn

[∇fn(x; ξ)] =
∇Fn(x) and has bounded variance Eξ∼Dn

[∥∇fn(x; ξ) −
∇Fn(x)∥2|x] ≤ σ2, where ξ is sampled from the n-th client’s
local dataset Dn uniformly at random.



Assumption 4. (Bounded statistical heterogeneity). There
exists a constant B > 0 such that 1

N

∑N
n=1 ∥∇Fn(x

∗)∥2 = B.

Assumptions 1-3 are commonly used in existing studies
of convex federated learning problems, such as [2], [5],
[25]. Furthermore, the experimental results to be presented in
Section VI show that our approach also works for non-convex
loss functions. Assumption 4 is followed by [3], [25], [50]
for quantifying the degree of non-iid data distribution across
clients. Before analyzing the convergence bound, we define
the unbiasedness of the client sampling strategy.

Definition 2. (Unbiasedness) In each round r, the sampling
policy ΠA for any client n ∈ N is unbiased if the probability
that client n is selected is Pr[πw

m = n] = 1
N , ∀w ∈ W,m ∈

{1, 2, . . . , Sw}. Consequently, this ensures that the expected
value of the local loss function for any sampled client matches
the global loss function, i.e., E[Fπw

m
(x)] = F (x).

Based on the above definition, we present the theoretical
analysis of the convergence bound. For brevity, the proofs of
Theorem 1 and Corollary 1 are moved to the Appendix.

Theorem 1. Let Assumptions 1 to 4 hold, and the values of L,
σ2, A are given. If the client sampling strategy ΠA is unbiased
in the PSFL framework, and the learning rate satisfies η ≤
c0
LS , where 0<c0<

1
5 is a constant, then the weighted average

of the global parameters x̃ = 1
R+1

∑R
r=0 x̄

(r) satisfies:

E[F (x̃)− F (x∗)] ≤ r0
bη̃R

+
η̃

b
(αW + β), (8)

where b =
16c30−28c20−24c0+6

3(1−2c20)
, η̃ = ηN0

W , r0 = ∥x̄(0)−x∗∥2,

α = 4c0(1+2c0)
1−2c20

(σ2+B)
N0

+ 4B
N0

, β = 4σ2

N0
, and N0=

∑
w∈W Sw.

The convergence bound in Eq. (8) characterizes the rela-
tionship between the number of rounds R and the parallel
width W to reach the target precision. In order to simplify the
analysis process, we use the weighted average of the global
parameters x̃ = 1

R+1

∑R
r=0 x̄

(r) to replace the global model
x̄(R) in Problem P1. Besides, we notice that a larger η̃ can
make the first term vanish at a higher rate, yet results in the
increase of the second term. Hence, we need to choose an
appropriate η̃ to reach a balance between the two terms.

Corollary 1. By choosing an appropriate learning rate η̃ =

min{
√

r0
R(αW+β) ,

c0N0

LSW}, we can obtain the convergence bound:

E[F (x̃)− F (x∗)] ≤ O

(
1

R

r0LSW

bc0N0
+

1

b

√
r0(αW+β)

R

)
, (9)

where b=
16c30−28c20−24c0+6

3(1−2c20)
,r0=∥x̄(0)−x∗∥2,N0=

∑
w∈WSw,

α = 4c0(1+2c0)
1−2c20

(σ2+B)
N0

+ 4B
N0

, and β = 4σ2

N0
.

The convergence bound in Eq. (9) contains two terms, which
come from two different values of the learning rate η̃. In fact,
when R is sufficiently large, that is, η̃ =

√
r0

R(αW+β) , this

convergence bound is reduced to O(
√
r0(αW+β)/R). Similar

to existing works [5], [14], [17], we adopt the upper bound
of the convergence as an approximation of the actual error
between E[F (x̄(R))] and F (x∗).

V. FRAMEWORK DESIGN

In this section, we propose a novel hybrid Parallel-
Sequential Federated Learning (PSFL) framework, which
mainly consists of the optimal training structure determination
module and the client sampling module. The former yields
the optimal sequence length and parallel width, based on
which the latter determines the set of participating clients for
model training in each round. Specifically, we first provide a
bound for the expected total training time to approximate the
optimization goal in Problem P1. Then, we find the optimal
training structure by solving the approximate problem. Finally,
we design a time-based partitioning and sampling strategy,
followed by a detailed description of the PSFL framework.

A. Bound for the Expected Total Training Time
Before providing the bound for the expected total training

time, we first make a general assumption about the distribution
of client training times, shown as follows.

Assumption 5. (Subgaussian training time). For each client n,
the local training time t

(r)
n in each round is a κ2-subgaussian

random variable with mean tn, where κ is a constant called
the subgaussian parameter. In other words, for any λ ∈ R,
the inequality E[eλ(t(r)n −tn)] ≤ exp(λ

2κ2

2 ) holds.

Assumption 5 implies that the deviation of the local training
time t

(r)
n from its mean tn has a tail probability that decays

at least as fast as that of a normal distribution with variance
κ2. Based on Assumption 5, we present our bound for the
expected total training time as follows.

Theorem 2. Let Assumption 5 hold, and assume that the
client sampling strategy ΠA is unbiased, then the expected
total training time is bounded as follows:

E[
∑R−1

r=0
T

(r)
total] ≥ R

N0

W

1

N

∑N

n=1
tn, (10)

E[
∑R−1

r=0
T

(r)
total] ≤ R[S

1

N

∑N

n=1
tn +

√
2κ2S logW ], (11)

where N0=
∑

w∈W Sw and κ is a constant.

Proof. The first inequality is trivial since there is

E[max
w∈W

∑Sw

m=1
t
(r)
πw
m
]≥E[ 1

W

∑
w∈W

∑Sw

m=1
t
(r)
πw
m
]=

N0

W

1

N

∑N

n=1
tn.

For clarity and brevity, we define Xw =
∑Sw

m=1(t
(r)
πw
m
−tπw

m
)

and Y = maxw∈W Xw. Based on the conclusion in [51], we
can further establish the subgaussian property of Xw, i.e.,

E[exp(λXw)]=E[E[exp(λXw)|πw
m]]≤E[exp(1

2
λ2Swκ

2)], (12)

exp(λE[Y ]) ≤ E[exp(λY )] = E[maxw∈W exp (λXw)]

≤
∑

w∈W
E [exp (λXw)] ≤ W exp(

1

2
λ2Sκ2). (13)

By taking the logarithm of both sides of Eq. (13), we can
directly obtain E[Y ] ≤ logW/λ+λSκ2/2. According to the
AM-GM inequality, the values of logW/λ+λSκ2/2 can be
minimized by setting λ =

√
2 logW/Sκ2. Therefore, we have

E[Y ] ≤
√

2κ2S logW . Under the assumption that the client
sampling strategy ΠA is unbiased, there is E[

∑Sw

m=1 t
(r)
πw
m
] =

Sw
1
N

∑N
n=1 tn. Furthermore, we obtain



E[
∑R−1

r=0
T

(r)
total] ≤ R(E[Y ] + S

1

N

∑N

n=1
tn)

≤ R(S
1

N

∑N

n=1
tn +

√
2κ2S logW ). (14)

The proof of the theorem is now completed.

B. Training Structure Determination

Inspired by the proofs of Theorem 1 and Theorem 2,
we find that with a fixed number of sampled clients, more
balanced sequence lengths result in tighter convergence bounds
and a lower upper bound for the expected total training time.
This suggests that the optimal solution to our problem is
achieved when the sequence lengths are equal, i.e., Sw =
S,∀w ∈ W . Recall that N0 is defined as

∑
w∈W Sw, thus

we have N0 = SW . According to the convergence bound and
the upper bound of the expected total training time, i.e., Eqs.
(9) and (11), Problem P1 can be transformed into Problem P2:

P2: min
S,W

R(S
1

N

∑N

n=1
tn +

√
2κ2S logW ), (15)

s.t.
1

R
(αW + β) ≤ ϵ′, N0 ≤ Ñ , (16)

α =
4c0(1+2c0)(σ

2+B)

(1−2c20)N0
+
4B

N0
, β=

4σ2

N0
, (17)

where ϵ′ is a constant derived from ϵ. It is worth noting that
integer optimization problems are difficult to solve, we relax
W , S, and R as continuous variables in Problem P2. To solve
this problem, we first transform the constraint in Eq. (16) into
the form of a minimum value of R, i.e., R ≥ 1

ϵ′ (αW + β).
Afterwards, the optimal parallel width W ∗ in the Problem P2
can be solved as follows:

W ∗ ≜ argminR

[
N0t̄

W
+

√
2κ2

N0

W
logW

]
(18)

= argmin(αW+β)

[
N0t̄

W
+

√
2κ2

N0

W
logW

]
(19)

= argmin
βN0t̄

W
+ (αW+β)

√
2κ2

N0

W
logW (20)

= argminα
√

2κ2N0W logW+ β(
N0t̄

W
+

√
2κ2

N0

W
logW ). (21)

Here, we omit the constant terms in Eqs. (19) and (20).
When the parallel width W is fixed, the objective in Eq.
(21) decreases monotonically with respect to the number of
participating clients (i.e., N0). Therefore, we conclude that
the optimal sequence length S∗ and the optimal parallel width
W ∗ always satisfy S∗W ∗ = Ñ .

In Eq. (21), we divide the optimization objective into two
terms, each of which has the coefficient α or β. These two
terms exhibit opposite behaviors with respect to the parallel
width W . Specifically, the term

√
2κ2N0W logW increases

monotonically along with the growth of W , while the term
N0 t̄
W +

√
2κ2N0

W logW would decrease monotonically with the
growth of W . Obviously, the ratio α

β reflects the importance
of these two terms in the optimization process. Due to α

β =
1+c0
1−2c20

B
σ2 +

c0(1+2c0)
1−2c20

, we find that the statistical heterogeneity
bound B is closely associated with the ratio α

β . In order to
clearly reflect the impact of different statistical bounds on

the optimal parallel width solution, we solve Problem P2
separately under the following three cases.

(i) Case 1: When the statistical heterogeneity bound B is
sufficiently large (i.e., B →∞), the ratio α

β tends to infinty.
Thus, we mainly focus on the first term of the optimization
objective in Eq. (21) and get the following optimal solution:

W ∗ = argminα
√

2κ2N0W logW+β(
N0t̄

W
+

√
2κ2

N0

W
logW )

= argminα
√

2κ2N0W logW → 1. (22)

Based on Eq. (22), we conclude the optimal parallel width
is W ∗ = 1 and the optimal sequence length is S∗ = Ñ .
This result is consistent with the situation when statistical
heterogeneity is very strong. In this case, the global model in
the traditional PFL framework is difficult to converge quickly,
and we tend to choose the traditional SFL framework to
serialize the training process and speed up convergence.

(ii) Case 2: When the statistical heterogeneity bound B is
sufficiently small (i.e., B → 0), the ratio tends to a constant
(i.e., α

β → c0(1+2c0)
1−2c20

). Therefore, we get

W ∗=argminα
√

2κ2N0W logW+β(
N0t̄

W
+

√
2κ2

N0

W
logW )

=argmin
c0(1+2c0)

1−2c20

√
W logW+

√
N0t̄√

2κ2W
+

√
logW

W
. (23)

In Eq. (23), We remove a constant
√
2κ2N0 to simplify the

equation without affecting the optimization problem. In the
following analysis, we omit the last term

√
logW/W , since

it is too small. For concise, we define a function h(W ) =

a
√
W logW + b

W ,where a = c0(1+2c0)
1−2c20

, and b =
√
N0 t̄√
2κ2

. Then
we calculate the derivative of h(W ) with regard to W :
∂h(W )

∂W
=

a

2

1 +logW√
W logW

− b

W 2
=

aW 3/2(1+logW )− 2b
√
logW

2W 2
√
logW

.

We obtain the critical point W ∗ by setting ∂h(W )/∂W = 0,
satisfying 2b

a = W ∗3/2(
√
logW ∗ + 1/

√
logW ∗). Therefore,

when b
a > 3e3/4

2
√
2

≈ 2.245, the optimal parallel width W ∗ is
larger than

√
e, which indicates that the traditional SFL frame-

work is not suitable for weak heterogeneity. In contrast, the
global model in the traditional PFL framework can converge
quickly due to the power of parallel training. It is noteworthy
that the PFL framework is not always optimal. Specifically, we
observe that only when N0

√
logN0/2 < 4t̄

a
√
2κ2

, the optimal
training structure satisfies W ∗> N0

2 and S∗ = 1. This implies
that the PFL framework is optimal only when the number of
participating clients (i.e., N0) is not very large.

(iii) Case 3: For general heterogeneity, we need to numeri-
cally solve the optimization problem in Eq. (21). Notably, there
are some variables, such as σ2, B, t̄ and κ2, whose values are
unknown at the beginning. To adequately explore the values
of these variables, we design a predefined warm-up phase in
the PSFL framework. During this phase, all clients participate
in the K training rounds to estimate parameters. Similar to
existing work [42], in each round k, each client n estimates the
stochastic gradient variance bound (denoted by σ̂2

n,k) during
local training. After the local update is completed, each client
sends its local model gradients and the parameter estimate



Algorithm 1: Parallel-Sequential Federated Learning
input : number of total training rounds R.
output: aggregated global model x̄(R).

1 //Warm-up Phase:
2 Initialize: the global model x0;
3 for training round k = 0, 1, . . . ,K − 1 do
4 for client n = 1, . . . , N in parallel do
5 Initialize: xk

n = xk;
6 Local update: xk+1

n = xk
n − η∇Fn(x

k);
7 Estimate σ̂2

n,k=E[∥∇f(xk,ξn)−∇Fn(x
k)∥2];

8 Global aggregation: xk+1=xk−η 1
N

∑N
n=1∇Fn(x

k);
9 Estimate B̂k=E[∥∇Fn(x

k)−∇F(xk)∥2];

10 Estimate σ̂2, B̂, ˆ̄t, and κ̂2 based on Eq. (24) ∼ Eq. (26);
11 Solve Eq. (21) to get optimal sequence length S and

optimal parallel width W ;
12 //Training Phase:
13 Initialize: x̄(0) and the estimates of training time t̂n;
14 for training round r = 0, 1, . . . , R− 1 do
15 Sort the clients according to estimate t̂n;
16 Sample clients {πw

1 , π
w
2 , . . . , π

w
S }w∈W based on time-

based partitioning and sampling strategy;
17 for sequence w = 1, . . . ,W in parallel do
18 Initialize: x(r)

w,0 = x̄(r);
19 for client m = 1, . . . , S in sequence do
20 Local update: x(r)

w,m = x
(r)
w,m−1 − ηg

(r)
πw
m

;
21 Update the estimate of training time t̂πw

m
;

22 Global aggregation: x̄(r+1) = 1
W

∑W
w=1 x

(r)
w,S .

σ̂2
n,k to the server. The server then takes the average of the

parameters σ̂2
n,k to obtain σ̂2. Moreover, the server estimates

the heterogeneity bound in each round k (denoted by B̂k)
based on the gradients sent by the clients, and estimates the
statistical property of training time (i.e., t̄ and κ2) according
to the local training time of each client in each round. We
use B̂, ˆ̄t and κ̂2 to represent the estimates of B, t̄ and κ2,
respectively. Therefore, we have the following equations:

σ̂2
n,k=E[∥∇f(xk,ξn)−∇Fn(xk)∥2], σ̂2=

1

K

∑K

k=1

1

N

∑N

n=1
σ2
n,k, (24)

B̂k=E[∥∇Fn(x
k)−∇F(xk)∥2], B̂=

1

K

∑K

k=1
B̂k, (25)

ˆ̄t=
1

K

∑K

k=1

1

N

∑N

n=1
tkn, κ̂

2=
1

N

∑N

n=1
E[∥tkn−

1

K

∑K

k=1
tkn∥2], (26)

where xk is the global model in the k-th round.
Based on the above estimated parameters, it is still hard to

acquire a closed-form solution, but there are many existing
tools and methods (e.g., the bisection or Newton’s method) to
obtain an approximate numerical solution of the optimization
problem in Eq. (21). After determining the optimal parallel
width W ∗, our optimal sequence length can be calculated as
S∗ = Ñ

W∗ . In practice, we round these values to the nearest
integers to determine the final optimal training structure.

C. Time-based Partitioning and Sampling Strategy
In the previous sections, we establish and solve an ap-

proximate optimization problem with regard to the training
structure, containing the parallel width and sequence length. In
this section, we determine an unbiased client sampling strategy
to significantly reduce the training time in a round.

We note that any unbiased sampling strategy cannot reduce
the training time of a sequence. This is because for any
unbiased sampling strategy ΠA, the expected training time of
a sequence is fixed, i.e., E[

∑Sw

m=1 t
(r)
πw
m
] = Sw

1
N

∑N
n=1 tn. To

reduce the maximum training time across multiple sequences,
it is essential to minimize the variance between sequences, as
suggested by Theorem 2. Given the optimal sequence length
S∗ and the optimal parallel width W ∗, the process of our
sampling strategy unfolds as follows:

1. We first sort the clients according to their estimates of
training time, denoted as t̂n for each client n, which is
calculated by averaging their historical training times.

2. We then divide the clients into S∗ groups based on this
sorting, with each class containing ⌊ N

S∗ ⌋ or ⌈ N
S∗ ⌉ clients.

3. Next, we uniformly sample a client from each group
without replacement and generate a random permutation
of these selected clients to form a sequence.

4. Finally, we repeat the above steps W ∗ times to generate
W ∗ sequences.

Theorem 3. The time-based partitioning and sampling strat-
egy is approximately unbiased.

Proof. The probability that a client n is sampled to sequence
w is 1

⌊ N
S∗ ⌋ or 1

⌈ N
S∗ ⌉ , which is approximately S∗

N . Due to the
random permutation of sampled clients in a sequence, we get
Pr[n = πw

m] = S∗

N · 1
S∗ = 1

N . The proof is finished.

Algorithm 1 shows the pseudocode of the PSFL framework,
which is divided into two main phases: the warm-up phase
(Lines 1-11) and the training phase (Lines 12-22). During the
warm-up phase, we focus on estimating parameters related to
statistical and system heterogeneity (Lines 7-10). Based on
these estimates, the server determines the optimal training
structure by solving the optimization problem in Eq. (21)
(Line 11). In the training phase, we focus on sampling clients
according to the structure obtained in the warm-up phase
(Lines 15-16) and training them to achieve global model
convergence (Lines 17-22). The computational complexity of
PSFL is dominated by the sorting operation on clients’ training
time estimates, i.e., O(N logN).

VI. SIMULATION RESULTS

In this section, we conduct experiments on real datasets to
evaluate the performance of our proposed PSFL framework.
The main findings are: 1) PSFL can significantly reduce the
total training time for the model to converge. 2) Our training
time-based partitioning and sampling strategy can significantly
reduce the single-round training time by reducing the imbal-
ance of training time between sequences. First, we present our
experimental settings. Then we display the evaluation results.



(a) CIFAR-10 (b) CIFAR-100 (c) HAM
Fig. 3. Test accuracy of three frameworks on the three datasets.

(a) CIFAR-10 (b) CIFAR-100 (c) HAM
Fig. 4. Test loss of three frameworks on the three datasets.

(a) CIFAR-10 (b) CIFAR-100 (c) HAM
Fig. 5. Completion time of three frameworks under different target accuracies.

A. Experimental Setup

1) Datasets and models: We conduct the experiments over
three common real-world datasets: CIFAR-10, CIFAR-100,
and HAM10000 [52]. We train models on CIFAR-10 and
CIFAR-100 using a 5-layer CNN with two 5×5 convolutional
layers, each followed by ReLU activation and max pooling,
and three fully connected layers. The model for HAM10000
is a CNN consisting of three 3× 3 convolutional layers (with
ReLU activation and max pooling) and two fully connected
layers with dropout regularization.

2) Heterogeneous data: In our experiment, we will allocate
the dataset to N = 500 clients. To simulate the non-iid
data, we use the widely used Dirichlet-based strategy and an
extended Dirichlet strategy [25] to partition the datasets. In
the Dirichlet-based strategy, the proportion of data allocated to
each client follows a Dirichlet distribution Dir(αp), where p
characterizes a prior distribution. A smaller α value increases
the heterogeneity among the clients’ data distributions. The
extended Dirichlet strategy, denoted by ExDir(C,α) intro-
duces an additional parameter C to determine the number
of classes per client. Specifically, before allocating samples
via Dirichlet distribution (with parameter α), this strategy
allocates C different classes to each client, obtaining the
specific prior distribution pc for each class c. For example,
pc = [1, 1, 0, 0, . . .] means that the samples of class c are
only allocated to the first 2 clients. This method enhances the
control over the heterogeneity of the data distribution across
different clients in federated learning environments.

3) Heterogeneous system: The simulation experiments are
conducted on an AMAX deep learning workstation equipped

(a) Discrete Distribution (b) Gaussian Distribution
Fig. 6. Comparison of sampling strategies under different distributions.

(a) Theoretical Result (b) Experimental Result
Fig. 7. Comparison of theoretical and experimental optimal sequence length.

with an Intel(R) Xeon(R) Platinum 8358P CPU, one NVIDIA
A40 (48GB) GPU and 80 GB RAM. To simulate the system
heterogeneity, we use four distributions to model the mean
value of training time (i.e., tn) for each client: uniform
distribution U(0.5, 4.5), exponential distribution Exp(2.5),
Gaussian distribution N (2.5, 1) and an extreme discrete distri-
bution where values in {0.5, 1, 2, 4, 5} have equal probability.
These distributions help represent the various situations of
device computing and network communication capabilities in
reality. Additionally, to simulate the randomness in reality, the
actual training time in each round (i.e., t(r)n ) follows a Gaussian
distribution with a mean of tn and a standard variance of 0.2tn,
denoted as t

(r)
n ∼ N (tn, (0.2tn)

2).
4) Baselines and metrics: Since other variant algorithms

of PFL can be incorporated into PSFL by modifying the
global model aggregation method, we only select two basic
frameworks as baselines: i) FedAvg [1] transmits and trains
the local models in parallel for all sampled clients. ii) SFL
[25] transmits and trains the local models in sequence for
all sampled clients. We employ the following metrics to
evaluate the performance of PSFL and baselines. Firstly, test
accuracy is measured as the proportion of correctly classified
test samples to the total number of test samples. Secondly,
test loss is calculated as the average cross-entropy loss over
the test dataset. Thirdly, total training time is calculated by
accumulating the time used in each training round.

B. Performance Results
1) Comparing to baselines: We implement PSFL and the

baselines on three datasets to observe their performance,
examining test accuracy and test loss under the same total
training time, as well as the training time required to achieve
the same test accuracy. In the experiments, we maintain
a consistent system setup, including the number of clients
participating in each round and the simulation of the system
and statistical heterogeneity. Specifically, we set N0 = 20,
allocate data according to ExDir(C=2,α=10), and let tn



(a) Dir(0.2) (b) ExDir(1,10) (c) ExDir(2,5)
Fig. 8. Test accuracy of three frameworks under different non-iid settings.

(a) N0 = 50 (b) N0 = 100 (c) N0 = 200

Fig. 9. Test accuracy of three frameworks at different N0.

follow the discrete distribution. Figs. 3 and 4 demonstrate
that PSFL achieves better convergence performance under
the same training time compared to the baselines across all
datasets. Moreover, Fig. 5 shows that PSFL achieves the
same target test accuracy with significantly less training time
than the baselines. For the CIFAR-10 dataset, PSFL requires
approximately 33% less time than PFL and SFL to achieve
the same target test accuracy of 60%.

2) The efficiency of sampling strategy: We empirically
evaluate the performance of our proposed training time-based
partitioning and sampling strategy (referred to as partition-
based sampling) and compare it with two benchmarks within
the PSFL framework: uniform sampling and weighted sam-
pling [5]. In the weighted sampling strategy, the probability
of selecting a client is inversely proportional to the square root
of the client’s training time, i.e., pn ∝ 1√

tn
. Consequently, this

approach introduces a bias in our problem, prioritizing clients
with shorter training times. Fig. 6 illustrates the impact of
different sampling strategies on training time per round across
various distributions (with discrete and Gaussian distributions
as representatives) and sequence lengths (S=3, S=4, S=5).
Overall, our sampling strategy demonstrates greater stability
and lower training time across all distributions and sequence
lengths, outperforming both uniform and weighted sampling.

3) The efficiency of optimal structure: We evaluate the
performance of our theoretically optimal training structure and
compare it with the experimental values. We test the optimal
values for different numbers of clients participating in each
training round (N0=10, 20, 50, 100, 200), while keeping other
configurations unchanged. In Fig. 7, we present the theoretical
and experimental optimal sequence lengths for N0 = 20.
Specifically, the theoretical optimal sequence length calculated
in the real domain is 3.48, while the experimental value is 4,
demonstrating their close alignment. Results for other client
numbers are displayed in Table 1.

4) Comparing different configurations: To demonstrate the
robustness of PSFL to non-iid data, we show the test accuracy
of PSFL and the baselines at different non-iid settings. Due
to space limitation, we only present the test accuracy plots

TABLE I
THEORETICAL AND EXPERIMENTAL OPTIMAL SEQUENCE LENGTHS.

Settings Theoretical values Experimental values
S W S W

N0 = 10 2.18 4.59 3 3
N0 = 20 3.48 5.74 4 5
N0 = 50 6.54 7.65 7 7
N0 = 100 10.56 9.47 10 10
N0 = 200 16.95 11.73 25 8

for CIFAR-10 across three allocation strategies: Dir(0.2),
ExDir(C=1, α=10), and ExDir(C=2, α=5). The results
in Fig. 8 demonstrate that PSFL achieves better convergence
performance under the same training time compared to the
baselines in all non-iid settings, indicating high robustness
against statistical heterogeneity. Moreover, to demonstrate the
robustness of PSFL to different numbers of participating
clients, we present the test accuracy plots for CIFAR-10 across
three settings: N0 = 50, 100, 200. Fig. 9 shows that under all
settings, PSFL achieves the same target test accuracy with
significantly less training time, compared to the baselines.

5) Experiment settings in Fig. 1: We compare the conver-
gence of the three frameworks under the same settings. Specif-
ically, we set Ñ=9, allocate data according to ExDir(C=
2,α = 10), and let tn follow the discrete distribution. The
experiments are run on the CIFAR-10 dataset. Notably, in
the PSFL framework, we set the sequence length and parallel
width to 3, i.e. S = 3,W = 3.

VII. CONCLUSION

In this paper, we propose a novel FL framework, called
PSFL, to minimize the total training time by optimizing
both the training structure and client sampling strategy. First,
we provide a theoretical analysis of the convergence bounds
for the PSFL framework under common assumptions. Next,
inspired by this analysis, we find out the optimal training
structure and introduce a novel training time-based partitioning
and sampling strategy. Extensive experiments validate our the-
oretical analysis and demonstrate the significant performance
improvements of the PSFL framework.
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APPENDIX
A. Proof of Theorem 1

We first define the Bregman Divergence with respect to the
function h and arbitrary x, y as

Dh(x,y) ≜ h(x)− h(y)− ⟨∇h(y),x− y⟩. (27)

Before proving the Theorem 1, we present two lemmas.
Lemma 1. Let Assumptions 1 to 4 hold and assume that the
sampling policy ΠA is unbiased, then it holds that



E[∥x̄(r+1)−x∗∥2] ≤ ∥x̄(r)−x∗∥2

+(
2Lη

W
+
4L2η2N0

W 2
)
∑W

w=1

∑Sw

m=1
E∥x(r)

w,m−1−x̄(r)∥2

+(
8Lη2N2

0

W 2
− 2ηN0

W
)DF (x̄

(r),x∗)+
4η2N0

W
B+

4η2σ2N0

W 2
. (28)

Proof. The overall model updates after a complete training
round is x̄(r+1)−x̄(r)=− η

W

∑W
w=1

∑Sw

m=1 g
(r)
πw
m

. Then,

E[∥x̄(r+1)−x∗∥2]=∥x̄(r)−x∗∥2+ η2

W 2
E[∥
∑W

w=1

∑Sw

m=1
g
(r)
πw
m
∥2]

− 2η

W

∑W

w=1

∑Sw

m=1
E[⟨∇Fπw

m
(x

(r)
w,m−1), x̄

(r)−x∗⟩]. (29)

Applying Lemma 2 in [25] with x = x
(r)
w,m−1, y = x∗,

z = x̄(r), µ = 0 and h = Fπw
m

for the third term on the
right-hand side in Eq. (29), we get

− 2η

W

∑W

w=1

∑Sw

m=1
E[⟨∇Fπw

m
(x

(r)
w,m−1), x̄

(r) − x∗⟩]

≤− 2η

W

∑W

w=1

∑Sw

m=1
E[Fπw

m
(x̄(r))−Fπw

m
(x∗)−L∥x(r)

w,m−1−x̄(r)∥2]

=− 2η

W

∑W

w=1

∑Sw

m=1
E[DFπw

m
(x̄(r),x∗)+⟨∇Fπw

m
(x∗), x̄(r)−x∗⟩]

+
2Lη

W

∑W

w=1

∑Sw

m=1
E∥x(r)

w,m−1−x̄(r)∥2 (30)

= −2ηN0

W
DF (x̄

(r),x∗)+
2Lη

W

∑W

w=1

∑Sw

m=1
E∥x(r)

w,m−1−x̄(r)∥2.(31)

Here, in the last equation, we use the fact that the sampling
policy ΠA is unbiased, i.e., E[Fπm

w
(x)]=F (x). Moreover, the

gradient of F at the optimal model x∗ is zero. For the second
term, we apply Jensen’s inequality to decompose it:

η2

W 2
E[∥
∑W

w=1

∑Sw

m=1
g
(r)
πw
m
∥2]

≤ 4η2

W 2
E[∥
∑W

w=1

∑Sw

m=1
g
(r)
πw
m
−∇Fπw

m
(x

(r)
w,m−1)∥

2]

+
4η2

W 2
E[∥
∑W

w=1

∑Sw

m=1
∇Fπw

m
(x

(r)
w,m−1)−∇Fπw

m
(x̄(r))∥2]

+
4η2

W 2
E[∥
∑W

w=1

∑Sw

m=1
∇Fπw

m
(x̄(r))−∇Fπw

m
(x∗)∥2]

+
4η2

W 2
E[∥
∑W

w=1

∑Sw

m=1
∇Fπw

m
(x∗)∥2] (32)

≤ 4η2N0σ
2

W 2
+
4L2η2N0

W 2

∑W

w=1

∑Sw

m=1
E[∥x(r)

w,m−1−x̄(r)∥2]

+
8Lη2N0

W 2

∑W

w=1

∑Sw

m=1
E[DFπw

m
(x̄(r),x∗)]

+
4η2

W

∑W

w=1
E[∥
∑Sw

m=1
∇Fπw

m
(x∗)∥2]. (33)

We clarify the fact used for each term in the last inequality:
(i) Under Assumption 3, the vectors {g(r)

πw
m
−∇Fπw

m
(x

(r)
w,m−1)}

form a martingale difference sequence, i.e., the conditional
expectation is Eπw

m
[g

(r)
πw
m
|g(r)

πw
m−1

, . . . ,g
(r)
πw
1
] = ∇Fπw

m
(x

(r)
w,m−1),

and Lemma 1 in [25] is applied to it. (ii) Assumption 1
holds. (iii) If h is L-smooth and convex, then we have
Dh(x,y)≥ 1

2L∥∇h(x)−∇h(y)∥
2. (iv) The norm squared ∥ · ∥2

is convex and Jensen’s inequality is applied to it. Finally, by
substituting Eq. (31) and Eq. (33) into Eq. (29), we establish
the lemma.

Lemma 2. Let Assumptions 1 to 4 hold and assume that the
sampling policy ΠA is unbiased. If the learning rate satisfies
η ≤ c0

LSw
for all w ∈ W then it holds that

∑Sw

m=1
E∥x(r)

w,m−1−x̄(r)∥2 ≤ 1

1−2c20
[2η2σ2S2

w

+
8

3
Lη2S3

wDF (x̄
(r),x∗)+2η2S2

wB]. (34)

Proof. Building on the approach used in the proof of Lemma
1, we apply Jensen’s inequality to divide the term on the
left-hand side in Eq. (34) into four parts and execute similar
approximations. Then, we can get∑Sw

m=1
E∥x(r)

w,m−1−x̄
(r)∥2 =

∑Sw

m=1
E[∥−η

∑m−1

i=1
g
(r)
πw
i
∥2]

≤ 4η2σ2
∑Sw

m=1
(m−1)+4L2η2

∑Sw

m=1
(m−1)

∑m−1

i=1
E∥x(r)

w,i−x̄
(r)∥2

+ 8Lη2
∑Sw

m=1
(m−1)2DF (x̄

(r),x∗)

+ 4η2
∑Sw

m=1
(m−1) 1

N

∑N

n=1
∥∇Fn(x

∗)∥2. (35)

Given the fact
∑m−1

i=1 E∥x
(r)
w,i− x̄(r)∥2 ≤

∑Sw

m=1E∥x
(r)
w,m−

x̄(r)∥2 and 4L2η2
∑Sw

m=1(m − 1) ≤ 2L2η2S2
w ≤ 2c20, we

transfer this term to the left side of the inequality and obtain
the lemma after rearrangment.

Then, we come back to the proof of Theorem 1. Since
η ≤ c0

LSw
for all w ∈ W , we have LηN0

W ≤ c0. Substituting
Eq. (34) to Eq. (28), the coefficient of the E[DF (x̄

(r),x∗)] is:

(
2Lη

W
+
4L2η2N0

W 2
)

1

1−2c20

∑W

w=1

8

3
Lη2S3

w+
8Lη2N2

0

W 2
−2ηN0

W

≤ (4c0+2)
Lη

W

1

1−2c20

8

3L
c20
∑W

w=1
Sw + (8c0 − 2)

ηN0

W
. (36)

The coefficient of the constant term is:

(
2Lη

W
+
4L2η2N0

W 2
)

1

1−2c20

∑W

w=1
(2η2σ2S2

w+2η2BS2
w)

+
4η2N0

W
B +

4η2σ2N0
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≤ η2N2
0
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[
4c0(1+2c0)

1−2c20
(σ2 W

N0
+
BW

N0
)+

4BW

N0
+
4σ2

N0
]. (37)

We get the recursion as follows:
E[∥x̄(r+1)−x∗∥2]≤∥x̄(r)−x∗∥2−bη̃E[DF(x̄

(r),x∗)]+cη̃2. (38)

where b =
16c30−28c20−24c0+6

3(1−2c20)
, η̃ = ηN0

W , and

c =
4c0(1+2c0)

1−2c20
(σ2 W

N0
+
BW

N0
)+

4BW

N0
+
4σ2

N0
.

Therefore, we can derive the upper bound, i.e.,
E[F (x̃)− F (x∗)]

≤ 1

R+1

∑R

r=0
E[F (x̄(r))−F (x∗)]=

1

R+1

∑R

r=0
E[DF (x̄

(r),x∗)]

=
1

R+1

∑R

r=0

1

bη̃
[E[∥x̄(r)−x∗∥2]−E[∥x̄(r+1)−x∗∥2]]+cη̃ (39)

≤ ∥x̄(0)−x∗∥2

bη̃R
+

cη̃

b
. (40)

B. Proof of Corollary 1

Let η̃ = min{
√

r0
cR , c0N0

LSW } ≤ c0N0

LSW , there are two cases:
If η̃ =

√
r0
cR , there is

E[F (x̃)−F (x∗)] ≤ r0
bη̃R

+
cη̃

b
=

2

b

√
cr0
R

. (41)

If η̃ = c0N0

LSW , we have c0N0

LSW ≤
√

r0
cR , then

E[F (x̃)−F (x∗)]≤ r0
bη̃R

+
cη̃

b
≤ 1

R

r0LSW

bc0N0
+
1

b

√
cr0
R

. (42)
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