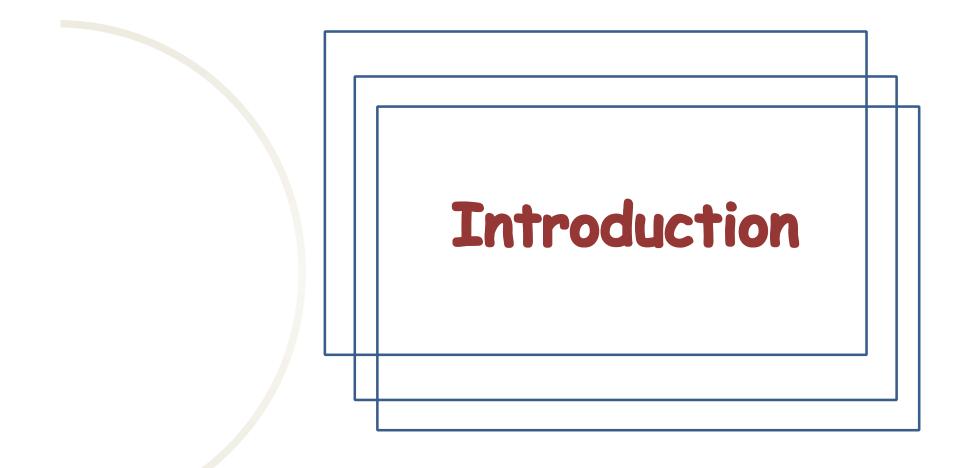


IEEE INFOCOM 2013, April 14-19, Turin, Italy

Outsourcing Privacy-Preserving Social Networks to a Cloud

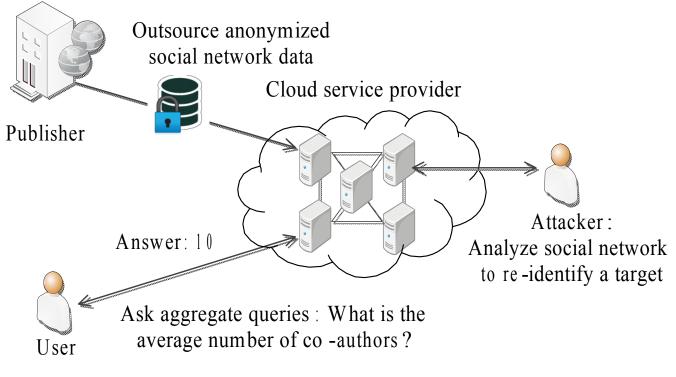
Guojun Wang^a, Qin Liu^a, **Feng Li**^c, Shuhui Yang^d, and Jie Wu

^a Central South University, China
 ^b Temple University, USA
 ^c Indiana University-Purdue University Indianapolis, USA
 ^d Purdue University Calumet, USA



Cloud Computing Model

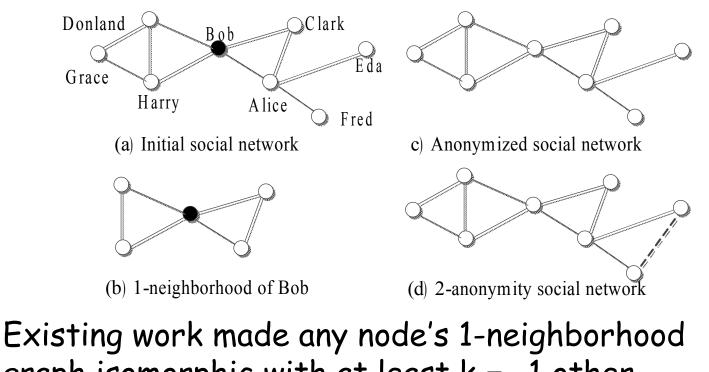
• Cloud computing as a new commercial paradigm enables organizations that host social network data to outsource a portion of their data to a cloud.



How to protect individuals' identities?

1-Neighborhood Attack

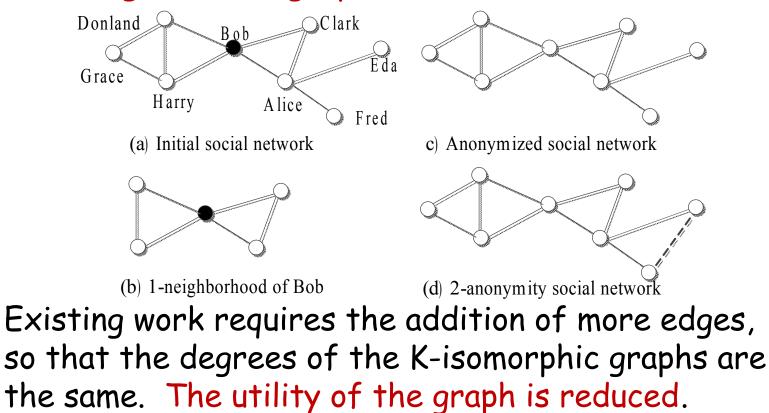
• Anonymization cannot resist the 1-neighborhood attack, where the attacker is assumed to know the target's 1-neighborhood graph.



graph isomorphic with at least k – 1 other nodes' graphs by adding noise edges (k-anonymity).

Challenges

•K-anonymity cannot resist 1*-neighborhood attack, where an attacker is assumed to know the degrees of the target's one-hop neighbors, in addition to the 1-neighborhood graph.

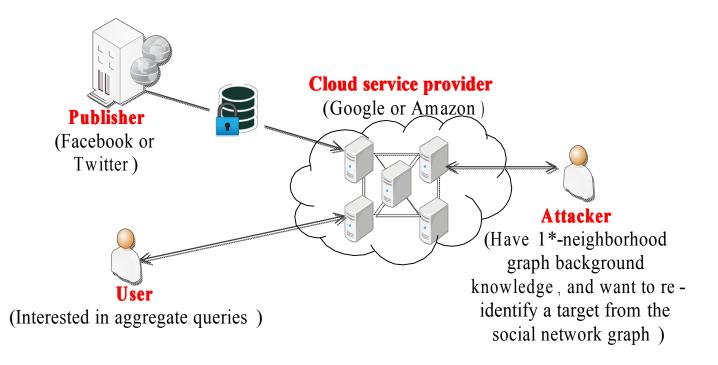


Our Contributions

- We identify a novel attack, 1*-neighborhood attack, for outsourcing social networks to a cloud.
- We define the probabilistic indistinguishability property for an outsourced social network, and propose a heuristic indistinguishable group anonymization scheme (HIGA) to generate social networks with this privacy property.
- We conduct experiments on both synthetic and real data sets to verify the effectiveness of the proposed scheme.



System Model



Privacy goal. Given any target's 1-*neighborhood graph, the attacker cannot re-identify the target from an anonymized social network with confidence higher than a threshold.

Utility goal. The anonymized social networks can be used to answer aggregate queries with high accuracy.

Problem Formulation

Problem Definition. Given a network graph $\mathcal{G} = (V(\mathcal{G}), E(\mathcal{G}))$ and a positive integer k, derive an anonymized graph $\mathcal{G}' = (V(\mathcal{G}'), E(\mathcal{G}'))$ to be published, such that (1) $V(\mathcal{G}') = V(\mathcal{G})$; (2) \mathcal{G}' is probabilistically indistinguishable with respect to \mathcal{G} ; (3) the anonymization from \mathcal{G} to \mathcal{G}' has minimal anonymization cost.

The problem of generating a social network with above three properties is NP-hard.

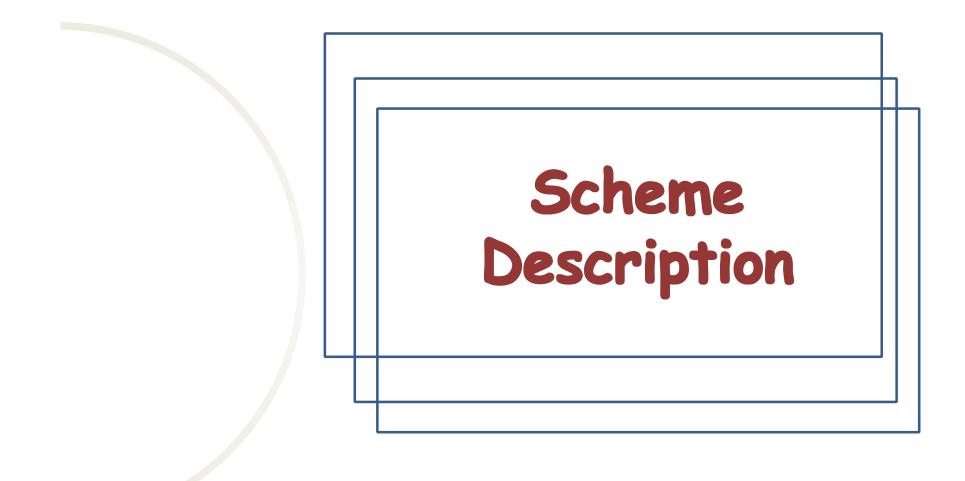
Definitions

• Let G_{u}^{*} and G'_{u}^{*} denote the 1*-neighborhood graph of node u in the original social network G and in the anonymized social network G', respectively.

Node Indistinguishability. Nodes u and v are indistinguishable if an observer cannot decide whether or not $G_u^* \neq G_v^*$ in the original graph \mathcal{G} , by comparing $G_u'^*$ and $G_v'^*$ in an anonymized graph \mathcal{G}' .

Group Indistinguishability. For a group of nodes $g = \{v | v \in V(\mathcal{G})\}$ and $|g| \ge k$ if for each pair of nodes $\{\langle u, v \rangle | u, v \in g\}$, u and v are indistinguishable in the published graph \mathcal{G}' , group g is an indistinguishable group.

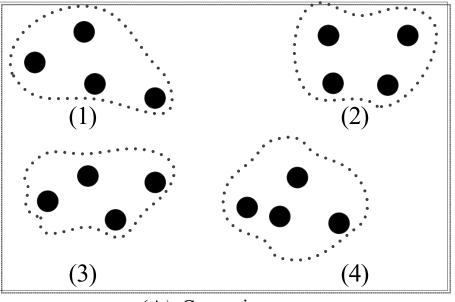
Probabilistic Indistinguishability. A published social network \mathcal{G}' achieves probabilistic indistinguishability, if all nodes $\{v|v \in V(\mathcal{G}')\}$ can be classified into $m \ge 1$ groups, where each group has the property of group indistinguishability.



The heuristic indistinguishable group anonymization (HIGA) scheme consists of 4 steps:

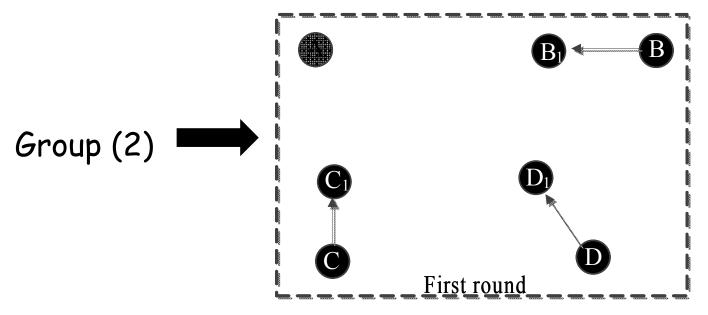
- Grouping
- Testing
- Anonymization
- Randomization

Grouping classifies nodes whose 1*-neighborhood graphs satisfy certain metrics into groups, where each group size is at least equal to k.



 $(A) \ Grouping$

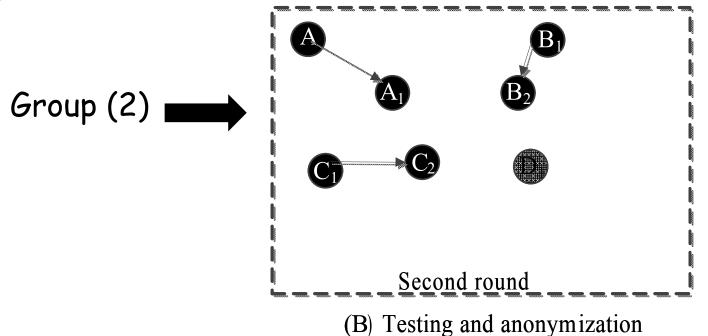
Testing uses random walk (RW) to test whether the 1neighborhood graphs of nodes in a group approximately match or not.



(B) Testing and anonymization

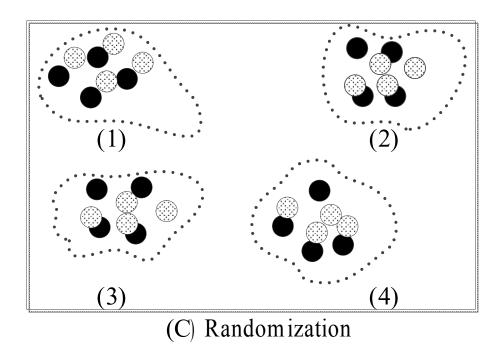
Anonymization uses a heuristic anonymization algorithm to make the 1-neighborhood graphs of nodes in each group approximately match

Testing uses random walk (RW) to test whether the 1neighborhood graphs of nodes in a group approximately match or not.



Anonymization uses a heuristic anonymization algorithm to make the 1-neighborhood graphs of nodes in each group approximately match

Randomization randomly modifies the graph with certain probability to make each node's 1*-neighborhood graph be changed with certain probability



Step 1: Grouping

A social network is modeled as an undirected and unlabeled graph G = (V(G), E(G)), where V(G) is a set of nodes, and $E(G) = V(G) \times V(G)$ is a set of edges.

1-Neighborhood Graph. $G_u = (V_u, E_u)$, where V_u denotes a set of nodes $\{v | (u, v) \in E(\mathcal{G}) \lor (v = u)\}$, and E_u denotes a set of edges $\{(w, v) | (w, v) \in E(\mathcal{G}) \land \{w, v\} \in V_u\}$.

1*-Neighborhood Graph. $G_u^* = (G_u, D_u)$, where G_u is the 1-neighborhood graph of node u, and D_u is a sequence of degrees of u's one-hop neighbors.

Step 1: Grouping

We group nodes by using the following metric: number of one-hop neighbors, in-degree sequence, out-degree sequence, total number of edges, and betweenness.

In-degree sequence. $I_v = \{|E_u^+|\}_{u \in V_v}$, where $E_u^+ = \{(u, w) | w \in V_v\}$, and $|E_u^+|$ is the number of edges in E_u^+ .

Out-degree sequence. $O_v = \{|E_u^-|\}_{u \in V_v}$, where $E_u^- = \{(u, w) | w \notin V_v\}$, and $|E_u^-|$ is the number of edges in E_u^- .

Betweenness. $B_v = |V_v^*|/|V_v^+|$, where $V^* = \{\langle u, w \rangle | u, v \in V_v \land (u, w) \notin E_v\}$, and $V_v^+ = \{\langle u, w \rangle | u, v \in V_v\}$.

TABLE I						
EFFECTIVENE	SS OF METRICS FOR	GROUPING				
Nodes	Edges	Percentage				
$100 \sim 200$	$1,000\sim 2,000$	47%				
$500 \sim 1,000$	$5,000 \sim 10,000$	61%				

Step 2: Testing

We analyze each pair of nodes u and v by computing the steady states of their 1-neighborhood graphs G_u and G_v with RW.

$$p_{u_{j}}(t) = \sum_{u_{i} \in V(\mathcal{G})} \frac{1}{|V(\mathcal{G})|} \cdot (1-d) \cdot p_{u_{i}}(t-1) + \sum_{u_{i} \in N(u_{j})} \frac{1}{|N(u_{i})|} \cdot d \cdot p_{u_{i}}(t-1)$$

$$p(t) = \frac{(1-d)}{N} \cdot \mathbb{I} + d \cdot \mathbf{W} \cdot p(t-1)$$

$$p^{\star} = \frac{(1-d)}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

$$q(t) = \frac{1}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

$$q(t) = \frac{1}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

$$q(t) = \frac{1}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

$$q(t) = \frac{1}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

$$q(t) = \frac{1}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

$$q(t) = \frac{1}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

$$q(t) = \frac{1}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

$$q(t) = \frac{1}{|V(\mathcal{G})|} \cdot \sum_{k=0}^{\infty} d^{k} W^{k} \cdot \mathbb{I}$$

Step 2: Testing

We use Eq. 4 to calculate the Euclidean distance between the topological signatures of the nodes:

$$cost(x,w) = \sqrt{(\mathbf{p}_x^{\star} - \mathbf{p}_w^{\star})^2}$$
 (4)

The cost for matching two 1-neighborhood graphs is calculated with Eq. 5

$$cost(G_u, G_v) = \sqrt{\sum_{x, w \notin \mathbb{V}} (\mathbf{p}_x^{\star} - \mathbf{p}_w^{\star})^2} + (|\mathbb{V}| * \beta) \quad (5)$$

Approximate matching. Let $G_u = (V(G_u), E(G_u))$ and $G_v = (V(G_v), E(G_v))$ be two graphs. G_u and G_v approximately match, denoted as $G_u \approx G_v$, if an optimal bipartite graph matching exists between $V(G_u)$ and $V(G_v)$, such that the $cost(G_u, G_v)$ is smaller than a threshold value α .

How to decide α is the key problem

Step 3: Anonymization

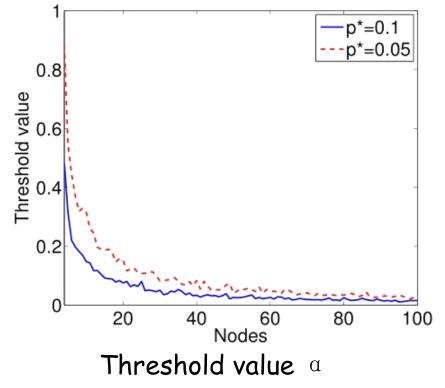
Algorithm 1 Heuristic Anonymization Algorithm {Given m groups g_1, \ldots, g_m as CGS} Sort CGS in descending order of the number of neighbors while CGS is not empty do Choose the first group in CGS as the processing group q_* and remove q_* from CGS for each node u in q_* do Construct 1-neighborhood graph G_u Use Eq. 3 to calculate G_u 's topological signatures for each pair of nodes (u, v) in q_* do Use Eq. 5 to calculate cost of matching G_u and G_v while exists a cost larger than α do Randomly choose a node $u \in q_*$ as the group seed for each node $v \in q_*$ do if $cost(G_u, G_v) > \alpha$ then Approach G_u to G_v with probability q Approach G_v to G_u with probability 1-q

Step 4: Randomization

Given a randomization probability p. We first randomly remove p(|E(G)|) edges from the graph, and then for two nodes that are not linked, we add an edge with probability p.

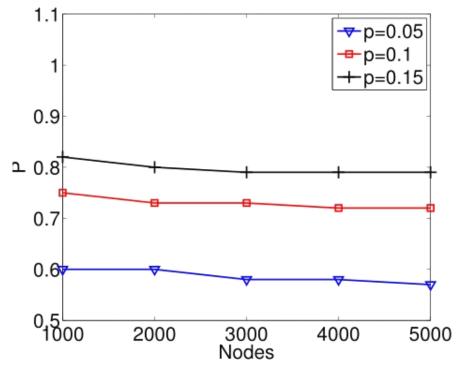
The key problem lies in determining p to randomize the graph

Parameter Setting



- First, randomly generate a 1neighborhood graph with N nodes
- Then generate a similar graph by randomly modifying p* percentage of edges

Parameter Setting

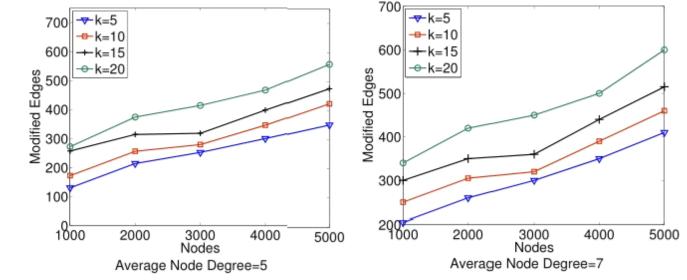


Random probability p

- First randomly generate a graph with N nodes and M edges.
- Then, randomize the graph with different p values, and calculate the percentage P of 1*-neighborhood graphs being changed in the randomized graph.

Synthetic Data Set

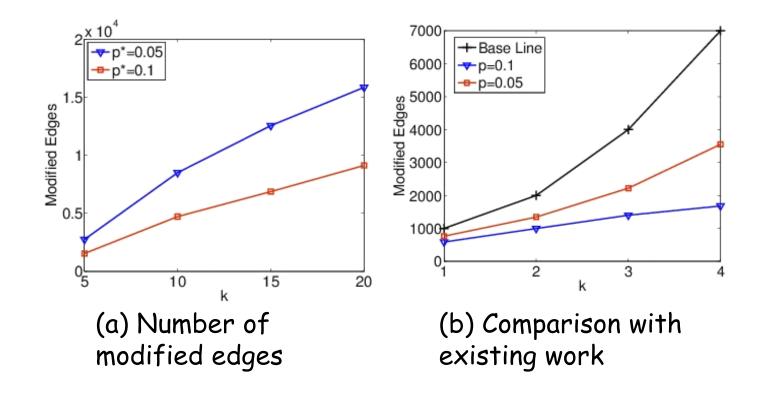
- We use the Barabai-Albert algorithm (B-A algorithm) to generate synthetic data sets.
- First generate a network of a small size (5 nodes), and then use that network as a seed to build a larger-sized network (1,000, 2,000, 3,000, 4,000, and 5,000 nodes).



Number of modified edges on synthetic data sets. p* = 0.1.

Real Data Set

 Real social network, Astro Physics collaboration network, which contains 18,772 nodes and 396,160 edges. If an author i co-authored a paper with author j, the graph contains an undirected edge from i to j.



Real Data Set

- * The maximal node degree: MAX
- * The minimal node degree: MIN
- * The average node degree: AVE
- The error rate for answering the shortest distance queries: Error Rate

Us	SABILITY O	f the A	NONYM	ized So	CIAL NETWORK
		Max	MIN	AVE	Error Rate
	Original	505	2	22.1	0
	<i>k</i> =5	505	2	22.4	2.9%
	k = 10	496	2	22.6	6.4%
	k = 15	485	2	22.9	8.1%
	k=20	476	2	23.3	8.3%

TABLE II	
ABILITY OF THE ANONYMIZED SO	CIAL NETWORK

Conclusion

We identify a novel 1*-
neighborhood attack
for publishing a social
network graph to a
cloud

We define a key property probabilistic indistinguishability, for anonymizing outsourced social networks

We propose a heuristic anonymization scheme to anonymize social networks with this property

Thank you!