Unreliable Multi-hop Networks Routing Protocol For Age of Information-Sensitive Communication

Abdalaziz Sawwan (Presenter) and Jie Wu
Department of Computer and Information Sciences
Temple University
Outline

• Introduction
• The Problem
• The Solution of the Problem
• Simulation
• Future Work
Outline

• Introduction
• The Problem
• The Solution of the Problem
• Simulation
• Future Work
Introduction

• In multi-hop communication networks, it is important to study the problem of having unreliable links with different reliability values.

• We consider that the nodes would incur different forwarding cost values.

• The timeliness of the delivered messages is also important in many applications.
Introduction: Network Model
Introduction: Age of Information
Outline

• Introduction
• The Problem
• The Solution of the Problem
• Simulation
• Future Work
The Problem

• We consider an unreliable network with the source node s and the destination node d.
• Those nodes are linked with probabilistically unreliable links.
• The time delay in case of failure follows the exponential distribution.
• This distribution is characterized with both the time in case of success $\tau_{i,j}$ and the probability of success $p_{i,j}$.
The Problem: The Utility Model

\[u(t) = \max \{-C, b - \delta \Delta(t) - C\} \]
The Problem: An Example
Outline

• Introduction
• The Problem
• The Solution of the Problem
• Simulation
• Future Work
The Solution of the Problem

• We first evaluate the expected total utility reduction.

\[
E[R_{i,j}] = 1 \times R_{i,j}^s + \left(1/p_{i,j} - 1\right)R_{i,j}^f \\
= (1 - p_{i,j})\lambda_{i,j}\delta/p_{i,j} + c_i/p_{i,j}
\]
The Solution of the Problem

• Then we minimize the total expected reduction in utility.

Algorithm 1 Determining the Optimal Path.

Require: δ, T, V, E. /i.e. nodes and links sets V and E.
Ensure: Minimum cost $(C + \delta\Delta(t))$ from s to d.
Initialization: $\forall i \in V, \mathbb{E}[D_k[i]] = \infty \ \forall k, \pi(i) = \text{NIL} \ \forall i \in V$.

1: $c_d = -\delta T$.
2: $\mathbb{E}[D_k[s]] = 0 \ \forall k$.
3: for k from 1 → (|V| − 1) do
4: for $(i, j) \in E$ do
5: Evaluate $\mathbb{E}[R_{i,j}]$ from Equation 2.
6: if $\mathbb{E}[D_{k−1}[i]] + \mathbb{E}[R_{i,j}] < \mathbb{E}[D_{k−1}[j]]$ then
7: $\mathbb{E}[D_k[j]] = \mathbb{E}[D_{k−1}[i]] + \mathbb{E}[R_{i,j}]$.
8: $\pi[j] = i$.
9: else $\mathbb{E}[D_k[j]] = \mathbb{E}[D_{k−1}[j]]$.
10: return the optimal path $\pi[d], \pi[\pi[d]], \ldots$
Outline

• Introduction
• The Problem
• The Solution of the Problem
• Simulation
• Future Work
Simulation
Outline

• Introduction
• The Problem
• The Solution of the Problem
• Simulation
• Future Work
Future Work

• Our future work will include more in-depth analysis and simulation.

• We will consider the stochastic generation of messages at the source node.

• We will study the case of multiple messages sent at the same time, where redundancy of the same message is allowed.
Q&A

Abdalaziz Sawwan (Presenter) and Jie Wu.
Department of Computer and Information Sciences,
Temple University.