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Abstract: Security has become the corner stone of research in wireless sensor networks
(WSNs). Due to the unique operational environment of WSNs, where the communica-
tion medium is open to eavesdroppers, the threats manifest in new forms necessitating
the safeguarding of communication. Consequently, key management protocols have
become paramount in mitigating the damage caused. Numerous group-key protocols
have been proposed in an effort to secure both inter and intra network communication.
However, the group-key protocols in literature neither address the issue of the size
of a group nor its geographic boundaries. Therefore, in applications like watchdog-
based reputation monitoring systems, malicious users are encouraged to pollute the
reputation values by bad-mouthing benign nodes and false-praising other collaborat-
ing malicious nodes. On the otherhand, though pairwise-key protocols can overcome
the above drawback of group-key protocols, they are highly restrictive and impose sub-
stantial storage overhead on resource constrained sensors. They do not suit the repu-
tation monitoring systems either, since messages encrypted with pairwise-keys render
promiscuous watchdog monitoring systems useless. In this paper, we propose CAGE
- a novel, distributed, clique-based group-key assignment protocol, which distinctly
addresses the size and geographic restrictions on groups. Our protocol is a simple dis-
tributed method, yet effective in securing the neighborhood communication and ideally
suits the promiscuous monitoring requirements of reputation and trust-based systems.
CAGE ensures pairwise connectivity of all group members which thwarts information
asymmetry (bad-mouthing) attacks. We confirm through simulations and analysis that
CAGE strikes an optimal balance between pairwise-key and group-key protocols and
that it achieves an optimal solution. We then present the improvised CAGE, which
we refer to as the Extended CAGE (E-CAGE). E-CAGE achieves the same results as
CAGE with mitigated computation time compared to CAGE. We confirm this through
simulation results.

Keywords: clique, clustering, group-key, reputation, security, wireless sensor net-
works, trust.



1 INTRODUCTION

Wireless Sensor Networks (WSNs) do not command the
luxury of extensive computing and battery power or the
typical operational environment like their counterparts. In
WSNs, one key requirement is that all communications be
protected since the transmission medium is open and vul-
nerable to interception and overhearing. Prototypically,
encryption has been used to overcome this problem which
renders the intercepted message gibberish. Encryption al-
lows any node to intercept the message, but the intercept-
ing node can decrypt the message only if it is authorized.
This authorization is usually provided by means of keys
with which the message is encrypted. How keys are gen-
erated and assigned is a well-researched area and will not
be further discussed here. Our primary focus in this pa-
per is on how to divide a network into meaningful groups,
which is an important step before establishing keys. Once
the network has been divided into groups, we can use any
of the existing key establishment protocols such as cen-
tralized, decentralized, contributive, etc. Therefore, this
paper proposes CAGE - a novel, clique-based group-key
management protocol to restrict group membership to le-
gitimate members. CAGE ensures pairwise connectivity of
all group members which thwarts information asymmetry
(bad-mouthing) attacks.

Numerous group-key protocols have been developed to
permit only legitimate group members to take part in any
group communication. However, one common drawback in
these protocols is that none of them give insight as to how
the group size is determined. They also do not impose any
spatial restrictions on the group membership. This makes
the group membership and its geographical boundary very
fuzzy. The above drawback can be overcome by using
a pairwise-key protocol (Du et al., 2003; Liu and Ning,
2003a,b), in which each message is encrypted with a key
shared strictly between two nodes. Although a pairwise-
key protocol is more secure, it increases the storage and
communication overhead significantly. It necessitates a
node to retransmit the message multiple times since each
time the transmitted message is encrypted with a key that
it shares with only one node. In particular, pairwise-key
protocols don’t suit watchdog-driven reputation and trust-
based monitoring systems, which are potential applications
for our model. Reputation and trust-based systems have
been used to compliment the security loopholes in cryp-
tographic systems, such as insider attacks' in which the
adversary is a legitimate member of the network. We will
provide a brief overview of reputation and trust-based sys-
tems in Section 2.1 and refer interested readers to Srini-
vasan et al. (2007a) for a detailed discussion on reputation
and trust-based systems.

1By physically capturing a node, the adversary can extract all
the cryptographic material held by that node. Consequently, the
adversary can get through authentication, validation, etc. Hence,
the adversary is now part of the network and can launch attacks
from within.
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In light of the above discussion, we draw our motiva-
tion and propose CAGE, a novel, distributed, clique-based
group-key assignment protocol. In CAGE, group mem-
bership is restricted to a one-hop neighborhood and each
group is assigned a single key. An immediate observation is
that CAGE reduces the number of keys a node stores by a
significant amount compared to the pairwise-key protocol.
Also, the number of retransmissions is substantially lower
in CAGE compared to the pairwise-key protocol. This con-
servation is critical in resource-constrained sensors. CAGE
also draws its motivation from Krishna et al. (1997). How-
ever, the main deviation of our work comes from the fact
that in CAGE, each node is required to share at least one
clique with each of its neighbors. In Krishna et al. (1997),
this is not a requirement, and therefore their model can
generate fewer cliques compared to CAGE. CAGE is also
similar to the NP-Complete minimum clique cover prob-
lem (Gramm et al., In Press). However, the main deviation
in our work is that in CAGE, the main objective is to find
locally maximum cliques as opposed to generating a mini-
mum number of cliques. CAGE, in principle, is equivalent
to finding all locally maximum cliques of a graph G.

We realize that CAGE indeed requires considerable com-
putation time for generating all locally maximum cliques.
We thus improvise CAGE and present a new model which
we refer to as the Extended CAGE (E-CAGE), which mit-
igates the computation time of CAGE to a large extent.
E-CAGE is a variation of CAGE and technically the only
difference between the two models lies in the method of
choosing the Initiator nodes. Initiator nodes are the nodes
that initiate the clique formation process simultaneously.
In E-CAGE, adjacent nodes can be chosen as Initiator si-
multaneously unlike CAGE. This significantly reduces the
number of rounds needed for the entire process of gener-
ating locally maximum cliques. Other than that, the two
methods are exactly the same and they both generate the
exact same cliques. Note that in E-CAGE, since adjacent
nodes are chosen as Initiator nodes concurrently, there is
a generation of redundant cliques. We will discuss this
further when we present the model in Section 4.2.

We also compare the above two models with a brute force
method of generating locally maximum cliques that we re-
fer to as the One-Round method. We compare the three
models for their performance in terms of their computation
time and the redundancy they introduce. The objective is
to reduce both time complexity and redundancy. Our con-
tributions in this paper can be summarized as follows:

e Clique-based group-key assignment has been consid-
ered for the first time.

e CAGE is the first group-key protocol to clearly lay
down the size and spatial restrictions on group mem-
bership.

o CAGE is the first key assignment protocol that can be
applied exclusively for securing secondhand informa-
tion sharing in reputation and trust-based systems.



e The proposed protocol is a distributed approach
for securing neighborhood communication in WSNs.
Nonetheless, CAGE can be easily extended to other
networks like MANETS.

e We confirm the optimality and robustness of CAGE
through simulation and analysis.

e We present Extended CAGE (E-CAGE), an improve-
ment of CAGE that further mitigates the computation
time for generating all locally maximum cliques.

e We compare the performance of our models with a
brute force method of generating cliques, which we
call One-Round.

2 RELATED WORK

Since this paper is an attempt to bring two disconnected
areas together, we present related work from both of these
areas. First, we review existing reputation and trust-based
systems. Then we briefly discuss the existing pairwise and
group-key protocols.

2.1 Reputation and Trust-based Systems

Michiardi and Molva (Michiardi and Molva, 2002) pro-
posed CORE, which has a watchdog along with a repu-
tation mechanism to distinguish between subjective, func-
tional, and indirect reputation, all of which are weighted
to get the combined reputation of a node. Here, nodes
exchange only positive reputation information. The au-
thors argue that this prevents badmouthing attacks. How-
ever, they do not address the issue of collusion of malicious
nodes to create false praise. Another interesting feature of
CORE is that its members have to contribute on a contin-
ual basis to remain trusted. Otherwise, their reputation
will deteriorate until they are excluded.

Buchegger and Boudec (Buchegger and Boudec, 2004)
have presented CONFIDANT with predetermined trust,
and later improved it with the Bayesian trust system and
a passive acknowledge mechanism (PACK) respectively.
This model makes misbehavior unattractive in MANETS
based on selective altruism and utilitarianism. CON-
FIDANT is a distributed, symmetric reputation model
which uses both first-hand and second-hand information
for updating reputation values. Mundinger and Boudec
(Mundinger and Boudec, 2005) have presented a two-
dimensional reputation system for protecting the system
from liars to ensure cooperation and fairness in mobile ad-
hoc networks.

Ganeriwal and Srivastava (Ganeriwal and Srivastava,
2004) proposed a reputation-based framework for sensor
networks where nodes maintain reputation for other nodes
and use it to evaluate their trustworthiness. They show
that their framework provides a scalable, diverse and a
generalized approach for countering all types of misbehav-
ior resulting from malicious and faulty nodes.

Algorithm 1 CAGE: Initiator Selection

1: while there are nodes that are active and have not
served as Initiator do

2. for each node i in non-decreasing order of its ID

that has not served as Initiator do
if 4 is not PRUNED and Vj € N(i)14} ID; > ID;
then

4 Choose i as Initiator;

5 end if

6: end for

7: end while

o

2.2 Pairwise and Group-key Protocols

Numerous pairwise-key protocols (Liu and Ning, 2003a,b;
Eschenauer and Gligor, 2002; Chan, 2004) have been pre-
sented. A polynomial-based key pre-distribution protocol
is presented in Liu and Ning (2003a) while Liu and Ning
(2003b) makes use of sensors’ location information to es-
tablish pairwise keys. A probabilistic key pre-distribution
method for establishing pairwise keys is proposed in Es-
chenauer and Gligor (2002). Chan et al. (Chan et al.,
2003b) extended the idea presented in Eschenauer and
Gligor (2002) and developed two key pre-distribution tech-
niques: g-composite key pre-distribution and random pair-
wise keys scheme. On the otherhand, several group key
protocols have been proposed (Perrig et al.; Rafaeli et al.;
Chan, 2004). Group key protocols can be broadly classified
into two groups: centralized and distributed.

In centralized group key management protocols, there is
a central authority that is trusted by everyone in the net-
work. The central authority generates keys and distributes
them. However, this approach has traditionally suffered
from two weaknesses. First, there is a single point of fail-
ure. When the central authority fails or malfunctions, the
security of the entire system is jeopardized. Second, the
centralized system does not scale well as the number of
members increases. Distributed group key management
protocols overcome the above two drawbacks effectively. In
this approach, the key is generated either collaboratively
by the members themselves, in which case each member
contributes a piece of information to the final key or by
the leader the members elect for the group who is assigned
the responsibility of generating the key for that group. The
drawback with this kind of approach is that when mem-
bers join or leave the group, rekeying is necessary to ensure
forward and backward secrecy, which is a computationally
expensive task.

3 OVERVIEW- Reputation and Trust-based Systems

In a reputation and trust-based system, each node mon-
itors the behavior of nodes in its neighborhood using a
watchdog mechanism. Nodes operate in a promiscuous
mode to facilitate the watchdog to observe and gather in-



Figure 1: (a) Network with 5 nodes, (b) - (d) Cliques formed by A and C.

Algorithm 2 E-CAGE: Initiator Selection

1: while there are nodes that are active and have not
served as Initiator do
2:  for each node i in non-decreasing order of I D that
has not served as Initiator do

3: Choose ¢ as Initiator if ¢ is not PRUNED and
vj e N(i){4 ID; > IDy;

: Else

5: Choose k € N(i){4} as Initiator if k is not

PRUNED and Dy, > ID;, Vj € N(i)t4};
6: end for
7. end while

formation about node misbehavior in the neighborhood. In
a reputation and trust-based system, two types of informa-
tion are available to each node: firsthand and secondhand.
The firsthand information is gathered by virtue of direct
observation. To a node, this is the most reliable piece of
information since it is observed directly. The observations
are recorded in the tuple (¢, 3), where a denotes a positive
interaction or good behavior while § denotes a negative in-
teraction or bad behavior. The information captured by
the tuple («, ) is then converted into a reputation value
using the Beta distribution function Beta(a, ) (Josang
and Ismail, 2002). However, if nodes are allowed to build
reputation values based solely on firsthand information, it
can take a substantial amount of time before the system
is bootstrapped to a stable state. Hence, nodes are en-
couraged to publish their findings in their neighborhood.
This is known as secondhand information. However, there
can be malicious nodes in the network that intentionally
publish incorrect information to pollute reputation values
and mislead benign nodes. Hence, nodes usually perform a

simple deviation test before accepting the secondhand in-
formation of the publishing nodes in an effort to filter out
false information published by malicious nodes (Michiardi
and Molva, 2002). If a publishing node passes the devi-
ation test, then its secondhand information is considered
compatible and is accepted. Otherwise, the secondhand
information is considered incompatible and is discarded.
Accordingly, the tuple (a, 3) is updated to reflect the col-
lective view of the neighborhood. Later on, when a decision
has to be made for choosing a neighbor for any network ac-
tivity like routing, a node uses the accumulated reputation
values to choose the most trustworthy neighbor.

4 MODEL

We consider a network with N homogeneous sensors. Each
sensor is randomly assigned a unique I D prior to deploy-
ment. After deployment, we assume that nodes are benign
for a time period § during which every node i broadcasts
its ID and degree information in its neighborhood N (7).
The neighborhood of a node is divided into two groups:-
N (i) = N(@)¥ YN (i) where N (i)14} consists of nodes
that are active and contest for Initiator, and N (i){} con-
sists of inactive nodes that cannot contest for Initiator.
Here, the terms active and inactive are not used in schedul-
ing context and merely refer to nodes’ capability to contest
in Initiator selection process. Note that an Initiator is the
node that initiates the clique formation process. There-
fore, N(i) = N (i) N (i)'}, The operation of CAGE
is formally presented in Algorithm 1. To assume the role
of an Initiator, nodes compete with other active nodes in
their neighborhood. The three models that we present in
this paper differ in the way the Initiator nodes are chosen.
Initiator nodes will be referred to as init in the rest of this



paper.

All three models generate the same number of cliques
with the same members since the primary criteria in all
these methods are locally maximum cliques. Hence we use
two parameters to measure the performance of the three
methods. The first parameter is Rounds. This parameter
measures the number of times the Algorithm is executed
before all cliques are generated. The second parameter is
called Conflicts. Since two neighboring nodes, when chosen
as init simultaneously, generate two copies of one or more
cliques, there will be redundancy in the cliques generated.
For illustration, consider Figure 2 (a). In this network set-
ting, nodes 3, 4, 5, 6, and 8 are chosen as init simultane-
ously, the details of which will be discussed in Section 4.2.
Consequently, nodes 3 and 4 both generate a copy of the
clique {2, 3,4}, and nodes 5 and 8 both generate a copy of
the clique {5,7,8}. Now there are two redundant cliques,
which are one copy of {2,3,4} and one copy of {5,7,8}.
Therefore, Con flicts = 2. There are more conflicts in this
scenario, but we shall not discuss them all. The Conflicts
parameter records the number of such redundant cliques
generated, by summing the number of conflicts at the end
of each round.

4.1 CAGE

In CAGE, nodes compete with other active nodes in their
neighborhood to assume the role of init and nodes with
the highest ID in their respective neighborhood win the
contest. init start the clique formation process and gener-
ate all the cliques in their neighborhood that they possibly
can. The order in which the nodes are included into the
clique has no impact on the number or size of the cliques
generated. This is because Algorithm 1 ensures the gener-
ation of all locally maximum cliques at all times and this
property shall be confirmed by Theorem 5.1 in Section 5.
In CAGE, a node i is chosen as init for a given round if
the following conditions are satisfied:

Condition 1. i is the highest ID node in the neighborhood.

Condition 2. i has not been chosen as init in one of the
previous rounds.

Condition 3. i can generate at least one clique that has
not been generated in the previous rounds.

Each node i maintains a list, C};,,, to keep track of the
cliques it belongs to. In this list, each entry will be of the
form C, which indicates that i belongs to the 4t clique.
Once init has generated all the cliques that it possibly can,
it is marked as inactive and rendered ineligible to assume
the role of init henceforth. Now, once again, all active
nodes compete to assume the init role and the entire pro-
cess, as discussed above, repeats until the stopping condi-
tion is reached. The stopping condition in our models is
the marking of every single node as inactive. Condition 3
above is checked using the following check and prune rules.

Rule 1. u has an outgoing edge that is not covered by any
clique generated so far.

Algorithm 3 Clique Formation

1: init determines node(s) to generate new clique(s) using
Cmit and Rules 1 and 2

2: init generates new clique(s);

3: update Cj7%%" with newly generated clique(s);

4: send out copies of new clique(s) to nodes in Step 1;

Rule 2. u has pair(s) of connected neighbors such that

e neither of them have been an Initiator in previous
rounds.

e they have not been included, along with w, in any
clique generated so far.

If either or both of these rules are satisfied, then a node
is not pruned. The check and prune phase of the algorithm
ensures that only those nodes that can generate new cliques
are chosen as initiators for each new round. Algorithm 1
terminates when all nodes have been marked as inactive
by either exhausting their turn as init or being pruned in
accordance with Rules 1 and 2. For discussion, consider
Figure 1. Let A be the highest ID node, followed by B, C,
D, and E. All these nodes contest to assume the role of
init. However, since A is the highest ID node, it wins the
contest and becomes the init. Note that nodes B, C, and
D cannot assume the init role simultaneously with A since
they all belong to the same neighborhood as A. Also, node
E cannot assume the init role simultaneously with A since
C is the highest ID node in E’s neighborhood. A now
starts the clique formation process and initially inducts
D to form the clique C;. To begin with, C; has only
two members {A, D}. Then A checks to see if any of its
neighbors are also neighbors of D. A finds that C is a
common neighbor of both A and D. Hence, C' is included
in C7. A continues this process, checking at each stage if it
has a neighbor that is a common neighbor of all the nodes
currently in C7 and if so, it adds that node to Cy. The
process terminates when A cannot find any more nodes to
add to C7. In the above example, the algorithm terminates
with Cy = {A, D, C, B}. Now, A sends a copy of C; to all
the members of C; and the members update their clique
list. In this scenario, since A has generated all possible
cliques that it can, A is marked as inactive and cannot be
an nit henceforth.

Now, once again nodes B, C, D, and F are active and
compete for the init role. However, node B gets pruned
and is marked as inactive since it already shares a clique
with all its neighbors and neither Rule 1 nor Rule 2 hold
true. But for nodes C, D, and F, Rule-2 holds true and
hence they cannot be pruned. Finally, C, D, and E com-
pete in the second round for the init role and C wins the
contest and generates the clique Cy = {C,E,D}. This
process of check and prune, and clique generation contin-
ues until all nodes in the network are marked as inactive.
In the above example the only two cliques generated are
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Figure 2: Impact of node ID ordering on number of rounds in E-CAGE.

Cy ={A,D,C,B} and Cy = {C, E, D} requiring only two
rounds effectively. Irrespective of which node initiates the
clique formation process and in which order it induces its
neighbors, only C; and Cy are generated for the network
setting presented in Figure 1. This property will be fur-
ther discussed in detail in Section 5. Following this, nodes
are assigned keys based on their clique membership. The
members of C; are assigned the clique key K¢, and mem-
bers of Cy are assigned the clique key K¢, .

The number of keys a node stores in CAGE is equal
to the number of distinct cliques it belongs to. In our
example, nodes C' and D belong to both cliques C; and
Cs, and consequently store both keys K¢, and K¢,. Mes-
sages published in clique C are always encrypted with the
clique key K¢, and those published in clique Cy are al-
ways encrypted with clique key K¢,. The clique keys in
CAGE can be generated in any one of the following three
ways: (1) centrally by the base station; (2) distributively
by electing clique heads; or (3) contributively by all the
clique members. Since a detailed discussion on different
key generation methodologies is already available in liter-
ature (Rafaeli and Hutchison, 2003), it would be both re-
dundant and beyond the scope of this paper. Note that in
CAGE there can never be a conflict? since no two neighbor-
ing nodes are chosen as initiators simultaneously. This is
because, in CAGE, each node competes with all the active
nodes in its neighborhood and finally the highest ID node
in each neighborhood is chosen. Also, since each initiator
node shares the cliques it has generated with its neighbors,
the neighboring nodes will not generate the same redun-
dant cliques.

4.2 Extended CAGE (E-CAGE)

In this method too, nodes compete with other active nodes
in their neighborhood to assume the role of an init just
as in CAGE. The deviation of this model from CAGE
comes from the fact that, in E-CAGE, each node chooses
the node with the highest I D in its neighborhood as the
init. If the node itself happens to be the highest ID node,
then it chooses itself as init. Consequently, neighboring

2When two nodes generate the same clique simultaneously, the
redundancy is called conflict.

nodes may be chosen to be the init simultaneously which
generates redundant cliques. However, this redundancy is
the inevitable trade-off for generating the cliques in fewer
rounds. This method makes the process of clique genera-
tion highly parallel, thereby cutting down on the number
of rounds necessary. A node i is selected as an init for a
given round if and only if Conditions 1, 2, and 3 are satis-
fied. If Condition 1 is not satisfied, but Condition 4 stated
below holds true along with Conditions 2 and 3, then node
1 can still be chosen as an init.

Condition 4. i has at least one neighboring node to whom
i is the highest ID neighbor.

This idea has been captured well in Figures 2 (a) and
(b). It is very clear from the figures that node ID order-
ing has impact on the performance of E-CAGE in terms
of number of rounds. We shall discuss the working of E-
CAGE using the network setup in Figure 2 (a). Note that,
in E-CAGE, selection of init nodes in both decreasing and
non-decreasing order of node ID produces the same re-
sults for a given network setting. In the following dis-
cussions we always consider non-decreasing order of node
ID unless otherwise stated. We begin with node 1, which
has two neighbors, node 2 and node 3 respectively. Using
Algorithm 2, 1 chooses 3 as the init in its neighborhood.
Similarly, node 2, which has nodes 3 and 4 as its neighbors,
chooses 4 as the init in its neighborhood. Node 3 which
has nodes 1, 2, 4 and 5 as its neighbors, chooses 5 as the
init in its neighborhood. Node 4 with neighbors 2, 3, and
6 chooses 6 as the init in its neighborhood, and node 5
with neighbors 3, 7, and 8 chooses 8 as the init. Node 6
with neighbors 4 and 5 chooses itself as the initiator in its
neighborhood, node 7 chooses 8 as the init in its neighbor-
hood, and node 8 chooses itself as the init. The five init
nodes {3,4,5, 6,8}, shaded in black, are shown in Figure 2
(a). These init nodes use Algorithm 3 to generate all the
cliques they can, at the end of which they are marked as
inactive. For the next round, nodes {3,4,5,6,8} are ex-
cluded from the init selection process. Along with these
nodes, nodes 1, 2, and 7 are pruned and marked as inactive
in compliance with Rules 1 and 2 since they cannot gen-
erate any new cliques. So, for the given network settings,
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Figure 3: (a) - (¢) Comparison of number of rounds in CAGE, E-CAGE, and One-Round; (c) Cliques generated by all

three methods.

all the cliques are generated in a single round with 5 re-
dundant cliques, when compared to the one round method
which would generate 9 redundant cliques for the same
network setting. We will discuss the detail in Section 4.3.
Figures 2 (b) show different node I.D ordering for the same
network setting. For the network setting in Figure 2, two
rounds are needed to generate all the cliques and the the
number of conflicts is only 1. In summary, for this network
and any node ID ordering, a minimum of one round and a
maximum of two rounds are necessary to generate all the
cliques.

Figures 3 (a) and (b) intuitively capture the number of
rounds required by CAGE and E-CAGE respectively to
generate all the cliques for a given network setting. In
this example, E-CAGE requires only 2 rounds to generate
all the locally maximum cliques whereas CAGE requires 4
rounds to generate the same.

4.3 One-Round

We do acknowledge that all the cliques can be generated in
a single round by a brute force method which we call the
One-Round method. In One-Round, Algorithm 3 is run in
parallel on all the nodes in the network, i.e., all N nodes
assume the role of the init simultaneously. Consequently,
every node will initiate the clique formation process con-
currently. Once all nodes terminate the clique formation
process, nodes can exchange information with other nodes
in their respective neighborhood. After this information

exchange phase, redundant cliques can be eliminated. In
Figure 3 (c), we see that a total of six locally maximum
cliques can be generated. Note that both One-Round and
E-CAGE, irrespective of the number of conflicts they gen-
erate and the number of rounds E-CAGE takes, always
generate only the following six cliques: C; = {1,2,8},
02 = {2,778}7 03 = {677}7 C4 = {3,6}, 05 = {3,4,5}811(21
Cs = {2,3}. In Figures 3 (a) - (c), all the nodes, shaded
in the same color, assume the role of the initiator simulta-
neously.

When neighboring nodes assume the role of init and ex-
ecute Algorithm 3 concurrently, then they generate redun-
dant clique copies. Particularly, in One-Round, since every
node executes Algorithm 3 simultaneously, every member
of a clique will generate a copy of the clique.

To begin with, let the number of conflicts for One-
Round, denoted by Copg be zero, i.e., Cop = 0. Similarly,
let Cgc = 0, denote the number of conflicts in E-CAGE.
We see from Figure 3 (d) that Cy has three members, and
therefore, 3 copies of C; will be generated in One-Round
since all three members initiate the clique formation si-
multaneously. Consequently, Cor = Cor + 2 = 2, since
two of the three copies of C; are redundant. The same
clique, (4, is generated using E-CAGE with no conflicts
since only node 8 forms the clique, and therefore Crc = 0.
Similarly, in CLQ2, there are three members, namely 2, 7,
and 8. Consequently, three copies of CLQ2 will be gener-
ated out of which two copies are redundant, and therefore



Figure 4: (a) CAGE performance same as Pairwise-key; (b) Minimum clique number for clique cover algorithm; (c)

CAGE - Minimum clique number.

Cor = Cor +2 = 4. On the otherhand, in E-CAGE,
two nodes, 7 and 8, initiate the formation of Cy simultane-
ously, and therefore one redundant copy of C5 is generated
making Cgc = Cge + 1 = 1. Continuing our argument
on these lines we have the following: after C5 is generated,
Cor=Cor+1=5and Cgc = Cgc +0 =1, after Cy is
generated Cogr = Cor+1=6and Cgc = Cgc +0=1,
after Cs is generated Cor = Cor +2 = 8 and Cge =
Cpc+0 =1, and after Cy is generated Cor = Cor+1 =9
and Cgc = Cgc +0 = 1. We see that for a small network
with 8 nodes and 6 cliques, One-Round generates 9 con-
flicts where as E-CAGE generates only 1 conflict. Also,
note that in this particular example, E-CAGE generates
all six possible cliques in a just two rounds with the check
and prune rules. However, CAGE generates all six cliques
in four rounds with zero conflicts. This example serves to
intuitively capture the tradeoff between the three methods.

In general, a clique of size s will have s — 1 redundant
copies. So, for a network, if Algorithm 3 generates m
cliques, then the redundancy introduced by One-Round
can be expressed as

m

> (e -1

i=1

where |C;| is the number of elements in the clique C;. Un-
der this scenario, information exchange incurs a lot of traf-
fic and wasted bandwidth, and the number of redundant
cliques generated is mammoth considering the resource-
constraints in WSNs. This is in confirmation with the
simulation results presented in Figure 8 (c).

5 ANALYSIS

In CAGE, note that N(i) = N(i){4} |JN(i){}. Tt follows
that at any point in time

N@HM NG =9

To begin with, N (i)} = () and N(i) = N(i){4}. But with
time, the size of N(i)14} decreases and that of N(i){/}

increases. Finally, when all nodes have assumed the role
of an init, then N (i){4} =@ and N (i) = N(5){}.

Theorem 5.1. CAGE always generates locally maximum
cliques.

Proof. Consider a node set of £ nodes denoted as 1,2, ..., k.
Assume C' = {1,2,...,k — 1} is a clique generated by Algo-
rithm 3. Now, consider a node i ¢ C that is connected to
all nodes in C. If i has the highest ID, then using CAGE
i will be the init and forms a clique C’ — C'|J1, since i is
connected to all nodes in C. Else, if i is not the highest
ID node, then init, the highest ID node in C, which is the
init of C, will include ¢ in C' — CJ1. O

As a direct implication of Theorem 5.1, we observe that
CAGE always generates locally maximum cliques with the
exact same members for a given network setting. Note that
the formation of a clique C is independent of the order in
which nodes are induced into C'.

CAGE is useful only if the number of cliques generated
is substantially smaller than the number of edges. In the
worst case scenario, the performance of CAGE will still
be on par with the performance of pairwise-key. In this
scenario, no clique containing more than two members is
generated. Consequently, the number of cliques equals the
number of edges, as shown in Figure 4 (a). Also, Note that
the number of cliques generated by CAGE need not be a
minimum as generated by other clique cover algorithms.
For instance, consider Figure 4(b), which shows the re-
sults for the minimum clique cover. The number of cliques
generated by CAGE is presented in Figure 4(c).

In the following discussion, the example scenario con-
sidered is the publishing of secondhand information in a
reputation and trust-based system. While pairwise-key is
very restrictive and group-key is highly open, CAGE en-
sures the appropriate group size. In pairwise-key, nodes
fail to detect bad-mouthing and false-praise of malicious
nodes since the message is encrypted with a key that is
shared with only one node. Exploiting this situation, a
node can publish different information to different nodes.
On the otherhand, in a group-key, the publishing range of
secondhand information is too broad. Nodes may receive
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information about other nodes for which they don’t have
any direct observation. In this scenario, nodes cannot per-
form any deviation test before accepting the information.
They have to either blindly reject it or accept it. In the
former case they lose valuable information if the publishing
node is benign, and in the latter case they are vulnerable to
brain-washing if the publishing node is malicious. CAGE
ensures the right group size and range for publishing sec-
ondhand information. Malicious nodes cannot publish dif-
ferent information to different nodes since every member in
a group is pairwise connected. Also, nodes cannot receive
information about nodes that are not in their range for
whom they have no direct observation, unlike group-key.
Hence, CAGE strikes the right balance between pairwise-
key and group-key. CAGE is more robust to three different
types of attacks compared to group-key and pairwise-key
protocols.

Another interesting observation is that E-CAGE is bet-
ter than CAGE in certain aspects only. CAGE does gen-
erate all the cliques without generating even a single re-
dundant clique. However, this comes at the cost of an
increased number of rounds. On the otherhand, E-CAGE
generates all the cliques in fewer rounds, but in each round
several redundant cliques might be generated. Hence, an
inevitable tradeoff between redundancy and the number of
rounds exists between CAGE and E-CAGE. Please refer
to Figure 5 for the following discussion.

Attack Scenario 1. Attacker and attackee® belong to the
same clique. Attacker badmouths the attackee in the same
clique.

Let node A be the attacker and node B be the attackee.
With CAGE (see Figure 5 (a)), if A badmouths B, then
the message is published in clique C; encrypted with the
key K¢,. Now, S can verify A’s findings in light of its
own observations using a simple deviation test similar to
the one proposed by Michiardi and Molva (2002). If the
deviation test fails, then S will accordingly punish A for
badmouthing. Though B should punish A only if A is bad-
mouthing, B is allowed to punish A regardless. However,
this does not compromise the system’s performance, since

3 Attackee is a node that is attacked by the attacker.

when B publishes its findings on A, nodes accept it only if
it qualifies the deviation test. If B has punished A using a
tit-for-tat* strategy, then it is bound to fail the deviation
test and have its own reputation tarnished by other nodes
in the neighborhood.

Now consider the group-key protocol as depicted in Fig-
ure 5(b). Here, node A’s published message is received by
B, S, C and D since they all belong to the same group. As
such, nodes C and D cannot verify if A’s findings are con-
sistent with their’s using a deviation test since they have no
direct observations on B. Hence, they have to either accept
it with a possible chance of being misinformed or reject it
assuming that they did not lose any valuable information.
This gives node A some latitude to play foul. Finally, let
us consider the pairwise-key protocol as depicted in Fig-
ure 5(c). Here, if A sends a message to S encrypting it
with a pairwise-key, node S can still detect that node A is
lying. However, B will be kept in the dark since the key
used by A to encrypt the message is shared only between
A and S. Therefore, A can get away with the misbehavior.
This is not a desirable property in a reputation monitoring
system.

Attack Scenario 2. Attacker and attackee belong to the
same clique. Attacker badmouths the attackee in another
clique.

Let node S be the attacker and node A be the attackee.
With CAGE (see Figure 5 (a)), if S badmouths A in clique
C5, then nodes C' and D discard the message right away
since node A does not belong to the clique. Alternatively,
they can also punish S for badmouthing and decrease its
reputation. Therefore, it’s in S’s best interest not to do
so. However, the same network settings with a group-key
protocol (see Figure 5 (b)) will allow nodes C and D to
accept S’s opinion on A since they belong to the same
group. However, in this scenario, A will punish S since it
also receives the message sent to C' and D encrypted with
key G1. With pairwise-key encryption, similar arguments
as presented in Attack Scenario 1 apply.

4Node A, irrespective of its behavior, punishes node B whenever
it sees that node B has given it a bad rating.
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Attack Scenario 3. Attacker and attackee belong to two
different cliques and have no cliqgue in common. Attacker
badmouths the attackee in the attacker’s clique.

Let node A be the attacker and node D be the attackee.
When A badmouths D in Cy (see Figure 5 (a)), S and B
can either discard the message since D is not part of clique
C1 or punish A for badmouthing about a node that is not
part of the group. However, in the above scenario, since .S
shares the clique Cs with D, it can punish A more severely
than B, as S knows that A does not share a clique with
D. If, indeed, A shared a clique with D, then S would
be part of that clique since S is a neighbor of both A and
D. This follows directly from Theorem 5.1. Now, in the
same scenario, consider a group-key protocol (see Figure 5
(b)). Here, B has no way of verifying A’s claim since B
has no direct observation on D. Hence, B has to take a
chance in either accepting or rejecting it. With pairwise-
key encryption, similar arguments as presented in Attack
Scenario 1 apply.

Attack Scenario 4. Attacker and attackee belong to two
different cliques and have no clique in common. Attacker
badmouths the attackee in the attackee’s clique.

Let node A be the attacker and node D be the attackee.

In this scenario, A will never be able to badmouth D in
D’s neighborhood since D is part of Cy and messages in
Cy are encrypted using K¢,. Since A is not part of Cs,
A has no way of injecting information into Cy. However,
this is possible with the group-key and pairwise-key proto-
cols using similar lines of argument as presented in Attack
Scenario 1.

6 SIMULATION

6.1 Environment

Our simulations were carried out on a custom Java simu-
lator. For each trial, a 500m x 500m field was randomly
seeded with arbitrarily deployed sensors and results were
averaged for 1,000 iterations. In our simulations, we have
considered the number of nodes N and the transmission
range R as the tunable parameters. The number of nodes
were varied from 1,000 to 2,000 in steps of 250 while trans-
mission range was varied from 40m to 100m in steps of
20m. With the above variations, we could generate 20 dif-
ferent network settings. In our simulations, we consider N
homogeneous sensors and model the network as an undi-
rected graph G = (V, E). Here V is the set of vertices and
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Figure 7: Comparison of key storage overhead in Pairwise-key, CAGE, and group-key for different transmission ranges.

F is is the set of edges. An edge exists between two ver-
tices if they lie in each other’s communication range. Each
edge is treated as a bidirectional link, i.e., if node ¢ can
communicate with node j on edge (i,j), then node j can
communicate with node i on edge (j,1).

6.2 Results

In Figure 6(a), we have presented the results that depict
the improvement of CAGE over pairwise-key protocols.
Note that, any simulation scenario, in which there is no
comparison between CAGE and E-CAGE indicates that
they have the same performance. The graph plotted is
the ratio of the total number of pairwise keys to the total
number of clique keys in the network. It is clear that even
with 1,000 nodes and a transmission range of 40m, which
represents a relatively sparse network, the total number of
clique keys is about 5 folds lower than the total number of
pairwise-keys. With 2,000 nodes and a transmission range
of 100m, which represents a very dense network, the to-
tal number of clique keys is about 23 folds lower than the
number of pairwise-keys. This is a significant reduction
in the key storage overhead. CAGE, on average, gener-
ates about 13 folds fewer clique keys compared to the total
number of pairwise-keys.

We have also studied the extent of damage caused by
limiting the adversary’s capacity from two perspectives:

11

(1) compromise one key- the adversary can compromise
only one key in the entire network, (2) compromise one
node- the adversary can compromise only one node in the
entire network. In pairwise-key protocols, if the adversary
is allowed to compromise a single key, then it affects only
two nodes since a key is shared only between two node.
On the otherhand, in CAGE, if the adversary is allowed to
compromise a single clique key, then the number of nodes
that get affected depends on the size of the clique whose
key is compromised. In the best case, only two nodes get
affected and in the worst case, there is no limit on the num-
ber of nodes that get affected, since the compromised clique
can be of any arbitrary size. We have presented the results
plotting the extent of damage caused, in terms of number
of nodes affected, along the y-axis in Figure 6 (b). In
this graph, we have plotted three scenarios: (1) Minimum
number of nodes affected, (2) Maximum number of nodes
affected, and (3) Average number of nodes affected. From
the “Min” curve, it is evident that the number of nodes
affected is equal to that in pairwise-key protocols. How-
ever, the “Max” and the “Avg” indicate that the amount of
damage induced is much higher compared to pairwise-key
protocols. Also, for the network in general, as the density
increases, more and more nodes tend to get affected with
a single key compromise in CAGE. Although we have not
plotted it in our graph, it should be noted that the num-
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ber of affected nodes with the compromise of a single key
in group-key protocols will be much higher than that in
CAGE, since groups tend to be considerably larger than
cliques.

Nodes in both pairwise-key protocols and CAGE hold
multiple keys unless a node has only one neighbor. In Fig-
ures 6 (¢) and (d), we have presented the results simulating
the situation in which the adversary is allowed to compro-
mise a single node in pairwise-key protocols and CAGE
respectively. Here, the induced damage is measured in
terms of total number of keys compromised with the com-
promise of a single node. We have plotted three curves
representing the minimum, maximum, and average num-
ber of keys compromised by compromising a single node. It
is evident from the results that CAGE successfully curtails
the induced damage compared to pairwise-key protocols.
For sparse networks, the gain in CAGE is not significant
for the “Min” curve. However, as the network gets denser,
the amount of damage caused in pairwise-key protocols is
many folds higher when compared to CAGE. The “Max”
and “Avg” curves consistently outperform the pairwise-key
protocols significantly.

In Figure 7(a), we have presented the results compar-
ing the key storage overhead for pairwise-key, CAGE, and
group-key protocols for a transmission range of 40m. It
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is evident from the graph that CAGE consistently out-
performs pairwise-key protocol significantly. It can also
be inferred that CAGE is neither as sensitive to changes
in the number of nodes nor to the transmission range
as pairwise-key protocols are. However, the group-key
protocol marginally outperforms CAGE. Simulations were
also carried out for transmission ranges of 60m, 80m, and
100m, which have been presented in Figure 7 (b), (c), and
(d) respectively.

In Figure 8(a), we have presented the number of rounds
required by CAGE to generate all the locally maximum
cliques. The results were averaged for 1,000 different net-
work settings. It is clear that the number of rounds is
sensitive to both the number of nodes as well as their trans-
mission range. The number of rounds decreases with in-
creasing transmission range as well as with increasing num-
ber of nodes. This follows from a simple argument: as the
transmission range increases, more nodes belong to a single
neighborhood. Consequently, the size of a clique increases.
As a result, smaller cliques get eliminated and more nodes
tend to prune themselves during the init selection process.
The number of rounds required by CAGE varies approx-
imately between 47 rounds for the most scarce network
with 1,000 nodes and 40m transmission range and 20 for
the most dense network setting with 2,000 nodes and 100m
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transmission range. Similarly, in Figure 8 (b), we have
presented the results for the number of rounds required by
E-CAGE to generate all the maximum cliques. Here again
the results were averaged for 1,000 different network set-
tings for statistical stability. We can see that E-CAGE is
extremely efficient and generates all the locally maximum
cliques in fewer rounds compared to cage. The number
of rounds required by E-CAGE varies approximately be-
tween 7 rounds for the most scarce network with 1,000
nodes and 40m transmission range and 4 rounds for the
most dense network setting with 2,000 nodes and 100m
transmission range. In Figure 8 (c), we have presented
the the number of conflicts generated by the One-Round
method. It is clear that even in a sparse network with 1,000
nodes and 40m transmission range, the number of redun-
dant cliques generated by this method is extremely large
and over 6,000. It should be noted that CAGE does not
generate any conflicts, since in each round only the highest
ID node is chosen from a neighborhood, i.e., neighboring
nodes are never chosen as ¢nit simultaneously. In Figure 8
(d), we have presented the conflicts resulting in E-CAGE.
It is evident that E-CAGE is very efficient compared to
One-Round in generating all the cliques with fewer con-
flicts and curtails the redundancy, on average, at least by
a factor of 10.

In Figure 9 (a), we have presented the results compar-
ing the number of rounds required by the three methods
to generate all the cliques with transmission range of 40m.
The performance improvement of E-CAGE over CAGE is
significantly high. The results comparing the number of
conflicts generated in the three methods for a transmis-
sion range of 40m have been presented in Figure 9 (b).
These two graphs are plotted for a comparative look at
the performance of the three methods.
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7 CONCLUSION

In this paper, we have proposed CAGE, a novel, dis-
tributed, clique-based group-key assignment protocol for
WSNs. CAGE is the first distributed protocol that can be
used exclusively for reputation and trust-based systems.
It overcomes the communication and storage overhead of
pairwise-key protocols and the spatial fuzziness of group-
key protocols. We have presented a formal algorithm for
Initiator selection in CAGE and discussed it in detail. We
have also presented a formal algorithm for generating all
locally maximum cliques. We then propose the Extended
CAGE (E-CAGE) method to further mitigate the compu-
tation time of CAGE in generating all locally maximum
cliques. An algorithm has been presented delineating the
Initiator selection process in E-CAGE. We have conducted
simulation studies comparing CAGE with pairwise-key and
group-key protocols. The results confirmed that CAGE
strikes an optimum balance between these two extremes.
We have also compared E-CAGE with CAGE and the
brute force One-Round method. From simulation results
it is very clear that E-CAGE strikes a balance between
CAGE and One-Round method in both computation time
and redundancy. We have also presented a detailed analy-
sis of CAGE (E-CAGE), highlighting its novelty, strength,
and applicability.
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8 APPENDIX

In this, section, for the sake of completeness, we describe
the group-key protocol implemented if our simulations. In
our group-key protocol, we use the same initiator selection
process used in E-CAGE. However, here, instead of node
ID, node degree is used as the init selection criteria. A init
node forms its group by inducting all its 1 hop neighbors
into a single group. Consequently, no two nodes in a single
group are further than 2 hops. For illustration, consider
Figure 10. In this network setting, we see that nodes 5
and 8 have the highest node degree. Therefore, 5 and 8
start the formation of their groups and node 5 generates
G1 = {5,4,1,2,8} and node 8 generates G2 = {8,5,3,7,6}
which completes round one. The process of selecting the
highest degree node and completing the group formation
process once is referred to as a round. Now, before the
start of the next round, all the nodes that have already
been included in a group and have no outgoing edges that
are uncovered prune themselves. Returning to our exam-
ple, nodes 1 and 2 prune themselves since they are already
covered by G1 and additionally have no out going edges
that are uncovered. Similarly, nodes 6 and 7 prune them-
selves since they are already covered by G2 and have no
outgoing edges that are uncovered. Consequently, only
nodes 3 and 4 contest for the init position in round two
since edge (3,4) is still uncovered. However, node 4 gets
chosen as init and forms the group G3 = {4, 1,5,3}. With
this, every edge in the network is covered, which is the
stopping condition for our group formation. For the given
network setting as depicted in Figure 10, three groups are
formed in two rounds.

15



