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Abstract—The rapid development of deep learning technologies
and the widespread deployment of sensing devices have brought
considerable attention to Internet of Things (IoT). The smart
sensing application is one of the popular applications in IoT.
Personalized Federated Learning (pFL) is a replacement to
traditional Federated Learning (FL) to tackle the statistical
heterogeneity of clients’ private datasets (e.g., non-Independent
and Identically (non-IID) data). However, existing pFL methods
encounter two challenges in smart sensing applications: a) the
global model preference, causing poor global model performance
for minority classes on sensing device data. b) the dynamic
role differences in each hierarchy of the layer-stacked deep
learning model that needs to be considered. Jointly considering
these challenges, we present a novel edge-cloud enabled pFL
framework named pFL-Sensing for smart sensing applications.
Specifically, the sensing device serves as an edge server. Each
edge server produces a customized model through two phases:
a model training phase and a model aggregation phase. In
the model training phase, we design a novel loss function to
alleviate the issue of the global model preference. In the model
aggregation phase, hierarchical aggregation and an Adaptive
Weight Calculation (AWC) mechanism are proposed to capture
the dynamic role differences of model hierarchies. We perform
simulation experiments on real image and text classification tasks.
Experimental results show that pFL-Sensing demonstrates higher
classification accuracy than advanced pFL baselines.

Index Terms—pFL, edge-cloud, smart sensing applications, IoT

I. INTRODUCTION

With the rapid proliferation of the Internet of Things (IoT),
various sensing devices (e.g., monitoring stations, cameras,
and smartphones) have been extensively deployed [1], [2].
These devices produce large amount of sensor data, which
can be analyzed and mined to serve IoT applications. The
emergence of deep learning technology provides endless pos-
sibilities for extracting valuable information from massive data
[3]. Some popular deep learning models, such as, Convolu-
tional Neural Network (CNN) and Recurrent Neural Network
(RNN), show excellent performance on various smart sensing
applications like prediction and classification [4], [5]. These
models typically employ centralized learning to execute train-
ing tasks, i.e., data from sensing devices is transmitted to a
distant cloud server for training. Unfortunately, as the number
of sensing devices increases, centralized training becomes
challenging due to the limitations of computational load and
network bandwidth.

To address the issues of centralized learning, McMahan et
al. proposed Federated Learning (FL), a distributed learning
architecture [6]. The key point of FL is to combine all local
models deployed on users that we call clients to implement a
more generalized global model. FL is a standard edge-cloud
collaborative architecture. Since FL does not differentiate
between clients, its effectiveness heavily relies on the data dis-
tribution of clients. FL performs perfectly on Independent and
Identical Distribution (IID) data, i.e., all clients have similar
data distributions. However, in smart sensing applications, the
data from each sensing device (client) obeys a non-IID with
statistical heterogeneity, i.e., the data distributions of sensing
devices vary significantly due to differences in geographical
distribution. FL that does not consider individual private data
fails to individual sensing devices.

In order to cope with non-IID data, several studies have
developed personalized Federated Learning (pFL) methods,
which learn customized models corresponding to individual
clients [7]-[13]. The customized models adapt to their corre-
sponding client’s data distribution. One common type of pFL
is weighted model aggregation-based pFL, which consists of
different types of approaches [14]: 1) ones that train a global
model and fine-tune it, including the method Per-FedAvg
[7], 2) ones that train an additional customized model for
each client, including Ditto [8] and pFedMe [9], and 3) ones
that train customized models with personalized aggregation,
including FedPHP [10], FedAMP [11], FedFomo [12], and
PartialFed [13]. Weighted model aggregation-based pFLs in
Categories (1) and (2) employ knowledges of the global model
to initialize local models before each round of iteration train-
ing. Unfortunately, since the global model contains both useful
and useless information for each individual client, clients only
benefit from partial information, and the model has poor
generalization performance. In light of these shortcomings,
Category (3) approaches aim to learn the useful information
in the global model using personalized aggregation. Despite
further improving the performance of the model on non-IID
data, these approaches are difficult to effectively implement
smart sensing applications due to two challenges:

The effect of the global model preference: In real appli-
cation scenarios, sensing device data may contain classes that
occur relatively infrequently. In this case, the global model
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Fig. 1. Edge-Cloud Enabled pFL framework for smart sensing applications.
The edge server leverages sensing device data to learn a customized model
and communicate with the cloud server at consistent intervals. In each
communication round, the edge server adopts a two-phase strategy to acquire
the customised model after downloading the global model. In the cloud server,
the parameters of the global model are updated by synchronously aggregating
the gradients of the local models on each edge server.

training primarily targets the majority classes and exhibits poor
performance on the minority classes on the sensing device.
We define this phenomenon as the global model preference.
The global model preference weakens the performance of
customized models in pFL. Existing pFLs based on weighted
model aggregation have not succeeded in reducing the adverse
effect of the global model preference [15].

Dynamic role differences of model hierarchy: In a deep
learning model, different hierarchies play different roles. Given
a Convolutional Neural Network (CNN) model involving two
Convolutional (Conv) hierarchies and two Fully Connected
(FC) hierarchies, the initial two Conv hierarchies focus pri-
marily on feature extraction, while the latter FC hierarchies
are responsible for integrating features and making decisions.
Additionally, the role of each hierarchy in the model is
dynamic and continuous changes in training round iterations.
Most weighted model aggregation-based pFLs treat the model
as a whole when aggregating, neglecting the different roles
of each hierarchy in the model [15], [16]. Few studies have
investigated hierarchical aggregation, but there is a lack of
adaptive aggregation weights to capture the dynamic changes
of hierarchical roles, leading to inaccurate personalization
[17].

To address the above challenges, We present a novel edge-
cloud enabled weighted model aggregation-based pFL frame-
work, named pFL-Sensing, to effectively implement smart
sensing applications. The main idea of pFL-Sensing is dis-
played in Fig. 1. The sensing device serves as an edge server.
Each edge server generates a customized model through two
phases-a model training phase and a model aggregation phase.
In the model training phase, we introduce Inverse Category
Frequency (ICF) [18] into the loss function when training
the local model. ICF increases the proportion of loss from
minority class samples to the total loss, thus alleviating the
adverse effect of the global model preference. In the model
aggregation phase, hierarchical aggregation is first used to im-

plement hierarchy-level aggregation with aggregation weights.
The Adaptive Weight Calculation (AWC) mechanism is then
used to adaptively measure and update aggregation weights
based on the dynamic role differences of model hierarchy. The
primary contributions of this work are summarized as follows:

+ We present a novel edge-cloud enabled weighted model
aggregation-based pFL framework named pFL-Sensing
for smart sensing applications. To mitigate the global
model preference, in each sensing device, a novel model
training strategy is designed to train a local model.
Specifically, an ICF is introduced into the loss function
for training the local model, raising the proportion of loss
from minority class samples in the total loss.

e To capture dynamic role differences in model hierar-
chy, in each sensing device, we design a novel model
aggregation strategy with hierarchical aggregation and
an AWC mechanism. The former enables a layer-wised
aggregation of the local model and the customized model
for each client based on aggregation weights. The latter
aims to adaptively update the aggregation weights in
accordance with the dynamic role differences in model
hierarchy.

¢ We conduct simulation experiments on three public and
representative datasets (e.g., CIFAR-100, Tiny-ImageNet,
and AG News), which cover both image and text classi-
fication tasks. Experimental results prove that our pro-
posed model achieves superior performance compared to
advanced pFL baselines in classification accuracy.

II. PFL-SENSING DESIGN
In this section, we illustrate the design of pFL-Sensing.
We first provide the problem formulation of smart sensing
applications. Second, a system overview of pFL-Sensing is
introduced. Third, we introduce the detailed design of pFL-
Sensing.

A. Problem Formulation

In the work, our objective is to train customized models
on edge servers with heterogeneous sensing device data for
a smart sensing application. It is worth noting that an edge
server is a sensing device. We select a deep learning model
as the model to be trained. The smart sensing application is
identified as a classification task.

Specifically, Given N sensing devices with private clas-
sification task datasets Di,Ds, ..., Dy, respectively. These
datasets are non-IID with statistical heterogeneity. Let D; =
{(@ip,yip)},, i € [1,N] denote the dataset of the "
sensing device, where x;; and y;; stand for the bt sam-
ple and the corresponding label in the i*" sensing device’s
dataset. m; is the total number of samples in the i'” sensing
device’s dataset. The total size of all sensing device datasets
is M = Zfil m;. We collaboratively train customized
models ¥1, Vs, ..., Uy through Dy, Ds, ..., Dy, where v; is a
customized model for the i*" sensing device. The optimal
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Fig. 2. The workflow of pFL-Sensing.

customized models are acquired through minimizing the global
loss:

(01,02, ...,0N) —argmmZM (D
where

Cizﬁ(Di;ﬁi;w),ViE[NL 2)

where £(.) stands for the global loss function. £; represents
as the loss function of the i*" sensing device related to dataset
D;, measuring the discrepancies between the predicted value
and the real label of m; data samples. w stands for the global
model, which provides useful information to train the ‘"
sensing device’s customized model.

B. System Overview

In order to address the above problem, we present a
weighted model aggregation-based pFL framework over edge-
cloud collaborative architecture named pFL-Sensing. In each
communication round, pFL-Sensing can be decomposed into
two phases: a model training phase and a model aggregation
phase. Fig. 2 shows the workflow of pFL-Sensing in the
t'" round of communications. A total number of N sensing
devices are involved in the communication round. Taking the
it" sensing device as an example, the sensing device stores
three models, containing the local model w!, the intermediate
version of the customized model called 1ntermed1ate model v},
and the customized model }. The initial intermediate model v}
is derived from the customized model ﬁf ~1 output in the t—1t"
round for the i*" sensing device. The initial local model w!
is distributed by the global model w’ generated through local
model aggregations before the ¢ round of communication on
the cloud server. Note that all NV local models are aggregated

using synchronization. Each sensing device stores these three
models.

In the model training phase, dual loss functions are adopted
to learn the local model w! and the intermediate model v!.
For the training of w!, the cross-entropy loss function [19]
is adopted, the most commonly employed loss function for
classification tasks. Moreover, to alleviate the low performance
of the local model on the minority class in sensing device data
due to the global model preference, we introduce ICF into the
cross-entropy loss function for updating the local model. ICF
serves as a weight factor in the cross-entropy loss function to
balance class proportions. We refer to the new loss function
as Lycp. After training, we upload the local model to a cloud
server for synchronous aggregation, which produces a new
global model for the next communication round. Additionally,
for the training of v!, we directly use the cross-entropy loss
function, which can be denoted as Lo g.

In the model aggregation phase, to capture the dynamic role
differences of model hierarchy, the hierarchical aggregation
and an AWC mechanism are introduced to implement the
aggregation of the local model w! and the intermediate model
vt for the i'" sensing device. Specifically, we first stratify
these two models. We then use the AWC to calculate an
aggregation weight to each hierarchy, in which the chain rule
of differentiation adaptively updates the aggregation weight
based on the dynamic changes of each hierarchy’s role. Finally,
a customized model ! for the i*" sensing device is acquired
through the weighted hierarchical aggregation of w! and v!.

All sensing devices execute the model training phase and the
model aggregation phase. Next, we describe these two phases
in greater detail.

C. Model Training Phase

As shown in Fig. 2, we design the loss function L;cp
and the loss function Lo to train w! and v!, respectively.
Below, we detail how each loss function is designed to train
corresponding models for the i*" sensing device in the ¢
communication round.

1) The loss function Licp: Due to the adverse effects of
the global model preference, ICF is considered in constructing
the loss function for training w!. ICF is used to weight loss
and improve the proportion of the total loss contributed by the
minority class.

The frequency of each class sample is calculated as follows:

Fj :mi,j/mi,je [I,Ci], 3)
where m; ; denotes as the sample size in the jth class for the
it" sensing device. C; is the total number of classes in the it"
sensing device dataset, and F); denotes the frequency of the

h class. Based on these frequencies, the weight for the loss
of each class sample is derived as follows:

szl/Fjaje[laCiL (4)



where p1; represents as the weight for the loss of the gt class
sample. The loss function for training w! is calculated as:

‘CICF :Zujg (xi,bayi,baw;?)aj € [1a0i}7 (5)
b=1
where £ is the cross-entropy loss function, and the sample
(z4,p, yi,p) belongs to the j* class label, i.e., y; , = j. Finally,
gradient descent is employed to update w! denoted as:

wh = w' — T]wa,C]CF (wt) , (6)
where V. L 1cr(.) denotes the stochastic gradient of w! in
the loss function £;cp of the it" sensing device, and 7 is the
learning rate.

2) The loss function Log: Since the intermediate model
v} does not engage in global model aggregation and has no
impact on other sensing devices, we directly adopt the cross-
entropy loss function £. Hence, the loss function Lo g of the
intermediate model v! is expressed as follows:

Lop =Y &(zip yinv)). (7
b=1

We then update the intermediate model v! through the
following gradient descent:

vi=0 " =nViLos (07), ®

where VLo g stands for the stochastic gradient of vf in the
loss function Lo g, and 17;5_1 denotes the customized model
from the output of the ¢ — 1" round communication.

D. Model Aggregation Phase

To extract dynamic role differences in model hierarchy,
we aggregate the local model w! and the intermediate model
v}, which are produced by the model training phase of the
t*" communication round, by hierarchical aggregation and
an AWC mechanism. Unlike model aggregation as a whole,
hierarchical aggregation considers the roles of different hierar-
chies in the model. Furthermore, AWC uses the chain rule of
differentiation to adaptively update aggregation weights, which
reflect the dynamic changes of each hierarchy’s roles. Next,
we describe the details of this phase.

In the i*" sensing device, let w} = (w},,...w!p),
vl = (vf),...vp), and 0} = (v},,...0} p) denote each
hierarchy of the local model w;?, the intermediate model vf,
and the customized model T)f, where P is the total number
of hierarchies in these models. w} ,, v} ,, and ¥} ;, denote the
h'h hierarchy of w!, v}, and !, respectively. The customized
model ! can be formulated as follows:

ﬁfzvf@af—l—wf@(l—af), 9
where © is the hadamard product. 1 represents the unit vector
with the same dimension as of. af = (af,,...,alp) €

R'*F s the aggregation weight vector, in which of , € [0, 1]
is the h'" hierarchy aggregation weight of v?.

According to Eq.(9), it is necessary to balance the aggrega-
tion weight vector o of the local model and the intermediate
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Fig. 3. Description of the TopK mechanism in the AWC. The retained top
k hierarchies of the intermediate model do not participate in hierarchical
aggregation, while the remaining hierarchies are involved in the aggregation
weight calculation and hierarchical aggregation.

model when training the customized model. Since we cannot
identify the differences between sensing device data distri-
bution and global data distribution, we cannot leverage prior
knowledge to determine each sensing device’s aggregation
weight. In light of this, we propose the AWC mechanism.
Specifically, Eq.(9) shows that the customized model @} is
the function of a!. Therefore, we employ the chain rule of
differentiation to update and find the optimal value of f. The
updating process of o is as follows:

T (v —wl) Vafi (07)

where V. f;(.) denotes the stochastic gradient of . Eq.(10)
shows that the aggregation weight vector o is updated based
on the differences between the local model and the intermedi-
ate model. So if the local model deviates from the intermediate
model, a! changes, thus adjusting the balance between the
former and the latter.

Since we need to calculate the aggregation weights of all
hierarchies in the hierarchical aggregation, pFL-Sensing incurs
significant computational overhead compared to traditional FL
such as the FedAvg method [6]. In light of this, a TopK
strategy is introduced into the AWC. The key idea of the
TopK is to heuristically retain the partial hierarchies of the
intermediate model based on the top k aggregation weights.
These preserved hierarchies are directly included as a part
of the customized model without participating in hierarchical
aggregation, thus reducing the computational cost of aggrega-
tion weights for k hierarchies. Specifically, by adopting the
aggregation weight vector af = (af ,,...,af p) € R™F for
all P hierarchies, we arrange the elements of oz;§ in descending
order and select the corresponding top k weights.

(10)

t,TopK __ t
v, =TopK (fum, e

(11

where TopK denotes the TopK mechanism mentioned above.
k is the hyperparameter, preserving the top k hierarchies in
the intermediate model.

A detailed description of the TopK mechanism is presented
in Fig. 3. When k£ = 0, all hierarchies of the intermediate

7Uf,k | O‘E,h e 7O‘§,k) ’



model are aggregated. When & = P, all hierarchies of the
intermediate model are not involved in the aggregation, i.e.,
v! = v!. In this case, the customized model is trained only on
private sensing device data, without learning any generalized
knowledge. pFL-Sensing degenerates into local training.

The hierarchical aggregation weights continue to change
throughout the total £ communication rounds. At the begin-
ning stage of communications, some hierarchies have large
weights. These hierarchies are retained and not updated for
a long time. To deal with this issue, we introduce a periodic
computing strategy. Specifically, pFL-Sensing calculates ag-
gregation weights of all hierarchies after every () communi-
cation rounds. This effectively prevents aggregation weights of
some hierarchies from remaining unchanged for a long time.

III. EXPERIMENTS
To evaluate the effectiveness of pFL-sensing, we simulate
smart sensing environments using real datasets. Specifically,
the classification task is treated as a smart sensing application.
Sensing devices are represented as clients in this section. The
experimental setup and analysis are as follows.

A. Experimental Setup

1) Datasets: We assess pFL-Sensing on two image classi-
fication datasets CIFAR-100 and Tiny-ImageNet, and a text
classification dataset AG News. The CIFAR-100 and Tiny-
ImageNet datasets contain 100 and 200 classes, respectively.
The AG News dataset covers 4 classes. The three datasets
all have the same amount of samples in each class. Two
non-IID scenarios are taken into account: 1) a pathological
heterogeneous setting, in which each client randomly selects
10 and 20 classes from the CIFAR-100 and Tiny-ImageNet
datasets as their private datasets, respectively, and 2) a practical
heterogeneous setting. We simulate a real non-IID scenario
through the Dirichlet function [20], which can be denoted as
Dir(8), where (3 is the degree of data heterogeneity. When
B — 0, client data’s heterogeneity is strong. When 5 — oo,
client data tends to IID. CIFAR-100, Tiny-ImageNet and AG
News datasets are adopted to the practical heterogeneous
setting.

2) Baselines: The performance of pFL-Sensing is compared
with advanced baseline algorithms. In addition to FedAvg
[6], we also assess Per-FedAvg [7], Ditto [8], pFedMe [9],
FedAMP [11], FedPHP [10], FedFomo [12], and PartialFed
[13].

3) Model Selection: For the CIFAR-100 dataset, we apply
the CNN model with two Conv hierarchies and two FC
hierarchies to verify the performance of pFL-Sensing and
baselines. For the Tiny-ImageNet dataset, a CNN model with
two Conv hierarchies and two FC hierarchies is employed to
confirm the performance of pFL-Sensing and the baselines. To
verify the performance of pFL-Sensing and the baselines on
large-scale models, we also introduce the ResNet-18 model in
the Tiny-ImageNet dataset. For the AG News dataset, we use
the FastText model with a feature embedding layer, a hidden
layer formed by one FC, and an output layer formed by one
FC.

TABLE I
THE CLASSIFICATION ACCURACY (%) IN THE PATHOLOGICAL HETER
SETTING AND PRACTICAL HETER SETTING

Setting pathological heter setting practical heter settin;
Methods CIFAR-100 TINY CIFAR-100 [ TINY [ TINY* | AG News
FedAvg 25.98 14.20 31.98 19.46 1 19.45 79.57
Per-FedAvg 56.80 28.06 44.28 25.07 | 21.81 93.27
Ditto 67.23 40.23 52.87 32.15 | 3592 95.45
FedMe 58.20 27.71 47.34 2693 | 33.44 91.41
edAMP 64.34 37.15 47.69 27.99 | 29.11 94.18
FedPHP 63.09 37.88 50.52 35.69 | 29.90 94.38
FedFomo 62.49 35.87 45.39 30.33 | 32.84 95.84
PartialFed 65.35 37.76 51.37 32.78 | 3691 94.87
pFL-Sensing 68.76 42.16 54.19 39.38 | 40.42 95.93

4) Parameter Settings: In the experiments conducted on the
CIFAR-100, Tiny-ImageNet, and AG News datasets, the com-
munication round E' is 500. CNN, ResNet-18, and FastText are
set to retain default hierarchies with k =1, k =3, and £k = 1,
respectively, and the batch size is 10. We set the learning rate
n to 0.005, while 7 in ResNet-18 is 0.1. The number of clients
N defaults to 20. The aggregation weights of all hierarchies in
these three models is initialized to 0.5 for all clients. For each
communication round, the default parameter of the Dirichlet
function § is 0.1 in the practical heterogeneous setting.

B. Experimental Results Analysis

1) Classification Performance Comparison: On the CIFAR-
100, Tiny-ImageNet, and AG News datasets, the average clas-
sification accuracy of pFL-Sensing and the advanced baselines
in the two non-IID scenarios, the pathological heterogeneous
setting and the practical heterogeneous setting, are contrasted
in TABLE I. "Tiny" represents using the 4-hierarchy CNN on
the Tiny-ImageNet dataset. "Tiny*" denotes utilizing ResNet-
18 on the Tiny-ImageNet dataset. The experimental results are
as follows:

Pathological Heterogeneous Setting: In the pathological
heterogeneous setting, we draw these conclusions: Compared
with these baselines, pFL-Sensing achieves the best perfor-
mance, demonstrating how considering the global model pref-
erence with the ICA and dynamic role differences of model
hierarchy with the AWC can improve classification precision.

Practical Heterogeneous Setting: We compare the perfor-
mance of pFL-Sensing and the baselines on the CIFAR-100,
Tiny-ImageNet, and AG News datasets in the second non-
IID scenario. The experimental results for the default setting
Dir(0.1) are shown in TABLE I. Compared with these base-
lines, pFL-Sensing achieves the highest classification accuracy
because of the inclusion of the global model preference and
dynamic role differences of model hierarchy. In contrast to the
4-hierarchy CNN, ResNet-18 is regarded as a large backbone
with more hierarchies. Although most methods exhibit higher
performance with ResNet-18, pFL-Sensing still performs best,
proving that our proposed method is also adaptable to deep
neural networks.

2) Aggregation Weight Evolution Analysis: We also conduct
an experiment to exhibit the dynamic role differences of
model hierarchy in a client through visualizing the aggregation
weights of each hierarchy. We use a 4-hierarchy CNN model
on the CIFAR-100 dataset with the practical heterogeneous



Convl—e—Conv2
——FCl FC2

A A A A A

0 100 200 300 400 500
Communication Round

Fig. 4. Aggregation weight evolution on one client of the CIFAR-100 dataset
using pFL-Sensing.

setting. Specifically, the first two hierarchies are convolutional
hierarchies, which are used for feature extraction and called
Convl and Conv2, respectively. The third hierarchy is a FC
hierarchy named FC1, which is adopted to integrate features.
The fourth hierarchy is also a FC hierarchy, which is employed
to predict classes. The visualization results are presented in
Fig. 4, where the horizontal coordinate denotes the commu-
nication rounds. The vertical coordinate is the value of the
aggregation weights, ranging from 0 to 1. We draw the follow-
ing conclusions. Throughout the communication rounds, the
dynamic changes of aggregation weights reflect the model’s
adjustment to personalized and generalized information. In the
early stages, since the customized model needs to learn per-
sonalized knowledges from individual clients, the intermediate
model is given larger weights. As the communication rounds
iterate, generalized information requires to be considered for
the customized model. Meanwhile, the customized model
gradually converges. As a result, the aggregation weights of
the intermediate model progressively decrease and tend to
stabilize. For pFL, this dynamic weight adjustment process
provides an effective mechanism, which reflects an adaptive
trade-off between personalization and generalization.

IV. CONCLUSION
In this paper, we have proposed an edge-cloud enabled
weighted model aggregation-based pFL framework named
pFL-Sensing for smart sensing applications. In particular, the
sensing device has been treated as an edge server. Each edge
server has generated a customized model through two phases-
a model training phase and a model aggregation phase. In
the former phase, to alleviate the global model preference, we
have introduced the ICF into the loss function for local model
training. In the latter phase, we have integrated hierarchical
aggregation and the AWC. We have proposed hierarchical
aggregation to aggregate each hierarchy of the local model and
the intermediate model with aggregation weights to produce
an individual customized model for each client. We also have
designed the AWC to adaptively update aggregation weights
based on dynamic role differences of model hierarchy. The
results of simulation experiments on three typical classification

datasets have confirmed the effectiveness of pFL-Sensing on
classification accuracy.
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