
Origami: Efficient ML-Driven Metadata Load Balancing for
Distributed File Systems

Yiduo Wang

China Telecom Cloud Computing

Research Institute

Beijing, Beijing, China

wangyd22@chinatelecom.cn

Wenda Tang

China Telecom Cloud Computing

Research Institute

Beijing, Beijing, China

tangwd1@chinatelecom.cn

Linghang Meng

China Telecom Cloud Computing

Research Institute

Beijing, Beijing, China

menglh1@chinatelecom.cn

Liang Li

China Telecom Cloud Computing

Research Institute

Beijing, Beijing, China

lil225@chinatelecom.cn

Jie Wu

China Telecom Cloud Computing

Research Institute

Beijing, Beijing, China

wujie@chinatelecom.cn

Abstract
Modern distributed file systems (DFSs) rely on metadata server clus-

ters to manage large-scale files and achieve scalability. However,

the hierarchical namespace structure and dynamic user workloads

pose severe challenges for efficient metadata partitioning and load

balancing. Existing approaches primarily focus on identifying and

redistributing hot metadata to address imbalances. While these

load-balancing strategies offer potential benefits, they often reduce

metadata locality, ultimately failing to improve the end-to-end job

completion time—a key metric prioritized by users. Although re-

cent research reveals that learning-based approaches are effective

in predicting hotspots, they have been shown to be less effective in

improving metadata performance. We revisit metadata load balanc-

ing strategies and propose a learning-based metadata load balance

framework Origami, which focuses on minimizing end-to-end job

completion time rather than equalizing loads. Origami first decom-

poses the overhead of metadata operations and assesses the impact

of migration decisions on user requests, allowing us to compute the

benefits of migration decisions for job completion time when future

requests are known. Subsequently, Origami propose the Meta-OPT

algorithm to determine near-optimal migration decisions. Finally,

we implemented OrigamiFS, on which we collected statistical data

to train and validate ML-models capable of predicting migration

benefits. By predicting the benefits of migration decisions and em-

ploying Meta-OPT to quickly explore nearly optimal migration

decisions, Origami makes a better trade-off between load balancing

and namespace locality. Our evaluation shows that compared to

state-of-the-art methods, Origami increases aggregated metadata

throughput by 1.12-2.51× across three real-world workloads, and

enhances end-to-end throughput by 1.11-2.02×.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICPP ’25, San Diego, CA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2074-1/25/09

https://doi.org/10.1145/3754598.3754617

CCS Concepts
• Software and its engineering→Distributed systems organiz-
ing principles; • Information systems→ Distributed storage;
• Social and professional topics→ File systems management.

Keywords
Distributed file system, Metadata management, Machine learning

ACM Reference Format:
Yiduo Wang, Wenda Tang, Linghang Meng, Liang Li, and Jie Wu. 2025.

Origami: Efficient ML-Driven Metadata Load Balancing for Distributed File

Systems. In 54th International Conference on Parallel Processing (ICPP ’25),
September 08–11, 2025, San Diego, CA, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3754598.3754617

1 Introduction
Modern data centers typically deploy large-scale distributed file

systems (DFSs) to manage large amounts of files [9, 19, 24, 30].

To enable efficient file indexing and processing, DFSs often rely

on dedicated metadata server (MDS) clusters to store metadata

and accelerate metadata operations (e.g., file lookups and direc-

tory creation) [11, 25, 43]. As the scale of distributed file systems

has grown to encompass hundreds of billions of files, distributing

metadata across multiple MDSs for parallel processing has become

a common practice. This approach, widely adopted by internet

and cloud service providers, is crucial to enhancing scalability and

performance [7, 21, 22, 32].

File workloads in modern datacenters have exhibited increas-

ingly metadata-intensive characteristics: over 90% of files and I/O

requests are smaller than 1MB, resulting in a continuously rising

proportion of metadata operations [26, 40]. Currently, metadata

has emerged as the primary bottleneck in DFS, which requires

careful partitioning to deliver high-performance metadata services.

Unlike storage systems with flat namespaces, such as key-value

stores or object stores, balancing the metadata load in hierarchical

namespaces(i.e., a directory tree structured as a directed acyclic

graph) should be more cautious. First, real-world workloads are

diverse and dynamic, often leading to hotspots within hierarchi-

cal namespaces, which necessitate timely migration of subtrees.

Second, partitioning or migrating metadata across multiple nodes

https://orcid.org/0000-0002-8787-0134
https://orcid.org/0000-0001-6684-4642
https://orcid.org/0009-0000-7384-8529
https://orcid.org/0000-0002-2527-5049
https://orcid.org/0000-0002-3472-1717
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3754598.3754617
https://doi.org/10.1145/3754598.3754617

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Yiduo Wang, Wenda Tang, Linghang Meng, Liang Li, and Jie Wu

introduces additional overhead for metadata operations: (1) path

resolution requires multiple RPCs (remote process calls) to traverse

the entire path when nodes along a file path are stored on differ-

ent servers [26, 29]; (2) metadata operations involving concurrent

access across multiple nodes (e.g., directory reads or namespace

structure mutations) also incur higher costs [10, 40].

Prior work has explored metadata partitioning from various

perspectives. CephFS [44] and HopsFS [29] adopt coarse-grained

partitioning to maintain namespace locality, while InfiniFS [26] and

CFS [40] focus onminimizing the overhead of fine-grained partition-

ing. Moreover, Mantle [34] introduces programmability to improve

metadata load balancing, and Lunule [39] leverages both temporal

and spatial locality to enhance load balancing. These studies have

primarily focused on the popularity [44] of directories or files (i.e.,

their load levels) and enabling migration between MDSs to achieve

balance. More recently, some works have introduced machine learn-

ing (ML) to predict future popularity and improve metadata load

balancing [8, 41, 42]. In general, existing approaches rely on heuris-

tic algorithms or ML-based methods to predict hotspots, and then

use this information to guide metadata partitioning.

However, load balancing in hierarchical file system namespaces

is significantly more complex than in flat namespaces. In particular,

simply predicting or classifying the metadata as “hot” or “cold” is in-

sufficient to achieve optimal load balancing.We argue thatMLmeth-

ods should be leveraged to identify efficient migration decisions in

DFS, but this requires solving the following unique challenges: (1)

trade-offs between the benefits and costs of load balancing. Metadata

migration can disrupt the namespace locality, introducing addi-

tional overhead with complex and operation-dependent impacts

that vary significantly between different operations and sequences.

(2) finding the optimal balancing strategy is difficult.Modern DFSs

typically have massive metadata, making it difficult to quickly find

the optimal migration strategy, and aggressive migration strategy

can even significantly reduce the efficiency of metadata services.

(3) Finally, existing DFSs are not designed to be ML-native, which
hinders the collection of relevant feature data and the execution of

the learned strategies, further complicating balanace solutions.

Based on these observations, this paper advocates that evenly
distributing metadata load should NOT be the primary optimization
objective. Instead, we propose a novel framework, Origami, for
training efficient ML-driven metadata load balancing strategies.

Origami shifts the focus from precise metadata load prediction to

optimizing MDS cluster efficiency and minimizing end-to-end job

completion time. The main contributions of this paper consist of:

• Estimating metadata operation execution time: We pro-

pose an approach to predict the completion time formetadata

operations and job, based on a given namespace partition

and user requests sequence, which provides a key metric for

evaluating balancing strategies’s benefit and costs.

• Finding near-optimal migration decisions: Inspired by

the classic Bélády’s algorithm [45], we design Meta-OPT, a
mechanism designed to calculate end-to-end migration ben-

efits, and then identify near-optimal migration decisions for

a given sequence of metadata operations. Meta-OPT sub-

sequently guides ML-training in identifying near-optimal

migration strategies.

Clients

Distributed File System

Data Metadata

M
D
S-
0

usr

create(“/usr/bin/dir/foo”)

② path resolution

③ path resolution
& file creation

M
D
S-
1

bin share

dir

M
D
S-
2

etc

sbin

/

barfoo tmp

① path resolution

Figure 1: Modern DFS architecture and user workflow.

• TrainingMLmethods to optimizemetadata: We design a

framework, Origami, with a ML-native distributed metadata

service OrigamiFS, that automates feature collection from

user workload, applies ML-based algorithms, and evaluates

their effects on end-to-end job performance.

We evaluated Origami with 5 MDSs and found that Origami

achieves a better trade-off between load balance and namespace lo-

cality. Specifically, Origami increases metadata throughput to 3.86×
that of a single MDS while incurring only a 3.5% increase in for-

warded requests. Compared to subtree- and hash-based partitioning

approaches, Origami achieves the best overall performance, boost-

ing the cluster’s aggregate metadata throughput and end-to-end

file throughput by factors of 1.12-2.51× and 1.11-2.02×, respectively,
in 3 real-world workloads.

2 Background and Motivation
2.1 Distributed Metadata Management
GFS [9] and HDFS [11] introduced a key technique in the evolu-

tion of DFS: decoupling metadata from file data. By centralizing

metadata management on a dedicated MDS and distributing file

data evenly across numerous data servers, DFSs achieve improved

scalability. However, as the average file size has decreased from

GBs to MBs and the number of files managed by a single DFS has

grown to hundreds of billions, a single metadata server is no longer

sufficient to meet the demands of processing speed and storage ca-

pacity [1, 3, 18, 35]. Recent studies have shown that workloads in the

cloud exhibit significant metadata-intensive characteristics, with

metadata operations often accounting for more than two thirds of

the workload in most cases, and in some scenarios, even exceeding

90% [40], which has become a major bottleneck in DFS.

To overcome these limitations, modern DFSs partition the names-

pace into multiple metadata shards and distribute them across

MDSs, enabling parallel processing and further enhancing scal-

ability. Figure 1 illustrates the architecture of modern DFSs, con-

sisting of three components: a metadata cluster for namespace

management, a data cluster for file storage, and clients that initiat-

ing user requests. In this setup, clients must access metadata before

Origami: Efficient ML-Driven Metadata Load Balancing for Distributed File Systems ICPP ’25, September 08–11, 2025, San Diego, CA, USA

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30

Throughput of single MDS

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Time(min)

A M1 M2 M3 M4 M5

(a) Throughput

 0

 25

 50

 75

1 5

57%

E
xe

cu
tio

n
T

im
e

(m
in

)

of MDSs
(b) Job Completion
Time

Figure 2: (a) Normalized metadata throughput across 5 MDSs
(M1-M5: Per MDS, A: Aggregated) (b) Job completion time
with 1 MDS vs. 5 MDSs.

retrieving file data. As shown in the upper half of this figure, a file

creation (e.g., “/foo” under “/usr/bin/dir/”) requires sequential path
resolution (i.e., traverse the metadata along the path) to verify direc-

tory existence and permissions before execute metadata mutation.

This design provides scalability, POSIX [38] compliance, and user

programs compatibility but increases metadata overhead due to

additional remote procedure calls (RPCs) [2, 13, 46].

2.2 Even Partitioning Considered Harmful
The hierarchical namespace and path resolution process presents

significant challenges for metadata load balancing. Unlike many

storage systems with flat namespaces (e.g., object stores [5]), evenly

distribute metadata in DFS can result in notable performance degra-

dation. To analyze the potential performance degradation caused

by balancing, we deployed a CephFS cluster with 5-MDSs , an open

source and widely used DFS, and ran 50 clients to saturate MDSs.

In alignment with prior studies, we replayed a web access work-

load [4], disabled the data path, and evenly distributed metadata per

directory via the built-in CephFS function [6, 39]. Figure 2 compares

the performance of a single MDS set-up with a configuration of

5-MDSs. As shown in Figure 2a, the throughput of each individual

MDS (5 solid lines) in the 5-MDSs configuration is significantly

lower than that of a single MDS (red dashed line). Note that this in-

efficiency is not caused by an insufficient client request load; rather,

it is due to the additional execution overhead, which limits the

processing capacity of each MDS (see details in § 5.5). Interestingly,

even after adding 4 MDSs, the aggregated metadata throughput

(purple dashed line) increased by only about 1.4 times. Meanwhile,

as shown in Figure 2b, the corresponding job completion time was

reduced by merely 57%.

This inefficiency is primarily due to the resolution and process-

ing overhead associated with load balancing, as described in Sec-

tion 2.1. This suggests that we must approach load balancing with

caution, focusing not just on evenly distributing the load, but also

on minimizing the associated overhead. It should be noted that our

experiments incorporated metadata caching and other optimization

techniques to mitigate these issues, but significant inefficiencies

persist (see details in § 5.4).

2.3 Limitations of Metadata Partitioning
Recent data centers and clouds statistics reveal that metadata has

surpassed data, becoming the main bottleneck for scaling DFS [18,

40]. To address that, modern DFSs have designed various metadata

partitioning strategies over the past decade. However, mainstream

methods still struggle to effectively balance locality and scalability.

First, Coarse-grained partitioning is hard to scale. For example,

CephFS’s dynamic subtree partitioning [44], a well-known coarse-

grained approach, aims to preserve the locality of the namespace

by migrating subtrees to other MDS only when load imbalance

occurs. Coarse-grained partitioning has been widely embraced by

numerous clouds and data centers due to its ability to maintain

locality [21, 22, 29]. Although this method effectively reduces the

additional metadata overhead, it often leads to metadata hotspots

under dynamic workloads, ultimately limiting the overall scalability

of the system [34, 39].

Second, Fine-grained partitioning increases the metadata over-

head. Per-directory partitioning uses hash-based algorithms to

evenly distribute metadata across MDSs [23, 25, 30, 36], achieving

better load balancing. However, disrupting namespace locality can

introduce additional overhead for metadata operations, mainly due

to RPC forwarding and distributed coordination [40]. Cloud ven-

dors report that this can lead to latency increasing almost linearly

with directory depth, rendering undesirable latency [7, 20, 26].

RecentML-based partitioning strategies aim to predict the future

load and migrate files or folders by learning from historical load

data. Compared to heuristic strategies, ML-based strategies show

potential in flexibility and efficiency. However, existing learned

strategies overlook the hierarchical structure of metadata, suffer

from low prediction efficiency when handling dynamic loads, and

rely heavily on manual optimization, which constrains overall per-

formance improvements [8, 41, 42].

2.4 Challenges of ML-based Balancing
To address the metadata load balancing problem, our goal is to

develop an efficient ML-driven metadata load balancing mechanism,

building upon existing dynamic subtree and machine learning-

based strategies. To achieve this objective, several key challenges

must be addressed.

Challenges #1: Measuring appropriate metrics. Simply relying

on the number of inodes or the balance of QPS across different MDS

is not an appropriate metric, as these measures neither account for

the disruption of locality due to load balancing nor can they be

mapped to the completion times of user tasks.

Challenges #2: Finding effective migration decisions. The hi-

erarchical structure of the namespace poses significant challenges in

the search for optimal migration strategies. The file system names-

pace is not only deeply layered, exceeding ten levels, which hinders

rapid searches, but migration strategies between parent and child

nodes can also interfere with each other, and excessive migrations

can significantly affect system performance.

Challenges #3: Collecting statistics and validating models.
Existing distributed filesystems are not native to ML, making it

difficult to collect effective training data and validate the efficacy

of migration decisions.

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Yiduo Wang, Wenda Tang, Linghang Meng, Liang Li, and Jie Wu

3 Potential Benefits of Balancing
The observations and analysis mentioned above suggest that, in

DFS, even partitioning is NOT suitable for metadata load balancing.
To effectively manage metadata, it is crucial to prioritize reduc-

ing end-to-end Job Completion Time (JCT) during migration and

to train models aimed at minimizing JCT. Determining the JCT

prior to job execution is impractical. Therefore, we relax this goal

by computing the JCT for a given metadata request and names-

pace partition, which subsequently guides the learned model to

predict the migration benefits. Specifically, our approach, inspired

by the Bélády’s algorithm and learned cache [45], addresses two

key challenges:

Address Challenge #1: Measure the completion time of the
user request. We leverage the request completion time (RCT) and
the corresponding migration benefits, both derived from a given

metadata access sequence and namespace partition. Specifically,

we decompose the components of RCT and compute its value for a

given namespace partition (§ 3.1).

Address Challenge #2: Find near-optimal decisions quickly.
Using the calculated RCT, we proceed to determine nearly optimal

metadata migration choices to reduce the total job completion time,

which then informs our partitioning strategies developed(§ 3.2).

3.1 Measure RCT Instead of Balance
Dive into metadata overhead. The main challenge in computing

RCT is that metadata overhead depends on both network/load con-

ditions and the hierarchical namespace structure. Under different

partitions, the same request may access varying numbers of MDSs.

Fortunately, metadata operations exhibit fixed patterns, enabling

us to decompose the overhead. Specifically, for a metadata request

with a path length of 𝑘 that is distributed among𝑚 distinct meta-

data partitions, we assume that the processing overhead (e.g, time

of resolving path, creating file and updating parent attributes) of

metadata is 𝑇𝑚𝑒𝑡𝑎 , the queuing time on each partition is 𝑄 , and

the network request access time is 𝑅𝑇𝑇 . Consequently, RCT can be

expressed using the following formula:

𝑅𝐶𝑇 = 𝑇𝑚𝑒𝑡𝑎 +𝑚 · 𝑅𝑇𝑇 +
𝑚∑︁
𝑖=1

𝑄𝑖 (1)

For metadata requests, both the queueing time and the network

request time can be computed based on the average network latency

and themachine load level, whereas the composition of𝑇𝑚𝑒𝑡𝑎 varies

depending on the type of operation. In addition, apart from the

path resolution time𝑇𝑝𝑎𝑡ℎ ,𝑇𝑚𝑒𝑡𝑎 is also influenced by the metadata

partitioning strategy, which makes it difficult to predict.

Calculate additional overhead. Fortunately, we have found that

primary metadata requests can be categorized into three types, with

their execution times discussed separately. Specifically, 𝑇𝑚𝑒𝑡𝑎 con-

sists of a fixed baseline cost and additional variable overhead that

requires case-by-case analysis. The baseline cost includes (m + k)

inode reads, where m additional fake-inodes are stored to preserve

migration information. We categorize metadata into three types:

list directory (lsdir), namespace mutation (e.g. create, rmdir, short
in ns-m), and others unaffected operations. For lsdir, migrating

the sub-files/directories to 𝑖 other MDSs introduces an additional

𝑖 ·𝑅𝑇𝑇 . Furthermore, distributing the parent directory and the target

Algorithm 1:Meta-OPT Algorithm

Input :A sequence of metadata operations 𝑁 ;

A list of MDS ®𝑀 = {𝑚𝑖 }; A threshold Δ ;

Output :A list of migration decisions ®𝐷
1 repeat
2 𝑇 ← 𝐽𝐶𝑇 (𝑁, ®𝑀);
3 𝑚𝑎𝑥_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ← 0; 𝑏𝑒𝑠𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← ∅;
4 foreach 𝑚𝑖 ∈ ®𝑀 do
5 foreach subtree 𝑠 ∈𝑚𝑖 do
6 foreach𝑚𝑘 ∈ ®𝑀 \ {𝑚𝑖 } do
7 ®𝑀′ = ®𝑀.𝑚𝑖𝑔𝑟𝑎𝑡𝑒 (𝑠,𝑚𝑖 ,𝑚𝑘);
8 𝑇 ′ = 𝐽𝐶𝑇 (𝑁, ®𝑀′);
9 if 𝑇 ′ < 𝑇&(𝑚′

𝑘
.𝑟𝑐𝑡 −𝑚′

𝑖
.𝑟𝑐𝑡) < Δ then

10 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ← 𝑇 −𝑇 ′;
11 if 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 > 𝑚𝑎𝑥_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 then
12 𝑚𝑎𝑥_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ← 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ;

13 𝑏𝑒𝑠𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← (𝑠,𝑚𝑖 ,𝑚𝑘);

14 ®𝑀 = ®𝑀.𝑚𝑖𝑔𝑟𝑎𝑡𝑒 (𝑏𝑒𝑠𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛);
15 ®𝐷.𝑝𝑢𝑠ℎ(𝑏𝑒𝑠𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛);
16 until𝑚𝑎𝑥_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;

17 return ®𝐷 ;

file/directory across MDSs incurs additional distributed coordina-

tion overhead for namespace mutation operations. Letting the read

time of the inode be 𝑇𝑖𝑛𝑜𝑑𝑒 , the execution time be 𝑇𝑒𝑥𝑒𝑐 , and the

additional coordination time for distributed transactions be𝑇𝑐𝑜𝑜𝑟 , I
mean the indicator function (1 if true and 0 if false), we can calculate

the execution time of metadata requests after migration:

𝑇𝑚𝑒𝑡𝑎 = 𝑇𝑖𝑛𝑜𝑑𝑒 · (𝑚 + 𝑘) +𝑇𝑒𝑥𝑒𝑐 +


𝑅𝑇𝑇 · 𝑖, lsdir

𝑇𝑐𝑜𝑜𝑟 · I(𝑖 > 0), ns-m

0, others

(2)

3.2 Estimating the Benefits of Migration
In this section, we first explore how to compute JCT and evaluate

the benefits of migration decisions. Based on this, we design a

Meta-OPT algorithm to identify near optimal migration strategies.

Estimate the job completion time.We compute the total cost and

RCT distribution across metadata partitions. Following Lunule [39],

we focus on high-load scenarios where the most loaded MDS ap-

proaches capacity, as load balancing benefits are most significant

under such conditions. Consequently, JCT can be approximated as

a bin-packing problem: MDSs serve as bins, with JCT estimated

by the largest bin’s capacity. Given the access sequence 𝑁 , we can

estimate the 𝐽𝐶𝑇 for the entire task in a way that, while not entirely

precise, remains simple and efficient: (1) calculate the total costs of

requests processed by each MDS (denoted as𝑚.𝑟𝑐𝑡) in the given

request sequence
1
. (2) sum the RCTs of requests processed by each

MDS, record the highest value as JCT.

1
Origami will estimating𝑇𝑞𝑢𝑒𝑢𝑒 and𝑇𝑐𝑜𝑜𝑟 via historical sampling data.

Origami: Efficient ML-Driven Metadata Load Balancing for Distributed File Systems ICPP ’25, September 08–11, 2025, San Diego, CA, USA

OrigamiFS

Label Generation

MetaOPT

① run

② collect stats

③ generate labels
& execute decisions

④ continue

Model Training

…

ML models

Model Validation

Online
Prediction

& Balancing

Data Collector Migrator Data Collector Migrator

traces… workload…

Figure 3: The architecture of Origami for training efficient ML-based metadata balancing models.

Seek approximately optimal decisions. Here, we present the
Meta-OPT algorithm, designed to efficiently find an approximately

optimal migration decision given a known future metadata opera-

tions sequence 𝑁 and the current MDS state ®𝑀 . Details are shown

in Algorithm 1. The algorithm iteratively finds a list of migration

decisions that maximize the benefit and minimize the overall com-

pletion time 𝑇 of future metadata operations ®𝑁 (lines 2-3). This

process continues until the benefit drops below a predefined thresh-

old (line 16). Specifically, it traverses all subtrees within each MDS

(lines 4-5) and calculates the completion time 𝑇 ′ if the subtree is
migrated to another MDS (lines 6-8). If 𝑇 ′ is smaller than 𝑇 , indi-

cating a reduced overall completion time, the difference is recorded

as 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (lines 9-10). It should be noted that in order to prevent

new imbalance caused by the migration, we also require the imbal-

ance after migration is less than a specified threshold Δ in line 9.

During each iteration, the decision with the maximum 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 is

selected (lines 11-13). After completion of the iteration, the selected

decision is executed, added to the migration decision list ®𝐷 , and
the algorithm proceeds to the next iteration (lines 14-15).

It is important to note that, to find the optimal migration solution,

we need to enumerate all possible subsets of subtrees and identify

the set that yields the maximum benefit. However, exhaustively

evaluating all possible combinations of subtrees is computation-

ally infeasible. Therefore, Algorithm 1 adopts a greedy method. It

makes a sequence of local decisions, each time selecting the subtree

whose migration offers the greatest immediate benefit. Under this

approach, once a subtree 𝑠 is selected and migrated, any subtrees

nested within 𝑠 are no longer considered for migration. If there

exists a set of disjoint subtrees 𝑘1, 𝑘2, . . . , 𝑘𝑁 within 𝑠 whose to-

tal migration benefit exceeds that of migrating 𝑠 as a whole, then

the solution provided by Algorithm 1 is suboptimal. Nevertheless,

we can prove that the gap between Algorithm 1 and the optimal

solution is less than Δ, as shown in the following theorem.

Theorem 1. Let 𝑏0 denote the benefit of migrating a subtree 𝑠 .
Assume that subtrees 𝑘1, 𝑘2, . . . , 𝑘𝑁 are 𝑁 disjoint subtrees nested
within subtree 𝑠 , and let 𝑏1 be the benefit of migrating 𝑘1, 𝑘2, . . . , 𝑘𝑁 .
Under the conditions specified in Algorithm 1, we have 𝑏0 − 𝑏1 > −Δ.

The proof of this theorem is provided in Appendix A. This the-

orem shows that even under suboptimal conditions, Algorithm 1

maintains performance within a controlled margin of error.

4 Toward Efficient ML Balancing
Address Challenge #3: Building a framework for training
efficientmetadata balancingmodels. In this section, we initially
outline Origami, the system framework crafted for training efficient

learnedmetadata balancingmodels (§ 4.1). After that, we present the

architecture of OrigamiFS in (§ 4.2), the prototype metadata service

within Origami, and detail the complete workflow for training

metadata balancing models in (§ 4.3).

4.1 System Overview
Origami is supported by two key components: the Meta-OPT (§ 3.2)

algorithm and a lightweight distributed metadata service Origam-

iFS. Meta-OPT, an implementation of Algorithm 1, guides the ML

model in making migration decisions. OrigamiFS, implemented as

a prototype distributed metadata service, generates training fea-

tures and evaluates the effectiveness of models. As illustrated at

the bottom of Figure 3, we introduced two components for each

MDS to further support the Meta-OPT algorithm and ML models

in optimizing migration policies:

• Data Collector to dump the runtime namespace state. This
component outputs the metadata partition and attribute statistics.

Unlike snapshots, it focuses solely on feature data for ML training

(e.g., load in last epoch, depth, links) and metadata required for

Meta-OPT calculations. In addition, modern DFSs use directories

as the basic unit for load balancing, allowing us to omit file-level

metadata and significantly reduce the data collection overhead.

• Migrator to execute external migration decisions. Modern

DFS often integrate metadata load balancing as built-in logic or

pluggable functions [34]. To better support ML models, Migrator

enables external algorithms (e.g., Meta-OPT and ML models), to

provide migration decisions (e.g., path, source MDS, destination

MDS) in a pipeline manner.

4.2 OrigamiFS Architecture
We implemented OrigamiFS in the Go programming language,

which consists of the following parts:

Metadata Cluster. As Figure 4 shows, the metadata service within

OrigamiFS is composed of MDS units ranging from 0 to n. Each

MDS stores its individual inodes as key-value pairs in a local Peb-

blesDB [31]. Using the inode number of the parent directory com-

bined with the file name as an index, aligned with state-of-the-art

studies [12, 26, 40].

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Yiduo Wang, Wenda Tang, Linghang Meng, Liang Li, and Jie Wu

User ClientUser Client
OrigamiFS SDK
near-root cache

User ClientsML Models

send statistics

…
Metadata logic
PebblesDB

Data
Collector Migrator

MDS-0

migrate
Metadata
Balancer

return
benefits

M-1 M-n

Figure 4: The architecture of OrigamiFS.

In the initial state, OrigamiFS stores all metadata on the MDS

numbered 0. During each epoch, all MDSs send metadata statistics

to the ML model through Data Collectors. The ML model will send

the predicted benefits to MDS-0’s Metadata Balancer, which em-

ploys the same load monitoring and rebalancing trigger mechanism

as Lunule [39], but with a different rebalancing algorithm. Tradi-

tional migration algorithms generally require using bin-packing-

like methods to select subtrees based on load differences between

MDSs. In contrast, the rebalancing algorithm of OrigamiFS is much

more intuitive: MDS-0 simply greedily selects the subtree with the

highest benefit and uses the Migrator to migrate it to the lightly

loaded MDS, repeating this process until the migration benefits of

all subtrees fall below a specified threshold.

Clients. We designed a OrigamiFS SDK that enables clients to

convert file system calls into corresponding metadata operations

directed to the MDSs. Similar to the workflow illustrated in Figure 1,

the client first resolves the path recursively and then issues the

corresponding metadata operations. To address the well-known

near-root hotspot problem and reduce path parsing overhead, we

introduced a configurable near-root metadata cache, which stores

metadata entries whose depth is less than a predefined threshold.

Although the near-root metadata cache is a straightforward design,

it is highly effective: since near-root metadata typically constitutes

less than 1% of the entire file system [26], this approach substantially

mitigates the near-root hotspot issue while avoiding the significant

consistency overhead associated with cache synchronization or

lease management.

4.3 Origami Workflow
As shown in Figure 3, we train and validate efficient ML-based load

balancing models through the following process:

Label generation. We begin by collect the access traces from real-

world workloads, and replay the metadata operations on OrigamiFS

(①). After each epoch
2
, the Data Collector dumps metadata statis-

tics (②) from OrigamiFS. Next, Meta-OPT extracts features from

these statistics, performs normalization, calculates the migration

benefit for each metadata subtree, and uses these benefits as train-

ing labels step by step. Migration decisions with high estimated

benefits are then applied to rebalance OrigamiFS (③). The above

2
In the experiments of this paper, epoch is set to 10 seconds.

Table 1: Training features and the Gini importance rank
obtained after training with LightGBM.

Type Feature Normalization GI Rank

Namespace

Structure

depth

by the max value

7

sub-files 1

sub-dirs 4

Metadata

History

read by # total access

in last epoch

6

write 2

Derived

Feature

read-write ratio

raw

6

dir-file ratio 2

process is repeated iteratively to progressively enrich the training

dataset (④).

Model training. After extracting feature and label data using

OrigamiFS and MetaOPT, we trained multiple models offline. As

Table 1 shows, for each directory, OrigamiFS outputs two types of

metadata statistics: (1) namespace structure statistics of this directory,
including directory depth, number of sub-files, and number of sub-

directories; (2)metadata access history in last epoch of this subtree, in-
cluding the total number of metadata read operations (e.g., open(),
stat().) and metadata write operations (e.g., create(), mkdir().)
in the previous epoch. Note that we refer to the access history of

the subtrees instead of that of the directory itself, since migration

is conducted on a subtree level. For namespace structure statistics,

we normalize using the maximum value of the corresponding items.

For metadata history, we normalize by taking the total count of

metadata operations from the previous epoch. Furthermore, we

incorporate additional features, such as the ratio of subdirectories

to subfiles and the proportion of write meta-operations to the total

number of meta-operations.

We developed a Python module and trained regression models

to predict benefits. We compared LightGBM [15], GBDT [16], and a

MLP [37]with 4 hidden layers. Interestingly, we found that although

there were slight differences in prediction accuracy among the three

models, the migration decisions produced when the predicted re-

sults were fed into the metaOPT algorithm were remarkably similar.

This occurred because each model succeeded in pinpointing sub-

trees with notably higher migration benefits, which is crucial for

the execution of the migration algorithm, while the migration algo-

rithm filtered out subtrees with lower benefits, thus minimizing the

effect of prediction inaccuracies. Consequently, we chose to imple-

ment the lightGBM model due to its minimal prediction overhead,

with 400 rounds of boosting and 32 leaves. Table 1 lists the specific

indicators used for the training, the corresponding normalization

methods, and the Gini importance [28] obtained after training.

Model validation.A key challenge of learning-based metadata bal-

ancing is that the accuracy of the model does not directly represent

the improvement in system performance. Fortunately, OrigamiFS

enables the online validation of different models. During runtime,

OrigamiFS asynchronously outputs metadata via Data Collector,
which the trained models use as feature input to predict migration

benefits. The high benefit migration decisions are then applied to

Origami: Efficient ML-Driven Metadata Load Balancing for Distributed File Systems ICPP ’25, September 08–11, 2025, San Diego, CA, USA

OrigamiFS through the Migrator, enabling online metadata rebal-

ancing. The above work allows us to evaluate the overall perfor-

mance optimization of metadata cluster directly, rather than relying

solely on accuracy metrics.

5 Evaluation
5.1 Experiment Setup
Hardware configurations. We validated Origami by developing

a prototype and implementing OrigamiFS with 5-MDSs, running

5 client nodes to saturate the capacity of MDS. The experiments

were conducted on a 10 node Kubernetes cluster, where each node

was equipped with 8 CPU cores, 64GB of RAM, and a 2TB NVMe

SSD for metadata processing and storage.

Baseline methods. We implemented state-of-the-art load balanc-

ing strategies in Origami for comparison, covering two categories:

• Hash-based partitioning: We reproduced two widely used hash-

based strategy in recent research and production systems: The

coarse-grained approach, akin to HopsFS [12], applies hashing

only to the upper levels of the namespace, which we label as C-
Hash. Conversely, the fine-grained approach hashes all directory,
which we denote as F-Hash, used in Tectonic and InfiniFS [26, 30].
• Popularity-based ML methods: We also reproduced the latest ML-

driven metadata load balancing method [42], using subtrees as

the basic granularity, and using the LightGBM model to predict

access popularity and guide load balancing, namedML-tree.

For hash-based methods, we partitioned the metadata before

conducting the evaluation. For both ML-tree and Origami, statistics

were collected after each epoch, using Lunule’s algorithm [39] to

trigger load rebalancing. To ensure a fair comparison, the near-root
cache was activated for all strategies. A standalone MDS was used

as the baseline for performance measurement.

Workload configurations. We selected the following 3 real-world

workloads that have been used in recent metadata studies:

(1) Trace-RW : A large compilation task consisting of numerous

complex metadata operations [34].

(2) Trace-RO: A web application access trace, which only in-

cludes read-type operations, exhibits a significant skew and

extends to a considerable depth [39].

(3) Trace-WI : A write-intensive trace from a distributed file sys-

tem on the cloud, which we reproduced based on the char-

acteristics described in the paper [40].

For comparative analysis purposes, we use Trace-RW with only

the metadata function active, allowing us to evaluate and examine

the metadata performance and load balancing of various baselines

from § 5.2 to § 5.5. Finally, in § 5.6, we activated the data path and

compared all methods with three real-world workloads.

5.2 Overall Performance
We begin our analysis by evaluating the overall metadata perfor-

mance using Trace-RW. For each approach, we initiate 50 client

threads to fully utilize the metadata service and activate the load

balancing mechanism. Subsequently, we measure the average ag-

gregated metadata throughput post-rebalancing. Following this, we

rerun the workload with a single thread to compare the changes in

0

20K

40K

60K

80K

C-Hash

F-Hash
ML-pop

Origami

Single

MDS

A
gg

re
ga

te
d

Q
P

S

(a) Throughput

0

0.1

0.2

0.3

C-Hash

F-Hash
ML-tree

Origami

Single

MDS

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

(b) Latency

Figure 5: Aggregate throughput under high load and average
latency under single thread of different balancing methods.

latency under different methods, thereby evaluating the extent to

which each balancing approach disrupts namespace locality.

Aggregated throughout under high load. Figure 5a shows the
aggregate metadata throughput using different balancing strate-

gies. When a single MDS processes the metadata operations for

Trace-RW, OrigamiFS achieves a metadata throughput of 19.4k/s.

By distributing the metadata across multiple MDSs, C-Hash can

utilize multiple MDSs in parallel, increasing the throughput by

2.23×, which is consistent with our observations in § 2.2. However,

fine-grained hashing does not yield additional performance gains:

we found that F-Hash’s throughput decreased by 31.0% compared to

C-Hash. This is because, although F-Hash enables a more balanced

distribution of load across multiple MDSs, its significant disruption

to namespace locality results in overhead that outweighs the bene-

fits of load balancing in terms of metadata throughput. The results

for ML-tree fall between the two, achieving 1.89× the throughput

of a single MDS. We found that although ML-tree can predict hot

directories, it tends to overlooks the negative impact of migration

operations. Moreover, popularity-based balancing strategies often

make aggressive migration decisions [39], which can hinder the

full utilization of cluster resource. Ultimately, Origami is able to

accurately identify subtrees with higher migration benefits and

strikes a better trade-off between metadata load and locality preser-

vation. As a result, it increases metadata throughput to 75.0k with

five MDSs, which is 3.86× that of a single MDS and 1.73× as high
as the best-performing baseline, C-Hash.

Average latency under single thread. We then re-ran Trace-A

using a single thread to quantify the degree of disruption to names-

pace locality under different strategies. As shown in Figure 5b,

single MDS, which does not involve load balancing, achieved the

lowest latency since all operations could be completed with a single

RPC without additional overhead. In contrast, C-Hash and F-Hash

have increased the latency of metadata operations by 43.9% and

89.1%, respectively. This is because as the number of hash opera-

tions increases, the average number of forwarding steps required

for each metadata operation also increases, which degrades the

performance of metadata under low-load conditions. In contrast to

hashing methods, ML-tree and Origami do not migrate metadata

too aggressively, resulting in latency increases of 29.3% and 24.2%

compared to a single MDS.

The overall performance experiments validate that Origami out-

performs other methods by precisely predicting migration benefits,

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Yiduo Wang, Wenda Tang, Linghang Meng, Liang Li, and Jie Wu

0.00

0.25

0.50

0.75

1.00

QPS RPC Inodes BusyTime

Single MDS

Im
b

al
an

ce
 F

ac
to

r

C-Hash F-Hash ML-tree Origami

0.00

0.25

0.50

0.75

1.00

QPS RPC Inodes BusyTime

Single MDS

Im
ba

la
nc

e
F

ac
to

r

Figure 6: The imbalance factors of different balancing strate-
gies on 4 metrics (lower means better balance).

achieving a better trade-off between metadata load balancing and pre-
serving namespace locality. Origami maximizes metadata through-

put during high loads while minimizing performance degradation

during low loads.

5.3 Balance Analysis
Furthermore, we evaluate load balancing using the Imbalance Fac-
tor [39], which ranges from 0 to 1, with higher values indicating

greater imbalance. For example, in a cluster with 5-MDSs, an Imbal-

ance Factor of 1 means that all requests go to a single MDS. To dive

into the namespace partition, we further extend the imbalance fac-

tor from QPS to other metrics: RPCs (number of RPCs handled per

epoch), Inodes (number of metadata entries stored), and BusyTime
(total metadata processing time per epoch).

We first analyze the balance of metadata requests using the im-

balance factor. As Figure 6 shows, we found that even the most

imbalanced C-Hash managed to keep the imbalance factor at a

relatively low value. Although F-Hash achieved the best balancing

effect, the imbalance factor only decreased from 0.37 to 0.33. The

values of the imbalance factor for ML-tree and Origami were inter-

mediate. Furthermore, we dive into the distribution ofmetadata RPC

and Inodes. Similarly to QPS, F-Hash attained the lowest imbalance

factor values in both of these metrics, indicating that the hashing

method can effectively distribute the metadata evenly, albeit at a

considerable performance downgrade. These results validate our

conclusion: evenly partitioning metadata is not the optimal strat-

egy, and we should trade-off should be made between namespace

locality and load balancing carefully.

To fully understand the load balancing of the MDS cluster, we

measured the cumulative time that each MDS was spent process-

ing client metadata requests over every epoch. For the hash-based

methods, the balance of BusyTime was similar to previous findings.

Interestingly, we found that ML-tree, due to its less aggressive parti-

tioning of metadata, resulted in some MDSs having very low loads,

which led to the highest imbalance factor. Surprisingly, Origami

exhibited a very low imbalance factor in BusyTime, reducing it by

48.3% compared to F-hash, indicating that all its MDSs utilized the

resource to process metadata at a relatively high level. This obser-

vation highlights one reason for Origami’s superior performance:

Ensuring all MDSs busy is more efficient than evenly partitioning.

Table 2: Aggregated metadata throughput and per-request
RPC count: comparison with and without metadata cache.

Throughput # RPC per request
w/o cache w/ cache w/o cache w/ cache

C-Hash 32.8±3.3 k 46.0±3.0 k 2.23±0.03 1.54±0.02
F-Hash 22.5±2.0 k 30.0±1.3 k 2.87 ±0.11 2.27 ±0.07
ML-Tree 26.7±3.7 k 38.6±2.3 k 1.62±0.02 1.17 ±0.02
Origami 39.3±3.7 k 78.9±7.8 k 1.85 ±0.02 1.04 ±0.01

5.4 Metadata Cache Analysis
In this section, we assess the effects of caching on various systems

by toggling the near-root cache on and off, and we analyze how

their choices differ in the selection of subtrees for migration.

Improving aggregated throughput. Table 2 shows that near-root
caching significantly improves performance across all baselines by

reducing path resolution overhead with minimal synchronization,

thus easing MDS pressure. Without caching, C-Hash, F-Hash, and

ML-tree only improve single MDS throughput by 68.8%, 19.9%, and

42.2%, far below the ideal 5× scaling. In contrast, Origami achieves

2.09× throughput without caching, demonstrating more efficient

hardware utilization despite root node hotspots. With near-root

caching enabled, the throughput of C-Hash, F-Hash, andML-tree in-

creased by 40. 5%, 33. 3%, and 44. 7%, respectively, indicating limited

scalability. In contrast, Origami experienced a 100.7% throughput

increase, as its performance is mainly limited by near-root node

overload rather than path resolution or partition imbalance.

Reduce path resolution overhead. We further measured average

RPCs per metadata operation with and without caching. Without

caching, C-Hash and F-Hash see a significant increase in average

RPCs per request, reaching 2.23 and 2.87, respectively. In contrast,

the ML-tree approach is more conservative, increasing the RPC

forwarding count by only 0.617×, albeit at the cost of less optimal

load balancing. Origami strikes a balance between these extremes,

increasing the RPC count by 0.85× while still delivering overall

performance improvements. After enabling the cache, RPCs per

metadata request decreased by 0.68 to 1.17 for the baseline, but

high throughput and low forwarding overhead cannot be achieved

simultaneously. Surprisingly, Origami ’s extra RPC per request fell

to just 0.035 after caching, outperforming all baselines.

To understand this advantage, we analyzed Origami’s migra-

tion decisions and found that it has a particular inclination toward

migrating two types of subtree: (1) subtrees that are near the root
node and have a high load, which can significantly improve the

balance of the cluster with just a single migration; (2) subtrees that
are far from the root node and write-intensive, which migration only

impacts a small amount of metadata operations, but yield substan-

tial balancing benefits. Therefore, the near-root cache significantly

benefits Origami, as most migrations occur in cached areas. Each

metadata operation adds only 0.03 additional RPCs for path resolu-

tions, making the overhead from migrations negligible compared

to the benefits.

Origami: Efficient ML-Driven Metadata Load Balancing for Distributed File Systems ICPP ’25, September 08–11, 2025, San Diego, CA, USA

0%

25%

50%

75%

100%

0 5 10 15

N
or

m
al

iz
ed

 E
ffi

ci
en

cy

0 5 10 15 0 5 10 15 0 5 10 15
Time(min) Time(min) Time(min) Time(min)

M1 M2 M3 M4 M5

(a) C-Hash

M1

M2

M3

M4

M5

0%

25%

50%

75%

100%

0 5 10 15

N
o
rm

al
iz

ed
 E

ffi
ci

en
cy

0 5 10 15 0 5 10 15 0 5 10 15
Time(min) Time(min) Time(min) Time(min)

(b) F-Hash

M1

M2

M3

M4

M5

0%

25%

50%

75%

100%

0 5 10 15

N
o
rm

al
iz

ed
 E

ffi
ci

en
cy

0 5 10 15 0 5 10 15 0 5 10 15
Time(min) Time(min) Time(min) Time(min)

(c) ML-tree

M1

M2

M3

M4

M5

0%

25%

50%

75%

100%

0 5 10 15

N
o
rm

al
iz

ed
 E

ffi
ci

en
cy

0 5 10 15 0 5 10 15 0 5 10 15
Time(min) Time(min) Time(min) Time(min)

(d) Origami

Figure 7: Efficiency comparison, where efficiency refers to the proportion of time each MDS
spends processing metadata, normalized to a single MDS setup.

1

2

3

4

1 2 3 4 5

N
or

m
al

iz
ed

 T
h

ro
ug

hp
u

t

MDS

Linear
C-Hash
F-Hash
ML-tree
Origami

Figure 8: Scalability Com-
parison.

5.5 Efficiency and Scalability
Higher Efficiency. In Figure 7, we show the efficiency for the

first 15 minutes of each strategy. Although hash-based techniques

enable parallel processing of metadata from the beginning, their

efficiency is considerably worse compared to a single MDS setup.

This is due to the high volume of forwarding requests that must be

handled and the difficulty in achieving ideal balancing. The other

two systems gradually migrate subtrees between MDSs. However,

ML-tree faces significant extra overhead to achieve load balancing.

In contrast, Origami efficiently and progressively transfersmetadata

with minimal degradation in efficiency.

Better Scalability. We compare the scalability by measuring the

aggregated throughput as the number of MDSs increases from 2

to 5, with all results normalized to the performance of a single

MDS. Since balance and efficiency are difficult to trade off, none of

the baseline strategies scales effectively. For F-hash with 4 MDS,

although hashing improves balance, this benefit is offset by the

overhead from reduced locality. However, Origami demonstrates a

distinct performance characteristic, as aggregate throughput with

three MDSs reaches 2.7 times that of a single MDS, showing nearly

linear scalability. As more MDSs are added, this trend slows slightly

due to the increased overhead associated with finer-grained load

balancing. In general, Origami achieves near-linear scalability.

5.6 Real-world Workload Results
We replayed traces from 3 real-world workloads with distinct char-

acteristics: Read-Write, Read-Only, and Write-Intensive. We first

measured the throughput focus soley on metadata, then enabled

the data path and evaluated the end-to-end filesystem throughput.

First, Figure 9a presents a comparison of metadata throughput.

Compared to baseline, Origami consistently achieves the highest

throughput, with improvements ranging from 12.5% to 102.9%. Al-

though the applicability of different baseline strategies varies be-

tween traces, Origami shows improvements of 73. 3%, 54. 3%, and 12.

5% over the second-best baseline, respectively. Origami performs

worst on Trace-WI due to the highly dynamic and skewed load,

which complicates balancing; however, it still shows a significant im-

provement over the baseline strategy. Next, we present the end-to-

end throughput after enabling the data path, as shown in Figure 9b.

Origami still delivered the best performance, increasing the meta-

data throughput of the second-best baseline from 1.11× to 1.37×.

The absolute value of end-to-end data throughput is somewhat

0.00

0.25

0.50

0.75

1.00

QPS RPC Inodes BusyTime

Single MDS

Im
ba

la
nc

e
F

ac
to

r

C-Hash F-Hash ML-tree Origami

0

20K

40K

60K

80K

RW RO WI

A
gg

re
ga

te
d

Q
P

S

(a) Metadata Only

0

20K

40K

60K

80K

RW RO WI

A
gg

re
ga

te
d

Q
P

S

(b) End-to-End

Figure 9: The aggregated throughput for three real-world
traces, both w/o and w/ the data path.

lower compared to metadata throughput, as expected. Moreover,

if we allocate additional hardware resources to data service–as is

common in production systems–it can be anticipated that Origami

could further increase the end-to-end performance.

6 Related Work
Metadata partitioning and load balancing.Modern DFSs gen-

erally separate metadata from data and distribute metadata across

multiple MDSs to achieve scalability. Lustre, InfiniFS, Tectnoic [25,

26, 30] hashes metadata based on identifiers like file and directory

names to balance inodes, but the performance overhead is not negli-

gible. The dynamic subtree partitioning employed by systems such

as CephFS, IndexFS, HopsFS, and FileScale [21, 29, 33, 43] requires

expert tuning to balance metadata. Origami adopts the basic idea

of dynamic subtree partitioning but introduces ML techniques to

identify subtrees with higher migration benefits, thus striking a

balance between load balancing and locality. Moreover, Mantle [34]

improves load balancing via programmable interfaces, whereas

Lunule [39] incorporates the spatiotemporal aspects of locality,

which collectively strengthen Origami.

Machine learning for storage system. DeepHash and LDPP [8,

41] adopt ML to identify the popularity of metadata and improve

load balancing. Furthermore, AdaM [14] uses reinforcement learn-

ing to adaptively refine load balancing, whereas LoADM [42] con-

centrates on finding hot directories for migration. The primary

concept of Origami is to identify migration benefits instead of just

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Yiduo Wang, Wenda Tang, Linghang Meng, Liang Li, and Jie Wu

directory popularity, aiming to optimize balance gains while pro-

tecting locality. Moreover, inspired by ML-driven caching solutions

such as Balleen and GL-cache [45, 48], Origami aims to shorten the

user job completion time rather than evenly partition.

Scaling metadata up. Recent research has explored scaling meta-

data with new hardware like persistent memory and SmartNICs [10,

17, 47], or reducing the coordination overhead of cross-server meta-

data operations [10, 26, 27, 40]. In contrast, Origami focuses on

scaling out metadata, complementing these strategies.

7 Conclusion
The hierarchical namespace of DFS presents significant challenges

for effectively balancing metadata. Traditional methods, while ef-

fective in evenly distribute metadata, often disrupt namespace lo-

cality and fail to optimize job completion time. This paper proposes

Origami, a framework designed to train ML-guided metadata load

balancing with the aim of maximizing the migration benefit in user

job completion times. Origami utilizes the Meta-OPT algorithm to

identify strategies that enhance migration benefits and trains and

validates ML models on OrigamiFS. Compared to hash and sub-

tree strategies, Origami can achieve a favorable balance between

load balancing and namespace locality, which improves metadata

throughput by up to 151. 3%, and increases end-to-end filesystem

throughput by 1.11-2.02×.

References
[1] Cristina L Abad, Huong Luu, Nathan Roberts, Kihwal Lee, Yi Lu, and Roy H

Campbell. 2012. Metadata traces and workload models for evaluating big storage

systems. In IEEE UCC’12.
[2] Michael Abd-El-Malek, William V Courtright II, Chuck Cranor, et al. 2005. Ursa

Minor: Versatile Cluster-based Storage.. In FAST’05.
[3] Sadaf R Alam, Hussein N El-Harake, Kristopher Howard, Neil Stringfellow, and

Fabio Verzelloni. 2011. Parallel I/O and the metadata wall. In PDSW’11.
[4] A.S.Foundation. 2020. Log files - apache HTTP server version 2.4. https://httpd.

apache.org/docs/2.4/logs.html

[5] AWS. 2006. Cloud Object Storage - Amazon S3 . https://aws.amazon.com/s3/.

Accessed May 1, 2025.

[6] Ceph Community. 2017. CephFS subtree pinning. https://ceph.io/community/

new-luminous-cephfs-subtree-pinning/. Accessed May 1, 2025.

[7] Chao Dong, Fang Wang, Yuxin Yang, et al. 2023. Low-Latency and Scalable

Full-path Indexing Metadata Service for Distributed File Systems. In ICCD’23.
IEEE, 283–290.

[8] Yuanning Gao, Xiaofeng Gao, Ruisi Zhang, and Guihai Chen. 2021. An end-to-end

learning-based metadata management approach for distributed file systems. IEEE
TC 71, 5 (2021), 1021–1034.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file

system. In SOSP’03.
[10] Hao Guo, Youyou Lu, Wenhao Lv, Xiaojian Liao, Shaoxun Zeng, and Jiwu Shu.

2023. SingularFS: A Billion-Scale Distributed File System Using a Single Metadata

Server. In ATC’23. 915–928.
[11] Apache Hadoop. 2006. Hadoop distributed file system. http://hadoop.apache.org.

Accessed May 1, 2025.

[12] Hops Hadoop. 2021. HopsFS 3.2.0.4. https://github.com/hopshadoop/hops/tree/3.

2.0.4. Accessed May 1, 2025.

[13] Jan Heichler. 2014. An introduction to BeeGFS.

[14] Xiuqi Huang, Yuanning Gao, Xinyi Zhou, et al. 2023. An adaptive metadata man-

agement scheme based on deep reinforcement learning for large-scale distributed

file systems. IEEE/ACM TON 31, 6 (2023), 2840–2853.

[15] Guolin Ke, Qi Meng, Thomas Finley, et al. 2017. Lightgbm: A highly efficient

gradient boosting decision tree. NeurIPS’17 30 (2017).

[16] Guolin Ke, Zhenhui Xu, Jia Zhang, et al. 2019. DeepGBM: A deep learning

framework distilled by GBDT for online prediction tasks. In KDD’19. 384–394.
[17] Jongyul Kim, Insu Jang, et al. 2021. LineFS: Efficient SmartNIC Offload of a

Distributed File System with Pipeline Parallelism. In SOSP’21. 756–771.
[18] Andrew W Leung, Shankar Pasupathy, Garth R Goodson, et al. 2008. Measure-

ment and Analysis of Large-Scale Network File System Workloads.. In ATC’08.
[19] Qiang Li, Lulu Chen, Xiaoliang Wang, et al. 2023. Fisc: A Large-scale Cloud-

native-oriented File System. In FAST’23. 231–246.

[20] Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao Li. 2017. LocoFS: a loosely-

coupled metadata service for distributed file systems. In SC’17.
[21] Gang Liao and Daniel J Abadi. 2023. FileScale: Fast and Elastic Metadata Man-

agement for Distributed File Systems. In SoCC’23. 459–474.
[22] Haifeng Liu, Wei Ding, Yuan Chen, et al. 2019. CFS: A distributed file system for

large scale container platforms. In SIGMOD’19. 1729–1742.
[23] Jiaxi Liu, Renxuan Wang, Xiaofeng Gao, Xiaochun Yang, and Guihai Chen. 2017.

AngleCut: A ring-based hashing scheme for distributed metadata management.

In DASFAA’17. Springer, 71–86.
[24] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, et al. 2016. DAOS and friends: a

proposal for an exascale storage system. In SC’16. IEEE, 585–596.
[25] Lustre. 2017. Lustre metadata service. https://wiki.lustre.org/Lustre_Metadata_

Service_(MDS). Accessed May 1, 2025.

[26] Wenhao Lv, Youyou Lu, Yiming Zhang, et al. 2022. InfiniFS: An Efficient Metadata

Service for Large-Scale Distributed Filesystems. In FAST’22. 313–328.
[27] Tatsuhiro Nakamori, Jun Nemoto, Takashi Hoshino, and Hideyuki Kawashima.

2022. Decentralization of two phase locking based protocols. In HPDC’22. 281–
282.

[28] Stefano Nembrini, Inke R König, and Marvin N Wright. 2018. The revival of the

Gini importance? Bioinformatics 34, 21 (2018), 3711–3718.
[29] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt,

and Mikael Ronström. 2017. HopsFS: Scaling hierarchical file system metadata

using newsql databases. In FAST’17. 89–104.
[30] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov,

Abhinav Sharma, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei

Cao, et al. 2021. Facebook’s Tectonic Filesystem: Efficiency from Exascale. In

FAST’21. 217–231.
[31] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.

Pebblesdb: Building key-value stores using fragmented log-structuredmerge trees.

In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP’17).
497–514.

[32] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi, Balaji

Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica Manu, Spiro

Michaylov, Rogério Ramos, et al. 2017. Azure Data Lake Store: a hyperscale

distributed file service for big data analytics. In SIGMOD’17. 51–63.
[33] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. 2014. IndexFS: Scaling

file system metadata performance with stateless caching and bulk insertion. In

SC’14.
[34] Michael A. Sevilla, Noah Watkins, Carlos Maltzahn, et al. 2015. Mantle: A Pro-

grammable Metadata Load Balancer for the Ceph File System. In SC’15.
[35] Konstantin V. Shvachko. 2021. The exabyte club: LinkedIn’s journey of scaling the

Hadoop Distributed File System. https://engineering.linkedin.com/blog/2021/the-

exabyte-club-linkedin-s-journey-of-scaling-the-hadoop-distr. Accessed May 1,

2025.

[36] Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol. 2017. SoMeta:

Scalable object-centric metadata management for high performance computing.

In CLUSTER’17. IEEE, 359–369.
[37] Hind Taud and Jean-Franccois Mas. 2017. Multilayer perceptron (MLP). In

Geomatic approaches for modeling land change scenarios. Springer, 451–455.
[38] Stephen R. Walli. 1995. The POSIX family of standards. ACM Stand. 3, 1 (1995),

11–17. https://doi.org/10.1145/210308.210315

[39] Yiduo Wang, Cheng Li, Xinyang Shao, Youxu Chen, Feng Yan, and Yinlong Xu.

2021. Lunule: an agile and judicious metadata load balancer for CephFS. In SC’21.
1–16.

[40] Yiduo Wang, Yufei Wu, Cheng Li, et al. 2023. CFS: Scaling Metadata Service

for Distributed File System via Pruned Scope of Critical Sections. In EuroSys’23.
331–346.

[41] Yuanzhang Wang, Fengkui Yang, Ji Zhang, et al. 2022. Ldpp: A learned directory

placement policy in distributed file systems. In ICPP’22. 1–11.
[42] Yuanzhang Wang, Peng Zhang, Fengkui Yang, Ke Zhou, and Chunhua Li. 2024.

LoADM: Load-Aware Directory Migration Policy in Distributed File Systems. In

DATE’24. IEEE, 1–6.
[43] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. 2006. Ceph: A Scalable, High-Performance Distributed File System. In

OSDI’06. USENIX Association, Seattle, WA.

[44] Sage AWeil, Kristal T Pollack, Scott A Brandt, and Ethan L Miller. 2004. Dynamic

metadata management for petabyte-scale file systems. In SC’04.
[45] Daniel Lin-Kit Wong, Hao Wu, Carson Molder, Sathya Gunasekar, Jimmy Lu,

Snehal Khandkar, Abhinav Sharma, Daniel S Berger, Nathan Beckmann, and

Gregory R Ganger. 2024. Baleen:ML Admission & Prefetching for Flash Caches.

In FAST’24. 347–371.
[46] Jing Xing, Jin Xiong, Ninghui Sun, and Jie Ma. 2009. Adaptive and scalable

metadata management to support a trillion files. In SC’09. IEEE, 1–11.
[47] Jingwei Xu, Mingkai Dong, Qiulin Tian, Ziyi Tian, Tong Xin, and Haibo Chen.

2024. AsyncFS: Metadata Updates Made Asynchronous for Distributed Filesys-

tems with In-Network Coordination. arXiv preprint arXiv:2410.08618 (2024).
[48] Juncheng Yang, Ziming Mao, Yao Yue, and KV Rashmi. 2023. GL-Cache: Group-

level learning for efficient and high-performance caching. In FAST’23. 115–134.

https://httpd.apache.org/docs/2.4/logs.html
https://httpd.apache.org/docs/2.4/logs.html
https://aws.amazon.com/s3/
https://ceph.io/community/new-luminous-cephfs-subtree-pinning/
https://ceph.io/community/new-luminous-cephfs-subtree-pinning/
http://hadoop.apache.org
https://github.com/hopshadoop/hops/tree/3.2.0.4
https://github.com/hopshadoop/hops/tree/3.2.0.4
https://wiki.lustre.org/Lustre_Metadata_Service_(MDS)
https://wiki.lustre.org/Lustre_Metadata_Service_(MDS)
https://engineering.linkedin.com/blog/2021/the-exabyte-club-linkedin-s-journey-of-scaling-the-hadoop-distr
https://engineering.linkedin.com/blog/2021/the-exabyte-club-linkedin-s-journey-of-scaling-the-hadoop-distr
https://doi.org/10.1145/210308.210315

Origami: Efficient ML-Driven Metadata Load Balancing for Distributed File Systems ICPP ’25, September 08–11, 2025, San Diego, CA, USA

A Proof of Theorem 1 and Analysis of
Algorithm 1

Proof of Theorem 1. Benefit formulation. To mitigate the

issue of load imbalance, we identify and migrate a subset of meta-

data from an overloaded machine 𝐴 to an underloaded machine 𝐵.

Denote the load difference as 𝐷 = 𝐴.rct−𝐵.rct. Migrating subtree 𝑠

from machine A to machine B reduces A’s RCT by 𝑙𝑠 and increases

B’s RCT by 𝑙𝑠 + 𝑜𝑠 , where 𝑙𝑠 and 𝑜𝑠 represents the load and addi-

tional overhead associated with subtree 𝑠 respectively. After the

migration, the system’s overall performance is the maximum of the

two machines’ RCTs. Therefore, the benefit of migrating 𝑠 is

𝑏0 =

{
𝑙𝑠 , 𝐷 ≥ 2𝑙𝑠 + 𝑜𝑠
𝐷 − (𝑙𝑠 + 𝑜𝑠), 𝐷 < 2𝑙𝑠 + 𝑜𝑠

Benefit of optimal solution. If the optimal solution is to migrate

a set of disjoint subtrees contained within subtree 𝑠 , denoted as

{𝑘1, . . . , 𝑘𝑁 }. The corresponding benefit is

𝑏1 =

{∑
𝑘𝑛 𝑙𝑘𝑛 , 𝐷 ≥ ∑

𝑘𝑛 (2𝑙𝑘𝑛 + 𝑜𝑘𝑛)
𝐷 −∑𝑘𝑛 (𝑙𝑘𝑛 + 𝑜𝑘𝑛), 𝐷 <

∑
𝑘𝑛 (2𝑙𝑘𝑛 + 𝑜𝑘𝑛)

The sub-optimality gap is written as 𝑏0 −𝑏1, which measures the

performance of Alg. 1. A lower bound for this gap is desired.

Conditions. Since subtrees {𝑘1, . . . , 𝑘𝑁 } are all nested within sub-

tree 𝑠 , their cumulative load and overhead must be strictly smaller

than those of 𝑠 . So we have 𝑙𝑠 >
∑

𝑘𝑛 𝑙𝑘𝑛 , 𝑜𝑠 >
∑

𝑘𝑛𝑜𝑘𝑛 .Moreover,

to prevent the migration from introducing a new imbalance, Alg. 1

imposes an additional constraint (Line 9 in Alg. 1):

Δ >𝐵.rct + 𝑙𝑠 + 𝑜𝑠 − (𝐴.rct − 𝑙𝑠) = 2𝑙𝑠 + 𝑜𝑠 − 𝐷.

Lower bound for the gap. Given the above conditions, we can

get that when 𝐷 ≥ 2𝑙𝑠 + 𝑜𝑠 ,

𝑏0 − 𝑏1 = 𝑙𝑠 −
∑︁

𝑘𝑛
𝑙𝑘𝑛 > 0.

When

∑

𝑘𝑛 (2𝑙𝑘𝑛 + 𝑜𝑘𝑛) ≤ 𝐷 < 2𝑙𝑠 + 𝑜𝑠 ,

𝑏0 − 𝑏1 = 𝐷 − (𝑙𝑠 + 𝑜𝑠) −
∑︁

𝑘𝑛
𝑙𝑘𝑛 > 𝐷 − 2𝑙𝑠 − 𝑜𝑠 > −Δ.

When 𝐷 <
∑

𝑘𝑛 (2𝑙𝑘𝑛 + 𝑜𝑘𝑛),

𝑏0 − 𝑏1 =
∑︁

𝑘𝑛
(𝑙𝑛 + 𝑜𝑛) − (𝑙𝑠 + 𝑜𝑠) > −Δ.

This completes the proof. □

The above analysis indicates that when there is a significant

imbalance, specifically, when the imbalance 𝐷 exceeds 2𝑙𝑠 + 𝑜𝑠 , the
greedy decisionmade by Alg. 1 is indeed optimal. On the other hand,

when the load difference is relatively small, Alg. 1 may no longer

yield the optimal result. In these scenarios, the optimal strategy

would involve carefully selecting and migrating a finely tuned

set of smaller subtrees to achieve a more balanced state without

introducing significant overhead.

Nevertheless, the performance gap between Alg. 1 and the op-

timal solution remains bounded. The benefit difference between

the greedy solution and the optimal fine-grained adjustment is

bounded by Δ. This ensures that even in suboptimal conditions,

Alg. 1 maintains performance within a controlled margin of error.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Distributed Metadata Management
	2.2 Even Partitioning Considered Harmful
	2.3 Limitations of Metadata Partitioning
	2.4 Challenges of ML-based Balancing

	3 Potential Benefits of Balancing
	3.1 Measure RCT Instead of Balance
	3.2 Estimating the Benefits of Migration

	4 Toward Efficient ML Balancing
	4.1 System Overview
	4.2 OrigamiFS Architecture
	4.3 Origami Workflow

	5 Evaluation
	5.1 Experiment Setup
	5.2 Overall Performance
	5.3 Balance Analysis
	5.4 Metadata Cache Analysis
	5.5 Efficiency and Scalability
	5.6 Real-world Workload Results

	6 Related Work
	7 Conclusion
	References
	A Proof of Theorem 1 and Analysis of Algorithm 1

