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Abstract

The emergence of byte-addressable memory technologies, such as
CXL-attached memory, has catalyzed extensive research into tiered
memory management. Existing tiering solutions optimize system-
wide performance by migrating frequently accessed (“hot”) data to
fast-tier memory via page migration, which serves as the de facto
mechanism in modern OS. However, these strategies often fail in the
multi-tenant environment, where diverse workloads interfere with
each other. For example, latency-critical workloads co-located with
throughput-oriented ones may face the “cold page dilemma,” where
critical pages are misclassified as “cold” and migrated to slower tiers,
leading to significant performance degradation. Moreover, current
methods often assume negligible migration overhead, which be-
comes problematic in multi-core systems handling write-intensive
workloads that incur substantial costs. This paper proposes VULCAN,
a workload-aware tiered memory management framework that tar-
gets fair and efficient tiering in multi-tenant environments. VuLcan
introduces four key innovations: (1) workload-dependent migra-
tion mechanism, which decouples page migration from the OS
kernel to enhance operational flexibility for multi-workloads; (2)
QoS-aware fair resource partitioning, which dynamically optimizes
fast memory distribution through per-workload fast tier hit ratios
and fairness-oriented allocation policies; (3) per-thread page ta-
ble replication, which minimizes TLB coherence overhead during
migration; and (4) biased page migration policy, which optimizes
efficiency by considering both access characteristics (read-intensive
vs. write-intensive) and thread-level page ownership (private vs.
shared). We evaluated VuLcAaN using multiple representative cloud
applications with realistic working sets in co-location scenarios.
VuLcAN improves performance by 12.4% on average and achieves a
75.3% improvement in fairness compared to existing state-of-the-art
memory tiering solutions.
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1 Introduction

The rise of big data applications has resulted in a significant in-
crease in main memory requirements [3, 18, 24]. For example, ma-
chine learning (ML) models are expected to grow by 50X in the
next few years [25]. As data-intensive applications continue to
scale, the existing memory hierarchy struggles to keep pace with
the growing demand. Fortunately, emerging memory technologies,
such as Compute eXpress Link (CXL) [23, 44] and Non-Volatile
Memory (NVM) (e.g., Intel Optane DC PMem) [19] present new
opportunities to address this challenge. Using a tiered memory
architecture [20, 23, 44] that integrates various types of memory
with varying capacity, latency, and cost characteristics, systems can
achieve a balance between scalability and cost-effectiveness.
However, such architectures pose significant challenges for data
management due to the highly diverse memory access patterns
of workloads. These patterns differ significantly depending on
the workload type: latency-critical (LC) workloads, such as on-
line services, require low-latency responses, while best-effort (BE)
workloads, like batch processing, prioritize throughput. For ex-
ample, large-scale graph processing involves intensive irregular
random access [9], while in-memory databases combine sequential
and random access [17]. This diversity significantly complicates
maintaining consistent performance, particularly when LC and BE
workloads are co-located to maximize resource utilization.
Researchers have proposed various dynamic data management
techniques that aim to optimize data placement and movement
within tiered memory architectures [8, 18, 23, 27, 29, 31, 39-41].
These approaches commonly utilize a placement algorithm that, at
runtime, moves hot data to the fast-tier memory (promotion) and
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cold data to the slow-tier memory (demotion) [18, 31, 37, 40]. These
methods vary in migration granularity, such as cache lines [44],
pages [31, 39-41], or objects [5, 32], and often incorporate strategies
based on data access frequency [29], recency [41], or a combination
of both [12]. Among these, page-based migration is popular for bal-
ancing control and overhead. Compared to cache-coherent-based
migration (via cache-line granularity), it reduces metadata over-
head and migration frequency, avoids inefficiencies such as cache
thrashing, and does not require specialized hardware support. It
also offers better adaptability than object-based migration, which
relies on application-level code modifications to manage data place-
ment. Furthermore, page-based migration integrates seamlessly
with existing memory management mechanisms, such as paging-
based virtual memory and Translation Lookaside Buffers (TLBs),
making it both practical and efficient.

Limitations of Prior Successes. Although existing page-based
memory tiering solutions are effective in optimizing system-wide
performance, they have two fundamental limitations. First, they
often rely on raw page access statistics without normalizing across
different workload characteristics, which poses a fundamental chal-
lenge for providing performance isolation in the multi-tenant envi-
ronment. For example, when co-located with BE workloads, which
generate sustained and frequent memory accesses, LC workloads
are forced into the “cold page dilemma” because BE workloads tend
to monopolize fast memory by making their working sets appear
persistently “hot”. This imbalance in data placement causes essen-
tial hot pages of LC workloads to be classified as cold and migrated
to slower memory tiers, resulting in performance degradation to
0.8x of the standalone baseline. This phenomenon highlights the
need to reevaluate memory tiering solutions in the multi-tenant
environment to address the “dilemma” and improve fairness. We
provide a detailed analysis of the dilemma in § 2.2.

Second, existing memory tiering solutions often assume that the
overhead of page migration between memory tiers is negligible.
However, as we demonstrate in § 2.2, this assumption does not hold
in practice, particularly in multi-core systems. We found that page
migration introduces two main sources of overhead: migration
preparation and page remapping. During the preparation phase,
operations such as draining per-CPU LRU caches and acquiring
migration locks incur substantial cross-core synchronization costs,
with preparation time increasing by up to 30X when scaling from
2 to 32 cores. Furthermore, during the remapping phase, updating
page table entries triggers TLB coherence operations across all
cores [4], consuming up to 65% of total page migration cycles.
These overheads not only degrade system performance but also
limit the scalability of tiered memory systems.

Insights. To address the “cold page dilemma” and mitigate the
high overhead associated with page migration, we present VuLcan!,
a novel workload-aware tiered memory management framework
that targets fair and efficient memory tiering for multi-tenant envi-
ronments, striving to ensure that no one is left behind. The design
of VuLcAN is driven by four key insights: @ workload-dependent
tiering could prevent the “cold page dilemma” by dynamically allo-
cating fast-tier memory based on workload-specific requirements,

1Vurcan, the Roman god known for crafting diverse weapons, each tailored for unique
purposes, mirrors our system’s ability to optimize memory for diverse applications.
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ensuring performance isolation and reducing unnecessary global
synchronization. @ Fairness and resource efficiency are crucial
in the multi-workload environment to prevent resource starva-
tion, ensure equitable memory distribution, and enhance perfor-
mance for tiering-sensitive workloads, thus improving overall sys-
tem efficiency. ® Precise knowledge of page-sharing threads can
be leveraged to minimize the scope of TLB shootdowns, as coher-
ence actions are only necessary for threads actually sharing the
same page-table entries (PTEs), enabling targeted updates instead of
system-wide operations. @ The diverse performance impact of page
migration calls for a more fine-grained policy, as migration over-
head varies significantly based on access frequency (read-intensive
vs. write-intensive) and thread-level ownership (private vs. shared).
Sketch of VuLcan Design. Based on these insights, VurLcan
employs workload-dependent tiering mechanisms to achieve per-
formance isolation, effectively preventing the “cold page dilemma”
by dynamically adjusting fast-tier memory allocation according to
workload-specific requirements. This approach ensures that crit-
ical workloads maintain high performance while minimizing in-
terference between workloads. Additionally, such tiering reduces
system-wide CPU synchronization overhead by avoiding unnec-
essary global synchronization, further improving migration effi-
ciency. Beyond performance isolation, VULCAN ensures fairness
and resource efficiency by dynamically balancing resource alloca-
tion based on the effectiveness of tiering. This adaptive mechanism
allows workloads with higher sensitivity to tiering to receive prior-
itized resources, maximizing overall system efficiency while main-
taining fairness across workloads. To further enhance migration
efficiency, VULcAN leverages precise knowledge of page-sharing
threads to minimize the scope of TLB shootdowns during page
migration. By maintaining per-thread page tables, VuLcaN limits
TLB coherence operations to only the necessary cores, avoiding
unnecessary system-wide coherence. Finally, VULCAN prioritizes
asynchronous copying for read-intensive and private pages, while
deferring write-intensive and shared pages to synchronous copying,
thereby avoiding execution stalls during page migration.
To summarize, the contribution of this paper mainly includes:

e Analyses. We thoroughly analyze the behavior of existing
tiered memory systems on multi-core architectures under
multi-workload co-location scenarios and present two key
findings: 1) we identify the “cold page dilemma”, which arises
from conventional hotness-based allocation that dispropor-
tionately favors high-intensity workloads, causing LC appli-
cations to lose access to essential fast-tier memory; 2) we
reveal the hidden costs of page migration, often ignored in
existing systems, which incur substantial overhead in multi-
threaded applications due to TLB shootdowns, memory copy
costs, and cross-core synchronization, often offsetting the
intended performance benefits of memory tiering.

e VuLcaN Design. We propose VULCAN, the first tiered mem-
ory page management framework that addresses the above
problems with four key innovations: 1) workload-dependent
migration mechanism to achieve greater flexibility and per-
formance isolation in the multi-tenant environment (§ 3.2); 2)
online profiling-guided memory allocation to ensure fair and
efficient fast memory distribution across workloads (§ 3.3);
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3) per-thread page table replication to reduce TLB coher-
ence overhead and improve multi-threaded memory access
efficiency (§ 3.4), and 4) biased page migration policy to
prioritize selecting pages with lower migration overhead by
analyzing their access patterns and page ownerships (§ 3.5).

e Evaluation. We conduct a comprehensive evaluation of
VULCAN using various microbenchmarks and representa-
tive memory-intensive applications, comparing its perfor-
mance against several leading memory tiering solutions in
co-location scenarios. Our results show that Vurcan im-
proves performance by an average of approximately 12.4%
across different workloads and improves the fairness of mem-
ory allocation by an average of 75.3%.

2 Background and Motivation

Tiered memory systems have emerged as a critical solution to ad-
dress the increasing memory demands of modern workloads by
combining fast, expensive memory (e.g., DRAM or High Bandwidth
Memory (HBM)) with slower, larger and cheaper memory (e.g.,
NVM). These systems rely on effective page management to dy-
namically allocate memory across tiers and maximize performance.
However, managing tiered memory is non-trivial due to the compet-
ing demands of diverse workloads, the overhead of page migration,
and the need to ensure fairness among co-located applications.

To better understand the challenges and limitations of existing
tiered memory systems, we first discuss their core components,
including profiling mechanisms, migration mechanisms, and migra-
tion policies. We then analysis the key challenges faced by current
tiered memory systems, particularly under co-located workloads,
and identify the hidden costs of page migration. This analysis high-
lights the inefficiencies in current approaches and motivates the
need for novel solutions.

2.1 Analysis of Tiered Memory Management

Most of the multi-tier memory page management systems consist of
three components: a profiling mechanism, a migration mechanism,
and a migration policy [31, 40].

(1) Profiling mechanism plays a crucial role in understanding
page access patterns and making effective migration decisions in
tiered memory systems. Three primary profiling methods are com-
monly used: NUMA (Non-uniform memory access) hinting faults,
page table scanning/profiling and CPU performance counters. NUMA
hinting faults utilize a fake page fault by poisoning through reserved
PTE bits to estimate access frequency, as used in AutoTiering [16],
FlexMem [40] and TPP [23], but incur extra latency from fault han-
dling. A variant of NUMA hinting faults is the timer-based hotness
measurement method, as recently implemented in Chrono [27],
which improves the estimation of access frequency by recording
idle time. Page table scanning periodically checks PTE reference bits
to determine access frequency, adopted by systems such as Nim-
ble [41] and MULTI-CLOCK [22], but faces scalability challenges
with per-page scanning. Telescope [24] introduces an advanced
variant, page table profiling, for efficient terabyte-scale tiered mem-
ory systems. The last method uses Processor Event-Based Sampling
(PEBS) to monitor hardware events such as LLC (Last-Level Cache)
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misses for per-page access statistics [8, 18, 20, 29, 40], though it suf-
fers from high false negatives at the terabyte scale due to sampling
limitations [24]. Unfortunately, none provide a universal solution
due to inherent compromises, indicating that applications should in-
dependently select the profiling approach that best fits their needs.

(2) Migration mechanism describes how pages are transferred
between memory tiers through five key steps: @ kernel trapping,
® PTE locking and unmapping, ® TLB shootdown through IPIs
(Inter-Processor Interrupts), @ content copying between tiers, and
® PTE remapping [39]. Pages can be migrated either synchronously,
blocking program execution for immediate migration (as in TPP’s
page promotion [23]), or asynchronously [18, 31, 39] through dedi-
cated threads like kswapd off the critical path. Recent research has
explored various optimization techniques to reduce the migration
overhead associated with the migration mechanism. For example,
Nimble [41] introduces optimized mechanisms like transparent
huge page and concurrent multi-page migration for better scalabil-
ity. HeMem [29] employs DMA engines to accelerate page copying
between tiers. MEMTIs [18] and TMTS [8] move migration off the
critical path. NomaD [39] further removes page migration from
the critical path of program execution by employing transactional
migration, making migration completely asynchronous. However,
existing methods inevitably incur significant TLB coherence over-
head during migration, which adversely affects system performance
and scalability.

(3) Migration policy determines when and which pages to
migrate between memory tiers for better performance. Modern sys-
tems like Linux, TPP [23], and AutoTiering [16] use proactive page
reclamation when fast-tier memory falls below a low_watermark
threshold, while Colloid [37] adaptively balances hot pages across
tiers based on tier-specific access latencies. However, most existing
policies overlook migration overhead. To the best of our knowl-
edge, NoMaD [39] is one of the pioneering works that addresses
this issue by introducing page shadowing to mitigate performance
impact. Despite this, it fails to adapt policies based on page ac-
cess characteristics, rendering it suboptimal. Although another
approach, MTM [31], utilizes both asynchronous and synchronous
page copying based on write intensity, i.e., synchronous page copy-
ing for write-intensive pages and asynchronous page copying for
read-intensive ones, it still lacks a fine-grained consideration of the
migration costs inherent in multi-CPU core scenarios, which can
lead to suboptimal performance during concurrent migrations.

2.2 Motivation

In this section, we identify and summarize key observations on two
fundamental issues that current tiered memory systems fail to ad-
dress in real-world multi-tenant scenarios on multi-core platforms.

Cold Page Dilemma. Existing memory tiering solutions struggle
to meet Quality of Service (QoS) demands under the co-location
of LC and BE workloads. The presence of BE workloads leads to
significant performance degradation for LC applications, particu-
larly when fast memory resources are constrained. To illustrate
this issue, we use MEMTIS [18], a state-of-the-art capacity-based
tiering system that represents modern tiering solutions to classify
hot and cold pages and evaluate the performance of co-located



ICPP °25, September 08-11, 2025, San Diego, CA, USA

e e e e e == (d)

] - i 80
€ 501 3 Memcached Hot Fast Memory Capacity r—
28 ,| B8 Memcached Cold . oooated run
98 4 70 —8— Memcached Perf.
8 - - - —&- Liblinear Perf.
& 20 11 @
60 g
0 I ©
b) - e S .
(b) £ oo{ B3 Liblinear Hot 550 105 €
£8 .| =m Liiinear Cold -] 10 £
: ==+ Fast Memory Capacity g - [
& 540 040 a
£ o 0959
a 20 2 959
0 %30 S =
o 0.9
@ 2 E
£a 100 20 5
20 o 0.852
H
g 50
£2 bl 12 B _ 10 0.8
a 25
0 0.75

10 20 30 40 50 60 70 80 90 100
Time (s) M

em:ached Liblinea’

Figure 1: Hot and cold pages identified over time in
MEemTtis [18] for Memcached (LC) in (a) and Liblinear (BE)
in (b), under solo scenarios, and in the co-located scenario
(c). The impact of co-location on performance and hot page
ratio is shown in (d).

Memcached [10] and Liblinear [35] workloads. Our analysis of the
workload behavior reveals the following key observation.
Observation #1: Current memory tiering is agnostic to workload

memory sensitivity, forcing LC workloads into the “cold page dilemma,”

where hot pages are downgraded to cold as BE workloads monopolize
fast memory, causing higher latency and performance degradation.

Figure 1 illustrates the distribution of hot and cold pages for
Memcached and Liblinear across three scenarios under the same
hardware settings (as described in § 5): (a) Memcached running
in isolation, (b) Liblinear running in isolation, and (c) Memcached
and Liblinear running in a co-located environment. We observe
that when Memcached and Liblinear are co-located, the number of
identified cold pages for Memcached significantly increases com-
pared to its solo execution. This is because MEMTIS ranks memory
pages based on their absolute access frequency and promotes them
to fast memory in descending order of heat until the fast memory
capacity is fully utilized. Due to Liblinear’s higher memory access
intensity, it dominates the fast memory capacity under co-location,
leaving Memcached’s hot pages with limited opportunities for pro-
motion. This behavior is particularly evident in Figure 1 (c), where
Liblinear’s memory heavily occupies the fast tier.

Figure 1 (d) quantifies the impact of co-location on performance.
For Memcached, the average hot page ratio drops drastically from
approximately 75% in solo execution to less than 28% under co-
location, leading to a noticeable performance degradation (normal-
ized performance drops to 0.8). In contrast, Liblinear experiences a
relatively lower performance impact due to its BE workload char-
acteristics and its ability to tolerate slower memory. The results
suggest a need for more effective memory management strategies
to ensure QoS guarantee in a co-located workload environment.
Hidden Costs of Page Migration. To better understand the
overheads of page migration, which are essential for designing
efficient memory tiering mechanisms, we perform three sets of
experiments to investigate the costs associated with page migra-
tion: 1) breaking down single base-page migration overhead with
varying CPU counts (ranging from 2 to 32), 2) analyzing migration
overhead under different numbers of pages and threads with fixed
32 CPUs, and 3) comparing the performance of synchronous and
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asynchronous page copying for hot page migration under different
memory access patterns. These experiments reveal three additional
key observations about page migration.

Observation #2: Page migration suffers from poor scalability due
to system-wide synchronization overhead in migration preparation,
which dominates total migration time as CPU count increases.

As shown in Figure 2, when scaling from 2 to 32 CPUs, the
migration preparation cost dominates and increases dramatically
from 38.3% to 76.9% of the total migration time, while other phases,
such as page unmapping and copying, decrease proportionally.
More critically, the total migration latency for this single page
scales poorly with CPU count, rising from 50K to 750K cycles,
highlighting the severe impact of multi-CPU synchronization over-
head. This poor scalability stems from the migration preparation
in the Linux kernel, driven by the LRU cache flushing mecha-
nism (1ru_add_drain_all()), which uses on_each_cpu_mask()
for CPU synchronization. The synchronization process introduces
various overheads, including lock contention, cache line invalida-
tion, and potential scheduling delays, all of which escalate signifi-
cantly as the CPU count increases.

Observation #3: TLB coherence management presents a scalability
challenge in page migration, particularly in migrations requiring
multi-core TLB synchronization.

Even with migration preparation overhead eliminated through
some optimizations, fast page migration remains challenging due to
the cross-CPU TLB coherence requirements during page remapping.
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Figure 4: Performance comparison of synchronous and asyn-
chronous page copying for hot page migration across differ-
ent read-write ratios (higher is better).

As shown in Figure 3, our experiments on a 32-core system reveal
an interesting trade-off between TLB operations and page copying
costs. When migrating few pages, page copying dominates the total
migration time as TLB synchronization overhead is minimal. How-
ever, as the number of pages increases, the TLB coherence overhead
grows significantly due to increased cross-CPU synchronization,
while the page copying overhead grows relatively slowly. This leads
to TLB operations that consume up to 65% of the total migration
time with 32 threads and 512 pages, becoming a major bottleneck
in many core systems.

Observation #4: To sync or to async? That is the question in migrating
hot pages across varied memory access patterns.

We perform a microbenchmark workload that promotes a single
base-page from a slow tier to a fast tier while simultaneously ac-
cessing the page with varying read/write ratios. This setup allows
us to compare the performance of synchronous and asynchronous
page copying mechanisms under different access patterns, high-
lighting their respective trade-offs in handling promotion of hot
pages. As shown in Figure 4, asynchronous copying, which per-
forms background page copying and remapping at appropriate
times, excels in read-intensive workloads by reducing immediate
page copying stalls. However, it may struggle in write-intensive
workloads due to high dirty page rates, leading to repeated copying
or migration failures. In contrast, synchronous copying performs
better for write-intensive workloads as it handles high dirty page
rates more effectively, avoiding migration inefficiencies.
Implications. The above observations motivate us to design a
workload-aware memory tiering framework to improve perfor-
mance and scalability in the multi-tenant environment. The frame-
work should dynamically adapt memory allocation policies to avoid
the “cold page dilemma” and ensure low-latency workloads are
not penalized by fast memory monopolization (Observation #1).
When handling page migrations, the framework should optimize
system-wide synchronization processes and manage TLB coher-
ence efficiently to overcome scalability bottlenecks in multicore
systems (Observation #2 and Observation #3). Finally, the mi-
gration strategy should be adaptive, leveraging synchronous or
asynchronous approaches based on workload characteristics and
memory access patterns, thus improving flexibility and reducing
migration overhead (Observation #4).

3 Design of VuLcan

In this section, we elaborate on the design details of VULCAN starting
with an overview, followed by detailed discussions of its main parts.
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Figure 5: The overall architecture of VuLcan.

3.1 Overview

Design Goals. We derive the following three first-order design
goals for VurLcan: (G#1) The system should enable workload-specific
migration strategies, providing the flexibility needed to adapt to
diverse and dynamic workload demands. (G#2) The system should
ensure fair and balanced allocation of fast memory resources among
co-located workloads, guided by workload demands and QoS re-
quirements. (G#3) The system should optimize page migration
efficiency to minimize performance impact by improving both mi-
gration strategies and mechanisms.

Architecture. To achieve the above goals, VuLcaN’s design con-
sists of four components (see Figure 5 for details, introduced later).

(1) Workload-Dependent Page Migration. VULCAN inte-
grates a lightweight user-space manager with applications, enabling
fine-grained and transparent migration that is precisely tailored to
the specific needs of each workload.

(2) QoS-Aware Fair Resource Partitioning. As discussed
in § 2.2, applications exhibit diverse memory behaviors. VuLcan
ensures long-term fairness by dynamically partitioning fast memory
tiers across multiple applications.

(3) Per-Thread Page Table Replication. To mitigate TLB
shootdowns caused by page migration in multithreaded applica-
tions, VULCAN maintains per-thread page table replicas, reducing
TLB coherence overhead.

(4) Biased Page Migration Policy. Through access pattern
analysis and thread-level page table replication, VULCAN priori-
tizes read-intensive and private pages for biased migration while
deferring write-intensive and shared pages to minimize overhead.

3.2 Workload-Dependent Page Migration

VuLcaN adopts a decentralized approach, allowing applications
to manage memory page migration independently. This is imple-
mented through a dynamically linked library (via LD_PRELOAD)
and dedicated migration threads created for each application. This
approach satisfies the first goal G#1 presented in § 3.1.
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As shown in Figure 5, the migration daemon operates exclu-
sively on a controlled set of whitelisted applications managed by
the system administrator. This access control mechanism ensures
operational security while maintaining system stability. The dae-
mon leverages eBPF (extended Berkeley Packet Filter) [2] to support
flexible profiling choices through multiple mechanisms (e.g., PEBS
sampling, page table scanning), enabling decoupled page profil-
ing selection. For example, the daemon could utilize Linux’s perf
interface (i.e., perf_event_open()) to collect memory access pat-
terns for hot page identification, while an eBPF program hooked
to do_pages_move () provides targeted monitoring exclusively for
managed processes. Inspired by FlexMem [40], VuLcaN by default
adopts a hybrid profiling approach that integrates performance
counter-based profiling and page hinting fault-based profiling to
overcome the limitations of sampling-based memory tracking. To
optimize memory migration, migration decisions, made by the
access pattern-aware migration policy (to be discussed in § 3.5),
are triggered periodically by the daemon and executed in parallel
by each application’s dedicated migration threads through shared
memory interfaces, eliminating system-wide synchronization cost.

3.3 QoS-Aware Fair Resource Partitioning

Intuitively, allocating enough fast memory to each application helps
to preserve performance, as frequent access to slower memory tiers
can significantly degrade it [8]. A straw-man solution is uniform
allocation, which evenly distributes fast memory across co-located
workloads in tiered memory systems. Although simple and initially
fair, this approach often results in inefficiencies due to its inability to
adapt to the dynamic and variable memory demands of workloads.
High-demand workloads may experience resource shortages, while
others receive excessive resources, leading to suboptimal efficiency.
To address this issue, we propose a dynamic partitioning strategy
that simultaneously improves resource efficiency while guarantee-
ing fair allocation of fast memory among co-located workloads in
tiered memory systems.
Tiered Memory QoS Policy. To quantify memory tiering per-
formance, we define a workload-specific guaranteed performance
target GPT; = %Aéic, i € {1,2,...,n}, where n denotes the number
of co-located workloads. The GPT;, akin to a QoS baseline, quanti-
fies the relationship of workload i’s fast memory allocation to the
system’s overall fast memory capacity. Here, GFMC (Guaranteed
Fast Memory Capacity) refers to the fast memory equally allocated
among all co-located workloads, dynamically adjusting based on
n. RSS; (Resident Set Size) denotes the memory actively used by
workload i. When GFMC > RSS;, we keep GPT; = 1, indicating
that fast memory fully covers the active memory of the workload.
Otherwise, when GFMC < RSS;, this indicates that only part of the
active memory resides in fast memory, with the rest in slower tiers.
Although GPT; provides a workload-specific QoS guarantee to
evaluate fast memory allocation, it does not capture the dynamic
behavior of fast memory utilization over time. To this end, we define
the Fast-Tier Hit Ratio (FTHR) as a dynamic metric that reflects the
effectiveness of fast memory usage over time. For workload i, the
FTHR; is updated iteratively based on both recent and historical
sampling data. At time ¢, N samples are collected to compute the
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Algorithm 1: Credit-Based Fair Resource Partitioning

Input :Latency-critical & best-effort workloads: LC, BE
Credits of all workloads: C
Resource demand of workloads: D = {demand;}
Output: Updated fast tier memory allocation: A= {alloc;}
Updated credits: C’
1 forie{1,2,..,n} do
2 L alloc; «— min{demand;, GFMC} ;
3 LC_borrowers « {i € LC | alloc; < demand;};
4 BE_borrowers < {i € BE | alloc; < demand;};
5 donors « {i | alloc; > demand;};
6 while LC_borrowers # 0 or BE_borrowers # 0 do

7 b* « Select borrower from LC_borrowers if
non-empty, else BE_borrowers;
8 if donors # () then
9 d* « Select donor with minimum credits;
10 Transfer 1 unit from d* to b* and update credits C;
1 else if b* € LC and BE # () then
12 d* « Randomly select BE task with
allocg+ > GFMC;
13 Transfer 1 unit from d* to b* and update credits C;
14 else
15 L return;
16 if allocpy» == demandp then
17 Remove b* from LC_borrowers if b* € LC, else
L from BE_borrowers;

average hit ratio, denoted as:

N
Zk:l Afast,ik

Hiy = 1)

ZkN=1 (Afast,ik + Aslow,i k)

where ag,g ; ;- and agjoy, ; k represent the number of memory ac-
cesses to fast and slow memory, respectively, during the k-th sample.
The value of FTHR; is then updated using the exponential moving
average (EMA), which considers historical data while prioritizing
recent observations, balancing responsiveness with stability:

FTHR; = a-Hi, + (1 -a) - Hi—1, )

where a € [0, 1] is a weighting factor that determines the relative
importance of recent sampling data compared to historical data.
We empirically set « = 0.8. If FTHR; < GPT;, the workload is
considered under-allocated in fast memory. Conversely, if FTHR; >
GPT;, the current allocation is deemed sufficient. Then, the fast
memory demand is updated based on the following formula:

demand; = alloc; + (GPT; — FTHR;) - RSS; - log?(RSS;), (3)

where alloc; denotes the current fast memory allocation. The loga-
rithmic scaling factor ensures that the adjustment is proportional
to the workload’s memory footprint, thereby providing a scalable
and workload-sensitive mechanism for dynamic memory tiering.

Credit-Based Fair Resource Partitioning (CBFRP). To allocate
fast memory resources based on calculated demands (i.e., demand;),
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Figure 6: Comparison of vanilla process-wide and VULcAN’s pre-thread page table management. Unlike process-wide sharing,
VULCAN maintains pre-thread upper-level page tables while sharing the last-level page tables across threads, which constitute

the majority of the page table structure.

we propose a CBFRP strategy. Inspired by Karma [38], which incor-
porates historical allocations into max-min fairness through “credit”
tracking, CBFRP borrows this concept to address memory tiering
challenges. VuLcaN dynamically manages fast memory resources
and credit balances to adapt to diverse workload characteristics,
achieving long-term fairness while optimizing resource utilization.
Initially, fast memory is evenly distributed among all controlled
workloads as a baseline allocation, with each workload assigned
initial credits to facilitate fair memory sharing. We then classify
black-box workloads as either LC or BE based on resource utiliza-
tion patterns [34] to ensure differentiated QoS guarantees. Based
on calculated demands, workloads are further categorized as bor-
rowers (demand; > alloc;), which require additional fast memory,
or donors (demand; < alloc;), which have surplus fast memory
available for redistribution.

As outlined in Algorithm 1, the reallocation process prioritizes
LC workloads to meet their strict QoS requirements. Fast memory
is dynamically reassigned from donors to borrowers until either
all demands are met or no surplus memory remains. This iterative
approach ensures efficient and fair allocation of fast memory while
adhering to the differentiated QoS requirements of LC and BE
workloads, thereby fulfilling design goal G#2 in § 3.1.

3.4 Per-Thread Page Table Replication

In conventional systems, page migration requires TLB shootdowns
through IPIs across all CPUs running the process threads, due to
the process-wide shared page table structure. Our key insight is
that this global synchronization is unnecessarily conservative for
private memory pages, as TLB coherence only needs to be main-
tained among CPUs actually sharing the migrating page. Based on
this understanding, VuLcaN introduces a novel per-thread page
table replication mechanism that efficiently identifies and manages
thread-private memory pages. By maintaining per-thread page ta-
ble entries, the system minimizes TLB coherence overhead through
selective synchronization during migration operations. Given that

Table 1: Page promotion priority and strategy.

Page Type | Read/Write Pattern Priority Strategy
Shared Read-intensive %k Async copy
Shared Write-intensive * Sync copy
Private Read-intensive 228,89 Async copy
Private Write-intensive ** Sync copy

last-level page tables constitute the majority of page table mem-
ory [43], Vurcan achieves high memory efficiency by sharing them
across threads while repurposing unused PTE bits (52-58) [13] of
last-level page tables for thread ownership tracking. This design
requires only per-thread upper-level tables, which are relatively
small in size. We currently focus on base-page (4KB page size) TLB
shootdowns because, inspired by MEMTIs [18], VULCAN manages
huge-page (2MB page size) promotions by splitting them into base
pages to prevent memory wastage, thus allowing more efficient
memory resource management. Figure 6 presents a comparison of
vanilla process-wide and VULCAN’s per-thread page table manage-
ment while providing a conceptual overview of this design.

3.5 Biased Page Migration Policy

Memory copy operations, being resource-intensive, could signif-
icantly degrade system performance by introducing application
stalls during synchronous migration. Inspired by MTM [31], which
uses asynchronous and synchronous page copying based on write
intensity, we augment this approach by adding thread-level page
table replication to further address migration inefficiencies. Build-
ing on the insight that shared pages require more coherence effort
than private pages, we categorize hot pages into four types with
distinct migration priorities and strategies, as shown in Table 1.
Based on categorization, VULCAN introduces four priority queues
for page promotion, where memory pages are queued according
to their types. Within each queue, pages are processed based on
their heat levels using queue-specific migration strategies. Read-
intensive and private pages are placed in the highest priority queue
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(%% % %) due to the minimal TLB shootdown overhead and opti-
mal asynchronous migration benefits. Read-intensive and shared
pages are prioritized higher than write-intensive and private pages,
as the overhead of page copying is lower than that of TLB shoot-
down operations. Write-intensive and shared pages are assigned to
the lowest priority queue (%) due to the high overhead in both page
copying and TLB shootdown operations. Our design also incorpo-
rates a Multi-Level Feedback Queue (MLFQ) [7] mechanism that
allows pages to promote to higher-priority queues as their heat lev-
els increase, preventing hot pages from stagnating in lower-priority
queues. In addition, VULCAN enables transparent huge pages (THPs)
to maximize TLB coverage by default, despite proactively splitting
them into base pages during promotion.

As the fast memory capacity for each workload is dynamically
adjusted according to the CBFRP strategy (see § 3.3), page demo-
tion frequently occurs when the capacity is insufficient for promo-
tion or when memory capacity shrinks. This process, similar to
promotion, prioritizes the migration of colder pages. To mitigate
migration thrashing, we borrow ideas from NomaD’s page shadow-
ing technique, allowing recently promoted pages to retain shadow
copies in slower tiers. This approach reduces demotion costs by
remapping non-dirty pages, which are often the read-intensive and
private/shared pages we previously prioritized for promotion.

Overall, the improvements in the underlying mechanisms of
thread-level page table replication (discussed in § 3.4) and the biased
page migration policy both directly contribute to achieving design
goal G#3 in § 3.1.

3.6 Limitations and Discussion

Although VuLcan offers several advantages, it also has inherent
trade-offs. Workload-dependent page migration may face chal-
lenges when multiple workloads compete for limited system re-
sources (e.g., memory bandwidth). Per-thread page table replica-
tion introduces memory and manipulation overhead, which can
be problematic for some workloads, such as function-as-a-service
(FaaS) [36]. Despite these limitations, the system offers noteworthy
benefits, such as significantly enhanced flexibility, fairness, and
efficiency in memory tiering. Many of these limitations can be
mitigated through future optimizations, such as automatically en-
abling/disabling the thread-level page table replication mechanism
based on performance trade-offs. Further, integrating with Col-
loid [37] could enable VULCAN to suspend the migration process of
co-located workloads when the fast tier’s access latency no longer
offers significant advantages over alternate tiers due to memory
bandwidth contention.

4 Implementation

We implemented the prototype of VuLcan on x86_64 architec-
ture, which involves modifications to both the Linux kernel and
Glibc-2.23, leveraging PTEditor [33] and the system call intercep-
tion library [26]. We extended the v5.15 kernel data structures by
adding the following fields: @ The existing PGD pointer in struct
mm_struct is repurposed to point to the thread-private page table,
while a new process_pgd is introduced for the process-wide page
table. @ A thread_id field (7 bits) in PTEs, using previously ignored
bits to encode either thread ownership (via thread ID) or shared
status (all-ones pattern).
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Figure 7: Speedup analysis of memory migration optimiza-
tions in Vurcan (higher is better).

We modify switch_mm_irgs_off () to load per-thread page ta-
bles into CR3 during context switches, replacing traditional process-
wide page table loading. We also augmented page fault handler to
supports both per-thread and process-wide page tables manage-
ment: it creates new mappings with thread ID for unmapped pages,
while for existing mappings, it either shares the last-level page table
(for shared pages with thread ID 0x7F) or establishes new shared
mappings (for private pages with specific thread ID). Moreover,
the migration threads in modified Glibc maintain four migration
queues and classifies sampled hot pages based on their PTE flags
and access patterns, dispatching them to corresponding queues for
page migration.

5 Evaluation

We first analyze the performance of VuLcaN’s migration policies
and mechanisms with a number of microbenchmarks. We then
evaluate a number of real applications in a variety of different
co-location configurations.

Our evaluation seeks to answer the following questions:

e What are the benefits of VULCAN’s migration mechanisms
and policy optimizations (§ 5.2)?

e How effectively does VULCAN maintain performance and
fairness under dynamic co-location scenarios (§ 5.3)?

5.1 Experimental Setup

We use a dual-socket server with Intel Xeon Platinum 8378A CPUs
(32 cores, 48MB LLC, 8x3200MHz DDR4 channels per socket) offer-
ing 205GB/s memory bandwidth and 25GB/s UPI bandwidth per di-
rection. We use processors on a single socket, with locally-attached
fast memory (32GB capacity, 70ns unloaded latency) and emulate
slow memory (256GB capacity, 162ns unloaded latency) to mimic
upcoming CXL memory. The emulation is achieved using a remote
NUMA node?, with the cross-NUMA interconnect frequency ad-
justed via BIOS settings to match CXL latency characteristics. This
setup is informed by prior research, which indicates that CXL mem-
ory introduces an additional 70-90ns latency compared to local
memory [20]. We compared VuLcaN with three state-of-the-art
tiered memory systems: TPP [23], MEmTIs [18], and NomAD [39].

2Commercial ASIC CXL hardware is currently scarce and Intel has discontinued its
PMem; thus, we use emulation without compromising our experimental validity.
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Figure 8: Migration performance comparison between TPP,
MEemTIs, Nomabp, and Vurcan (higher is better).
5.2 Microbenchmarks

Migration Mechanism. Following the methodology in § 2.2, we
varied the number of pages per migration from 2 to 512 using syn-
chronous page migrations to measure performance. By comparing
the baseline implementation with our optimized migration prepa-
ration and TLB shootdown optimization, we observed significant
speedups, particularly for small-scale page migrations. As shown in
Figure 7, our optimizations can achieve up to 3.44x speedup with
optimized migration preparation alone, and up to 4.06X speedup
when combined with TLB shootdown optimization for 2-page mi-
grations. While the benefits decrease for larger migrations due
to the increasing page copying overhead, these findings suggest
that our optimization strategies effectively reduce the migration
preparation and TLB coherence overheads.

Migration Policy. We then borrow the microbenchmarks used
to evaluate Nomap. These microbenchmarks involve 1) allocating
data to specific segments of the tiered memory; 2) running tests
with various working set size (WSS) and RSS values; and 3) gen-
erating memory accesses to the WSS data that mimic real-world
memory access patterns with a Zipfian distribution. We created
three scenarios representing small, medium, and large WSS val-
ues, to thoroughly evaluate tied memory management behavior
under different realistic memory pressures. We perform over 10
trials, plotting the mean with shaded regions and error bars for 95%
confidence intervals.

Figure 8 illustrates the comparison of migration performance
between TPP, MEmTIS, NoMAD and VULCAN in different sizes of
working sets (small, medium, large) and migration states (migration
in progress vs. migration stable). VULCAN consistently demonstrates
superior read and write bandwidth, particularly in the migration
stable phase, where it significantly outperforms other systems. This
highlights VuLcan’s ability to minimize migration overhead and
maintain high performance across varying workloads, showcasing
its scalability and efficiency.

5.3 Real-World Applications Study

To measure how well VULCAN can react to dynamically changing
workloads, VuLcaN was extended by testing three real-world appli-
cations with distinct memory access patterns: Memcached [10], a
high-performance key-value store with 90% GETs, 10% SETs, and a
hot key set accessed 90% of the time; PageRank [1], a memory- and
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Table 2: Workloads and RSS in tiered memory.

App Workload RSS

Memcached In-memory database engine using YCSB-C 51 GB

&z Memcached Cold  E288 Liblinear Cold

PageRank  Compute the PageRank score of Web pages 42 GB
Liblinear Linear classification of KDD12 dataset [35] 69 GB
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Figure 9: Dynamic memory allocation and measurement of
memory tiering performance of co-located workloads.

compute-intensive graph algorithm execution; and Liblinear [35],
a machine learning library running with the KDD12 dataset. Table
2 summarizes the workloads. To minimize CPU interference, we
allocate each application to its own dedicated set of 8 CPU cores,
with each application running 8 threads. We start Memcached at
the beginning and ensure it is warmed up. At 50 seconds, we start
PageRank, and at 110 seconds, we start Liblinear.

Figure 9 demonstrates the dynamics of memory allocation and
quantifies the performance of memory tiering for three co-located
workloads. Figure 9 (a) illustrates the proportion of hot and cold
pages in fast and slow tiers, showing how memory is allocated
among the workloads. Figure 9 (b) provides dynamic measurements
of memory tiering performance, showing the fast tier hit ratio over
time for each workload. Figure 9 (c) presents the guaranteed per-
formance target during execution, highlighting adjustments to the
performance baseline as the RSS and co-location change. These
results show VULCAN’s ability to dynamically balance resource allo-
cation and optimize memory tiering performance across workloads.
Fairness Model. To evaluate both the fairness in resource dis-
tribution and the efficiency of usage over time, we apply Fain’s
fairness index [14] to the cumulative efficiency-adjusted allocation
X; = Zthl xi(t) - FTHR;(t), resulting in the FTHR-weighted Cumu-
lative Jain’s Fairness Index (CFI):

I

We compute the CFI metric for the three workloads based on
their respective fast memory allocations and the measured FTHR
values over time. Figure 10 (a) shows that VuLcAN consistently out-
performs TPP, MEmTIs, and NoMAD across all workloads in terms
of performance (normalized to the lowest-performing approach,
with means plotted over 10 trials and error bars representing 95%
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Figure 10: Performance and fairness comparisons of Mem-
cached, PageRank, and Liblinear between TPP, MEMTISs,
Nomap, and Vurcan (higher is better).

confidence intervals). For Memcached, VULCAN achieves approxi-
mately 35% higher performance compared to TPP (baseline) and
25% higher than MEMTIS, showcasing its significant advantage in
handling the cold page dilemma for LC workloads. Similarly, in
PageRank, VuLcAN shows an improvement of approximately 5.3%
over TPP and an improvement 19% over MEMTIS. For Liblinear,
VULCAN maintains its superiority with an approximate 15% perfor-
mance increase compared to MEMTIS, but slightly underperforms
compared to TPP.

In terms of fairness (see Figure 10 (b)), VULCAN achieves greater
fairness for fast memory allocation, outperforming MEMTIS by
approximately 52% and NomaD by 86%, demonstrating superior
resource allocation and performance, making it the most effective
solution for diverse workloads. In conclusion, VULCAN significantly
improves performance and fairness, achieving an average perfor-
mance increase of 12.4% and a fairness improvement of 75.3% over
existing solutions. This demonstrates VULcAN’s effectiveness in
optimizing memory tiering for the multi-tenant environment.

6 Related Work

In this section we discuss the related work that has not been cov-
ered in earlier sections. Surprisingly, we are not aware of any other
work that comprehensively addresses workload-aware tiered mem-
ory management in multi-tenant environments with fairness and
isolation. In the following, we discuss the most closely related work.
Page Table Replication. Hydra [11], WASP [28], and Mitosis [3]
focus on replicating process-level page tables across NUMA nodes
to address cross-NUMA running performance challenges. In con-
trast, RadixVM [6] implements process-level page table replication
at the CPU core level, aiming to eliminate TLB shootdowns, al-
though it faces scalability issues [11]. Our work introduces per-
thread page table replication, offering finer-grained control over
TLB coherence during page migrations. This orthogonal approach
could enhance existing mechanisms by enabling integration of
both process-level and per-thread page table replication for joint
optimization.

Memory Tiering in User Space. VULCAN’s user-space design
takes inspiration from recent advancements in user-space system ar-
chitectures, such as ExTMEM [15], which elevates memory manage-
ment policies to the user space. Similarly, HeMem [29] introduces a
tiered memory management system optimized for DRAM and NVM,
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leveraging asynchronous memory tracking and migration to im-
prove scalability and reduce overhead. While HeMem achieves sig-
nificant performance gains, its lack of application-specific adaptabil-
ity can result in suboptimal resource allocation for multi-workloads.
More recently, ArtMem [42] introduces reinforcement learning for
adaptive migration, yet mainly focuses on system-wide through-
put and overlooks fairness and QoS in multi-tenant scenarios. In
contrast, VULCAN addresses these challenges with workload-aware
migration and QoS-driven fair resource partitioning, achieving both
efficiency and fairness in multi-tenant environments. Moreover,
VULCAN is compatible with reinforcement learning approaches like
those in ArtMem, and can incorporate such techniques to further
adapt migration policies for individual workloads.

QoS in Memory Tiering. MaxMem [30] is a tiered memory man-
agement system designed to optimize the performance of big data
workloads in co-location scenarios. It requires manual QoS settings,
which can be cumbersome for operations with various workloads.
TMTS [8], on the other hand, focuses on reducing costs by limiting
slow-tier capacity while maintaining strict performance bounds,
which can restrict scalability. Recently, Soar and Alto [21] move
beyond hotness-based tiering by introducing the Amortized Offcore
Latency (AOL) metric, which serves as a fine-grained QoS indicator.
However, AOL still requires manual threshold configuration. In
contrast, VULCAN automates QoS configuration and incorporates
fairness-aware mechanisms, providing a more scalable and practi-
cal solution for diverse workloads. Notably, VuLcaN can be further
enhanced by integrating AOL-based metrics.

7 Conclusion

In this paper, we identify the cold page dilemma and hidden costs of
page migration as critical challenges faced by existing tiered mem-
ory systems within multi-tenant workloads on multi-core platforms.
To address these issues, we propose VULCAN, a workload-aware
tiered memory management framework that targets fair and ef-
ficient tiering in multi-tenant environments. VULCAN introduces
four innovations: workload-dependent migration, QoS-aware fair
resource partitioning, per-thread page table replication, and biased
page migration policy. Evaluation shows that VuLcAN significantly
outperforms state-of-the-art solutions in both performance guaran-
tee and fairness metrics.
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