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ABSTRACT

Vehicular CrowdSensing (VCS) has become a powerful sensing par-

adigm by selecting users driving vehicles to perform tasks. In most

existing research, the platform centrally allocates tasks according to

the collected user information. We argue that the information col-

lection process results in user privacy leakage, and the centralized

allocation leads to a heavy computation complexity. We propose to

apply a distributed task allocation method in the widely-used route

navigation system. The navigation system recommends several

routes to a user and each route may cover some tasks. Then, the

user distributively selects a route according to the route profit (task

reward minus route cost). Since the task reward is shared by users,

the route selections of users may influence each other. Hence, it

remains unclear how to design a distributed route navigation ap-

proach to reach an equilibrium state (i.e., each user is satisfied with

the selected route), while guaranteeing a good total profit. To this

end, we formulate the problem as a multi-user potential game and

propose a distributed route navigation algorithm. The trace-based

simulation results verify that the proposed algorithm achieves a

Nash equilibrium, while achieving a total user profit performance

close to that of the optimal solution.

KEYWORDS

Vehicular CrowdSensing, route navigation, potential game, Nash

equilibrium.

∗
The corresponding author is Wenbin Liu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00

https://doi.org/10.1145/3472456.3472498

ACM Reference Format:

En Wang, Dongming Luan, Yongjian Yang, Zihe Wang, Pengmin Dong,

Dawei Li,Wenbin Liu, and JieWu. 2021. Distributed Game-Theoretical Route

Navigation for Vehicular Crowdsensing. In 50th International Conference
on Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL, USA. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3472456.3472498

1 INTRODUCTION

With the proliferation of mobile devices, Mobile CrowdSensing

(MCS) [18, 23, 30], has become a powerful sensing technique. As a

typical paradigm of MCS, Vehicular CrowdSensing (VCS) [9, 17],

which takes advantage of themobility of vehicles to perform sensing

tasks in large-scale areas, has received much attention.

In VCS, the platform needs to assign tasks to suitable users, which

raises the fundamental task allocation problem [12, 26]. Most of the

existing task allocation strategies are centralized [10, 15, 19, 25, 28,

31], i.e., the platform centrally collects the users’ information and

makes the task allocation decision. We argue that the information

collection process results in privacy leakage for the users, and the

centralized allocation leads to a heavy computation complexity for

the platform. More importantly, the centralized task allocation may

fail to satisfy all the users with the allocation results. For example, a

user may be unwilling to deviate from the original route to perform

a remote allocated task, even though there is a good task reward. On

the other hand, if users perform sensing tasks totally according to

their own plans, some tasks with low rewards or remote locations

may not be finished.

In light of this, considering the drivers usually utilize the map

navigation systems (e.g., Google Maps [16]), we are inspired to

consider a distributed task allocation with the help of the route

navigation. As shown in Fig. 1 (left part), when the users input

the initial locations and the destinations in their smart phones,

several routes are recommended to them. Each route may cover

some MCS tasks. When a user selects a route, it can complete the

tasks on this route and get the corresponding task rewards. In

this way, the users distributively select routes to perform tasks

instead of uploading their information to a centralized platform

https://doi.org/10.1145/3472456.3472498
https://doi.org/10.1145/3472456.3472498
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Figure 1: An illustrative example.

and deviating from the daily routes. Even so, it remains unclear

how to guide users to select the suitable routes in order to maximize

the users’ profits (task reward minus route cost). Especially when

the reward of each task is equally shared by users [6], the route

selections of participating users may influence each other. To this

end, some obvious route selection approaches are shown in Fig. 1

(right part). An intuitive idea (Maximum reward) for each user is to

select the route with the maximum reward. However, this leads to

the least total reward ($6), because users need to share the reward

of their overlapped task. An ideal approach (Centralized optimal)

achieves the highest total reward ($12). However, it does not reach

an equilibrium state because u3 can select route r4 to get more

profit. A trade-off (Distributed equilibrium) is our target solution,

where a relatively high reward ($11) and an equilibrium state are

achieved, and no user has the incentive to change the decision to

get more profit unilaterally. Hence, the problem in this paper is

how to design a distributed route navigation approach to reach an

equilibrium state while guaranteeing a good profit performance.

Some existing works [5, 6] have proposed to use distributed

algorithms to solve themulti-user task allocation problem. However,

they do not take the users’ original routes into consideration. Hence,

the users still have to deviate from their daily routes to finish tasks.

Moreover, these works also fail to consider the users’ individual
preferences such as task reward, detour distance and congestion

level. To the best of our knowledge, this is the first research utilizing

the route navigation to perform the MCS task allocation. Hence,

there must be some unresolved technical challenges. Our purpose is

to find the distributed equilibrium state in route navigation problem.

Even if we could prove the existence of an equilibrium state, how

to construct a distributed model to achieve the equilibrium while
guaranteeing the profit performance is the first challenge. Moreover,

during the route navigation process, each user has an individual

preference (e.g., task reward, detour distance and congestion level).

Similarly, the platform also has its specific task allocation purpose

(e.g., maximizing task completion). Hence, the second challenge is

how to design a unified distributed algorithm such that it could take

the requirements of both the platform and users into consideration.

Finally, even if we find the distributed equilibrium state, the profit

performance is not always optimal (as shown in Fig. 1). Hence, the

third challenge is how to guarantee a lower performance bound with

respect to the centralized optimal solution.

To deal with the above challenges, we first formulate the route

navigation problem as a multi-user route navigation game, where

each user selects a route to maximize its own profit function sep-

arately. Then, we prove that the formulated game is a potential

game by constructing a global potential function. The change of

the profit functions of all the users can be uniformly mapped into

the change of the global potential function. Through continuing

to approach the maximum value of the global potential function,

we achieve an equilibrium state where each user’s profit function

achieves a local maximum value. Furthermore, we design a dis-

tributed game-theoretical route navigation algorithm to achieve

the Nash equilibrium. For the profit function, the weighting pa-

rameters could be modified by the users based on their individual

preferences, as well as by the platform according to the task alloca-

tion purpose. Finally, we utilize the metric of Price of Anarchy to

guarantee the lower bound of total user profit performance to the

centralized optimal solution.

In summary, the contributions are listed as follows:

• Multi-User Route Navigation Game Formulation: We first

prove that it is NP-hard to find the centralized optimal solu-

tion of the route navigation problem in MCS. Instead, we for-

mulate the distributed route navigation problem as a multi-

user route navigation game. To the best of our knowledge, it

is the first research utilizing the route navigation to perform

the task allocation in MCS.

• Distributed Route Navigation Algorithm: We prove that the

formulated multi-user game is a potential game. Further-

more, we design a distributed route navigation algorithm

to reach an equilibrium state, where users could modify

the parameters of the profit function to satisfy the individ-

ual preferences and the platform could also do the same to

achieve the specific task allocation purpose.

• Theoretical Performance Analysis:We show that the proposed

distributed route navigation algorithm can converge to a

Nash equilibrium within a finite number of update steps.

Furthermore, we derive the upper bound for the number of

update steps and the lower bound for the total user profit

with respect to that of the optimal centralized solution.

• Extensive Trace-based Simulations: We perform extensive

trace-based simulations based on three data sets. The results

verify that our proposed algorithm can achieve a Nash equi-

librium, while achieving a total user profit close to that of

the optimal solution.

2 RELATEDWORKS

2.1 Task allocation

The research on the task allocation in MCS can be classified into

two categories: the centralized task allocation and the distributed

task allocation. For the former [20, 24, 27], Wang et al . [24] pro-
pose a time-sensitive task allocation approach, which can plan a

task execution path to the participant. To tackle the contradiction

between user privacy and task allocation in MCS, Ni et al . [20]
propose a privacy-preserving task allocation scheme that consid-

ers users’ personal features. Wang et al . [27] utilize the spatio-

temporal correlation of the sensing tasks to design a multi-task

assignment strategy. For the latter [2, 3, 7], Cao et al . [3] propose a
game-theoretical incentive mechanism and an auction based task

migration algorithm, which guarantees the truthfulness, individual
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Figure 2: An illustrative example of the influence of ϕ and θ .

rationality, and computational efficiency. Dai et al . [7] construct a
distributed matching model and design the budget constrained task

allocation strategies for MCS based on stable matching theory. Cai

et al . [2] investigate the joint problem of sensing task assignment

and schedule with multi-dimensional task diversity. Furthermore,

they propose a distributed auction scheme where each task owner

can locally process the auction procedure. However, all the above

works fail to consider whether a user is satisfied with the allocation

results, i.e., a user may be unwilling to deviate from the original

route to perform a remote task. By comparison, in this paper, we

propose a distributed route navigation algorithm to utilize the route

navigation to perform the MCS task allocation, where each user

completes the tasks on their own selected routes.

2.2 Potential Game

Recently, a lot of studies utilize the potential game theory to derive

the distributed game-theoretical decisions and achieve the Nash

equilibria. Fabiani et al . [8] formulate the multi-vehicle driving co-

ordination problem as a mixed-integer potential game and find an

equilibrium solution. Hong et al . [13] formulate the computation

offloading problem as a potential game in which the mobile devices

make the offloading decisions in a distributed manner. Raschellà

et al . [22] propose a novel access point selection approach based

on a potential game relying on software-defined networking. Chen

et al . [29] investigate a multi-user computation offloading problem

in mobile-edge cloud computing. Furthermore, they propose a po-

tential game theoretical approach to achieve efficient computation

offloading. He et al . [11] formulate the edge user allocation prob-

lem as a potential game and propose a decentralized algorithm to

serve the maximum number of users with minimum overall system

cost. However, in the above research, the corresponding potential

game does not take the diverse requirements of both the platform

and mobile users into consideration. In this paper, we propose a

distributed game-theoretical approach, where both the platform

and mobile users can achieve different purposes by adjusting the

parameters of the profit function.

3 MULTI-USER ROUTE NAVIGATION GAME

3.1 System Model

We first introduce the system model for the route navigation in

MCS. We assume that the number of users is enough to cover most

of tasks. When a user reports the initial location and destination

to the platform, the platform recommends some available routes

to the user. Moreover, each route may cover some MCS tasks. The

user can check the recommended routes and the covered tasks on

the smart phone. Let U = {1, 2, · · · ,M} be the set of users and

L = {1, 2, · · · ,N } be the set of tasks covered by the routes of users.
In our scenario, each user i will receive a set of available routes
from the platform, denoted as Ri and each route r ∈ Ri may cover

a set of MCS tasks, denoted as Lr . Each task k ∈ L is associated

with a rewardwk , which is defined as follows:

wk (x) = ak + µk · lnx, (1)

where x is the number of users performing the task k , ak is the

reward when there is only one user performing the task, and µk
is the weight parameter measuring the reward increment with the

growth of the number of users, which is set to be [0, 1]. Since the

task completion quality is improved when receiving multiple results

from different users, we design the reward function as follows: more

users performing the sensing task results in a sightly improvement

on the reward, which matches the practical scenario.

Given the strategy profile of all users s = (si , s−i ), where si
denotes the route decision of user i and s−i represents the route
decisions of all the users except user i , the profit of a user i under
the strategy profile s is shown as follows:

Pi (s)=αi ·
∑

k∈Lsi
wk (nk (s))/nk (s)−βi · d (si )−γi ·b(si ), (2)

where αi , βi , γi are the user weight parameters used to measure the

preference of the user, which are adjusted by the user. emin < αi ,
βi , γi < emax , where emin > 0. For example, if user i prefers a high
reward, it can increase the value of αi . We usenk (s) to represent the
number of users performing task k under strategy profile s. d(si )
is the cost incurred by traveling the detour distance of si , which is

defined as follows:

d(si ) = φ · h(si ), (3)

where h(si ) is the detour distance of the selected route si compared

to the shortest route between the initial location and the destination.

φ is a weight parameter adjusted by the platform, where 0 < φ < 1.

b(si ) in Eq. (2) is the cost incurred by the congestion on the route

si , which is defined as follows:

b(si ) = θ · c(si ), (4)

where c(si ) is used to measure the congestion level of the selected

route si . θ is a weight parameter controlled by the platform and

0 < θ < 1. Since the number of mobile users is finite, it has little

impact on the congestion level of a route. Hence, we assume that the

congestion level of route strategy si selected by user i is irrelevant
to other users’ route decisions. In other words, the congestion level

of a route is the same under different route strategy profiles.

Through adjusting the values ofφ and θ , the platform can achieve

different task allocation purposes. As shown in Fig. 2, we consider a

simple case to demonstrate the influence of the weight parameters

φ and θ , where each route only contains one task and the two users

are at the same initial location. We observe the number of covered

tasks, the detour distance and the congestion level with the change

of φ and θ . The platform can decrease the values of both φ and θ
to maximize the number of tasks covered by users. Moreover, by

increasing the values of φ and θ , the platform can guide users to

select the routes with short detour distance and low congestion

level, respectively. Similarly, user i can also achieve the individual
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Table 1: Main notations

Symbol Meaning

U, L the sets of mobile users, MCS tasks.

Lr the set of tasks that is covered by route r
s, si , s−i the strategy profile, the strategy of user i , and the strate-

gies of users except user i .
Ri the recommended route set of user i .
Pi (s) the profit of user i under the strategy profile s.

nk (s) the number of users performing the task k under strat-

egy profile s.

wk (x ) the reward of task k when the number of users perform-

ing the task is x .
d (si ), b(si ) the cost incurred by detour distance, and the congestion

level under strategy si .
h(si ), c(si ) the detour distance, and the congestion level under strat-

egy si .
αi , βi , γi the weight parameters controlled by user i .
φ , θ the weight parameters controlled by the platform.

ϕ(s) the potential function.

preference by adjusting the values of αi , βi , γi in Eq. (2). In other

words, when the platform has set the system parameters (φ and θ ),
user i can adjust its user weight parameters (αi , βi and γi ) under
these settings of the platform to achieve the individual preference.

3.2 NP-hardness of The Centralized Problem

We first consider the centralized optimization problem of finding a

solution to maximize the total profit of all users. Mathematically,

given the strategy profile s = (si , s−i ), the problem can be formu-

lated as follows:

max

s

∑
i ∈U

Pi (s),

subject to si ∈ Ri ,∀i ∈ U. (5)

Then, we try to prove that finding the optimal solution of the

formulated centralized optimization problem is quite difficult, as

shown in Theorem 1.

Theorem 1. The problem of finding the solution with the maxi-
mum total profit in a centralized manner is NP-hard.

Proof. The main idea is to reduce the maximum set cover prob-

lem, which is NP-complete [4], to a special case of our centralized

profit maximization problem.

First, we give a definition of the maximum set cover problem.

Given a universal set E of n elements, a collection of subsets of E,
and an integer h, select h subsets so as to maximize the number of

covered elements.

Then, we construct a special case of our centralized profit maxi-

mization problem with the following restrictions. Let µk = 0,ak =
a,∀k ∈ L; that is, the reward of all tasks is a fixed value and exactly
the same. Moreover, all users have the same recommended route set.

Finally, set φ, θ to zero, and set αi = 1,∀i ∈ U. Correspondingly,

Pi (s)=
∑
k ∈Lsi

a
nk (s)

.

In the constructed special case, each user only chooses one route.

Thus, the total number of the selected routes is equivalent to the

number of users. Since the reward of all tasks is the same, we

can maximize the total profit by selecting the routes to cover the

maximum number of tasks. The tasks can be viewed as the elements

in themaximum set cover problem. Each recommended route covers

a subset of tasks, which has a one-to-one correspondence with the

subset of elements in the maximum set cover problem. Therefore,

the maximum set cover problem is reduced to a special case of the

centralized maximization problem and the problem is NP-hard. □

According to the proof of Theorem 1, finding an optimal solution

to our problem in a centralized manner is extremely difficult. Hence,

we turn to consider a distributed mechanism with low computation

complexity. An idea comes that game theory can be applied for the

distributed scenarios and lead to an equilibrium state. This inspires

us to formulate the route navigation problem as a multi-user route

navigation game.

3.3 Potential Game Formulation

To investigate the existence of Nash equilibrium,we try to formulate

the multi-user route navigation game as a weighted potential game.

Before the description about the potential game formulation, we

first introduce some definitions.

Definition 1. (Better and best response update) For a strat-
egy profile s = (si , s−i ), in the better response update, user i changes
the strategy from si ∈ Ri to s ′i ∈ Ri , which can lead to an increase
of its profit, i.e., Pi (s ′i , s−i ) > Pi (si , s−i ). The best response update is
a special type of the better response update. Each user i ∈ U will
select a new strategy s ′i , which maximizes the profit among all better
response updates.

Definition 2. (Nash equilibrium) In the multi-user route
navigation game, a strategy profile ŝ = (ŝ1, · · · , ŝM ) is a Nash equi-
librium if and only if

Pi (ŝi , ŝ−i ) = max

si ∈Ri
Pi (si , ŝ−i ) ∀i ∈ U. (6)

It is obvious that no user can improve the profit by altering the

strategy unilaterally in a Nash equilibrium.

Definition 3. (Weighted potential game) A game is defined
as a weighted potential game if and only if there exists a potential
function ϕ(s) such that ∀i ∈ U,∀si ,∀s ′i ∈Ri , ∀s−i ∈

∏
j,i Rj :

Pi (si , s−i ) −Pi (s
′
i , s−i ) = wi (ϕ(si , s−i) − ϕ(s

′
i , s−i )), (7)

where (wi )i ∈U constitutes a vector of positive numbers.

The potential game has two significant properties: (1) Nash equi-
librium existence: there always exists at least one Nash equilibrium

in the potential game. (2) Finite improvement property: the potential
game always converges to a Nash equilibrium in a finite number of

decision steps when taking better/best response updates, irrespec-

tive of the initial strategy profile or the users’ updating order.

Then, Theorem 2 shows that the multi-user route navigation

game is a weighted potential game.

Theorem 2. The multi-user route navigation game is a weighted
potential game and has a Nash equilibrium and the finite improve-
ment property.
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Proof. We first construct the potential function as follows:

ϕ(s)=
∑
k∈L

nk (s)∑
q=1

wk (q)
q

−

∑
i∈U

βi
αi

d (si )−
∑
i∈U

γi
αi

b(si ). (8)

We define the original strategy profile as s=(si , s−i ) and a new

strategy profile s
′=(s ′i , s−i ) after user i changes the decision from

si to s ′i . We divide the set of tasks L into three non-overlapping

portions: L1
={k : k ∈ Lsi ,k ∈ Ls ′i }, L2

={k : k ∈ Lsi ,k < Ls ′i },

and L3
={k : k < Lsi ,k ∈ Ls ′i }.

Then, we let F defined as follows:

F=
∑
i∈U

βi
αi

d (s′i )+
∑
i∈U

γi
αi

b(s′i )−
∑
i∈U

βi
αi

d (si )−
∑
i∈U

γi
αi

b(si ). (9)

Since Lsi = L1 ∪ L2 and Ls ′i = L1 ∪ L3 we have:

ϕ(s)−ϕ(s′)

=

∑
k∈L

∑nk (s)

q=1

wk (q)
q

−

∑
k∈L

∑nk (s
′)

q=1

wk (q)
q
+ F

=

∑
k∈L2
(
∑nk (s)

q=1

wk (q)
q

−

∑nk (s
′)

q=1

wk (q)
q
)

+
∑

k∈L3
(
∑nk (s)

q=1

wk (q)
q

−

∑nk (s
′)

q=1

wk (q)
q
) + F

=

∑
k∈L1∪L2

wk (nk (s))
nk (s)

−

∑
k∈L1∪L3

wk (nk (s′))
nk (s′)

+F

=

∑
k∈Lsi

wk (nk (s))
nk (s)

−

∑
k∈Ls′i

wk (nk (s′))
nk (s′)

+F . (10)

Finally, according to Eq. (10), the following equation holds.

Pi (s
′) − Pi (s) = αi (ϕ(s

′) − ϕ(s)). (11)

Hence, Theorem 2 is proved. □

According to Theorem 2, the multi-user route navigation game

is a weighted potential game, where the change of the profit of

each user can be mapped into the potential function. The decision

update of a user in each decision slot can lead to the increase of

its profit function, which further increases the potential function

value. When the value of potential function reaches the maximum

value, a Nash equilibrium is obtained.

4 ALGORITHM DESIGN

In this section, to find a Nash equilibrium, we introduce the follow-

ing two algorithms: Algorithm 1 is the distributed game-theoretical

route navigation algorithm for the mobile users; Algorithm 2 is

the information update algorithm for the platform. The distributed

route navigation algorithm runs on each user’s smart phone and

helps mobile users autonomously select a route from the recom-

mended route set to maximize their own profits. When the algo-

rithm terminates, a Nash equilibrium will be obtained. The infor-

mation update algorithm on the platform is proposed to update

information and determine the users to update their decisions in

each decision slot. Specifically, we propose two user update al-

gorithms, Single User Update algorithm (SUU) and Parallel User

Update algorithm (PUU, i.e., Algorithm 3), to select the users to

update the decision.

Algorithm 1 Distributed Game-Theoretical Route Navigation Al-

gorithm for user i ∈ U.

1: Input αi , βi , λi , the initial location and the destination.

2: Receive the recommended routes Ri .
3: Initialize si (0)=r by randomly selecting a route r ∈Ri .
4: Report si (0) to the platform.

5: Receive nk for each task k that is covered by si (0).
6: Calculate the profit Pi .
7: Receive d(r ) and b(r ) for each route r in Ri .
8: repeat for each decision slot t
9: Obtain nk for each task k that is covered by Ri .
10: Compute the best route set △i (t).
11: if △i (t) , ∅ then

12: Send the request to contend the opportunity for updat-

ing decision.

13: if Win the opportunity then

14: Update the route selection decision si (t) by selecting
a route r ∈ △i (t).

15: Report si (t) to the platform.

16: else

17: Choose the original decision si (t) = si (t − 1).

18: until The termination message is received.

4.1 Distributed Route Navigation Algorithm

Theorem 2 guarantees that the multi-user route navigation game

converges to a Nash equilibrium within a finite number of decision

slots. The main idea of the distributed route navigation algorithm is

to utilize the finite improvement property and select a set of mobile

users to improve their profits by updating their route selection

decisions in each decision slot.

In the initialization phase (lines 1-7) of Algorithm 1, the mobile

user first inputs the weight parameters of preferences αi , βi , λi , as
well as the initial location and the destination (line 1). Then, the

recommended routes will be sent to the mobile application (line 2).

We use si (t) to represent the route decision of user i in decision slot

t . The algorithm initializes the route selection decision by randomly

selecting a route from the recommended route set and calculates

the profit (lines 3-6). Finally, the mobile application receives the

detour distance d(r ) and congestion level b(r ) of each route r in the

recommended route set (line 7).

In the calculation phase (lines 8-18), each user obtains the infor-

mation on the number of users performing each task covered by

Ri (line 9). The algorithm then calculates the best route set △i (t)
(line 10). The best route set is defined as the set of route decisions

that maximize the profit of the user and can improve the profit

compared to the previous decision slot.

If the best route set △i (t) , ∅, which means that the user can

improve the profit by altering the route selection decision, the user

sends a request to the platform for updating the decision. If the

user wins the opportunity to update the decision, it selects a route

from the best route set to update the current decision. Otherwise,

the user will maintain the decision consistent with the previous

decision slot (lines 11-17). The calculation process repeats until

the termination message is received from the platform (line 18).

It is worth noting that when all the users receive the termination
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Algorithm 2 Information Update Algorithm for the platform.

1: Send the recommended route set Ri to the user i ∈ U.

2: Receive si (0) from each user i ∈ U.

3: Calculate nk for each task k ∈ L.
4: Send nk , d(r ) and b(r ) to the corresponding user.

5: repeat for each decision slot t
6: Receive the request from the users and letU ′ denote the

set of users that send the request.

7: if U ′ , ∅ then

8: Select a set of users µ by SUU or PUU algorithm.

9: Inform the users in µ to update the decisions.

10: Receive si (t) from user i ∈ µ and update nk for each

task k ∈ L.

11: until No request is received from the user.

12: Send the termination message to all users.

message, the algorithm converges to a Nash equilibrium and the

mobile users achieve mutually satisfactory decisions.

4.2 Information Update Algorithm

The information update algorithm updates the number of users

that perform each task and interacts with the mobile users, such as

exchanging the information and selecting a set of users to update

the decision in each decision slot.

As shown in Algorithm 2, in the initialization phase (lines 1-

4), the information update algorithm first sends the recommended

routes to each user (line 1). After receiving the initial decisions from

all the users (line 2), the algorithm calculates the number of users

(nk ) that perform each task k ∈ L (line 3). Finally, the information

that is required to calculate the profit is sent to the user (line 4).

Next, in each decision slot, the platform receives the requests

from the users (line 6). Then, the platform utilizes Single User

Update algorithm (SUU) or Parallel User Update algorithm (PUU) to

determine the set of users to update their decisions and informs the

selected users to update the decision (lines 8-9). When receiving the

updated decision from the user, the algorithm updates the number

of the participants of each task k ∈ L (line 10). When no request

is received from the users in a decision slot, the algorithm sends

the termination messages to all users and the information update

algorithm terminates (lines 11-12).

Furthermore, we introduce the above two user update algorithms,

SUU and PUU. SUU algorithm randomly selects only one user

from the set of users that send the requests to the platform and

allows the user to update the decision in each decision slot. To

decrease the convergence time, we further propose PUU algorithm,

which is inspired by the idea that some users whose selected routes

cover no overlapping tasks could concurrently update their route

selections in the same decision slot. This leads to a larger increase

in the potential function value in each decision slot and reduce the

convergence time.

The detailed description is as follows. As shown in Algorithm

3, the inputs are U ′, τ and B. Specifically, U ′ is the set of users

sending the requests to update the decisions, τ = {τi ,∀i ∈ U ′}
and B = {Bi ,∀i ∈ U

′}. Let si denote the original strategy of user

i and s ′i denote a new strategy which maximizes the profit in the

Algorithm 3 Parallel User Update Algorithm.

Input: U ′, τ , B.
1: Initialize µ = ∅, σ = ∅.

2: Calculate δi =
τi
|Bi |
,∀i ∈ U ′.

3: Sort i ∈ U ′ in a non-ascending order of δi .
4: for all i ∈ U ′ do
5: if σ ∩ Bi = ∅ then µ ← µ ∪ i , σ ← σ ∪ Bi .

return µ.

best route set. We use Bi to denote the set of tasks jointly covered

by si and s ′i , and τi = (Pi (s
′
i , s−i ) − Pi (si , s−i ))/αi . For each user

i ∈ U ′, it sends Bi and τi to the platform. PUU algorithm first

calculates δi for each user i ∈ U ′ (line 2) and sorts the users in

U ′ in a non-ascending order of δi (line 3). Then, the algorithm

greedily chooses the set of users µ, which maximizes the sum of

τi and satisfies the constraint that the covered task set Bi of i ∈ µ
does not intersect with each other (lines 4-5). After inspecting all

the users inU ′, the algorithm returns the user set µ and informs

the users in µ to update decisions concurrently.

We then analyze the performance of PUU algorithm compared to

the optimal solution, which maximizes the value of

∑
i ∈µ τi . Let µ̂

denote the set of selected users to update the route decisions of the

optimal solution. Let τ =
∑
i ∈µ τi and τ̂ =

∑
i ∈µ̂ τi . The following

theorem holds.

Theorem 3. The performance of the PUU algorithm and the
optimal solutionmaximizing the value of

∑
i ∈µ τi satisfy the following

equation:

τ /τ̂ ≥ |Bi′ |/( | µ̂ | · Bmax ), (12)

where i ′ = argmaxi ∈µ δi , Bmax = maxi ∈µ̂ |Bi |, and |µ̂ | represents
the number of selected users needed to update the decisions in the
optimal solution.

Proof. The PUU algorithm first selects the user that has the

maximum value of δi in U ′, δi′ ≥ τi/|Bi | ∀i ∈ µ̂. Hence, the
following equation holds.

|µ̂ |τi′/|Bi′ | ≥
∑

i ∈µ̂
τi/|Bi |. (13)

Since Bmax = maxi ∈µ̂ |Bi |, we get Eq. (14).∑
i ∈µ̂

τi/|Bi | ≥ τ̂/Bmax . (14)

There exists τ ≥ τi′ . According to Eq. (13) and Eq. (14), we get

the following equation by rearranging the items.

τ/τ̂ ≥ |Bi′ |/(|µ̂ | · Bmax ). (15)

Hence, Theorem 3 is proved. □

4.3 Convergence Analysis

According to Theorem 2, the proposed distributed route naviga-

tion algorithm will converge to a Nash equilibrium within a finite

number of update iterations. We then analyze the upper bound

of the iteration number for convergence. Let S denote the strat-

egy space of all the users. For ∀k ∈ L,∀s ∈ S, 1 ≤ q ≤ nk (s),
let дmin = min{wk (q)/q}, дmax = max{wk (q)/q}. There exists

0 ≤ d(si ) ≤ dmax ,∀i ∈ U and 0 ≤ b(si ) ≤ bmax ,∀i ∈ U. We

denote the minimum change value of the users’ profit when the
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user updates the decision as ∆Pmin . For the number of decision

slots for convergence, the following theorem holds.

Theorem 4. The number of decision slots C for convergence of
the distributed route navigation algorithm satisfies the following
equation.

C<
emax

∆Pmin
|U |( |L |(дmax −дmin )+

emax

emin
dmax +

emax

emin
bmax ). (16)

Proof. During a decision slot, consider the worst case where

there is only a user i ∈ U who alters the current strategy si to s
′
i ,

which leads to an increase in its profit function, i.e., P(si , s−i ) <
P(s ′i , s−i ). According to Eq. (8), we have:

ϕ(s)> |L | |U |дmin− |U |emaxdmax /emin− |U |emaxbmax /emin .

(17)

ϕ(s) < |L | |U |дmax . (18)

Furthermore, we have:

ϕ(s′)−ϕ(s)< |U |( |L |(дmax −дmin )+
emax

emin
dmax +

emax

emin
bmax ). (19)

According to Eq. (11), the change of the value of the potential

function is equivalent to the change of a user’s profit divided by αi .
Therefore, for the number of decision slots C for convergence, we

have the following results:

C<
emax

∆Pmin
|U |( |L |(дmax −дmin )+

emax

emin
dmax +

emax

emin
bmax ). (20)

Hence, Theorem 4 is proved. □

From Theorem 4, to accelerate the convergence time, we can se-

lect a set of users with no overlapping tasks to concurrently update

their route decisions in each decision slot as shown in Algorithm

3. Since each selected user can increase the profit by updating the

decision in parallel and leads to an increase in the value of the

potential function, the potential function reaches the maximum

value quickly. Hence, the convergence time is decreased.

4.4 Theoretical Analysis

We then analyze the performance of the proposed distributed route

navigation algorithm by analyzing Price of Anarchy (PoA) [11].

PoA is a metric measured by the ratio of the total profit of all users

in the worst case of Nash equilibrium to the maximum total profit

of the optimal strategy, as defined in Eq. (21). By analyzing PoA,

we quantify the efficiency of the worst-case Nash equilibrium over

the centralized optimal solution in terms of the total profit. Let S ′

be the set of strategy profiles that can achieve Nash equilibrium

and s
∗
denote the centralized optimal strategy.

PoA = min

s∈S ′

∑
i ∈U

Pi (s)/
∑

i ∈U
Pi (s
∗). (21)

We consider a special case of the multi-user route navigation

game with the following restrictions. First, each route only covers

one task and a task may be covered by several routes. Second, the

recommended route set Ri for each user i ∈ U contains two parts:

r ′i and R, where the task on route r ′i is only covered by r ′i and R is

a set of routes that covers the same set of tasks for all users. The

common task set covered by R is denoted as L′. In other words,

the task on r ′i is only covered by user i and the tasks in L′ can be

covered by all users. Third, the reward of a task k ∈ L′ is defined
as wk = a + lnx , a > 0 and we do not make any restrictions for

the reward of other task k < L′. Let ki denote the task covered by

Reach Nash 
equilibrium

(a) Shanghai

Reach Nash 
equilibrium

(b) Roma

Reach Nash 
equilibrium

(c) Epfl

Figure 3: User profit vs. decision slot.

the route decision si for user i . Since a route only covers one task,

the profit for each user i is calculated as Pi (s)=wki (nki (s))/nki (s).
Specifically, the profit that user i achieves by selecting route r ′i is
denoted as Pi .

Theorem 5. For the multi-user route navigation game, the PoA
metric of the overall profits satisfies that∑

i ∈U max{Pi , P
min
i }∑

i ∈U max{Pi , P
max
i }

≤ PoA ≤ 1, (22)

where Pmin
i =

a+lnp
p , p = |U |+ |L

′ |−1

|L′ |
, Pmax

i = a.

Proof. There exists nki (s) = 1+
∑
j ∈U\{i } I {kj = ki }. I {E} is

an indicator function, where I {E} = 1 if the event E is true and

I {E} = 0 otherwise. In the formulated special case, since a route

only covers one task, the profit of a route decreases with the growth

of the number of users performing the task on that route. Since no

user can increase the profit by changing the decision unilaterally

in Nash equilibrium, considering a strategy profile s that achieves

a Nash equilibrium and user i selects a route in R, the following
equation holds:∑

j∈U\{i }
I {kj = ki } ≤

∑
j∈U\{i }

I {kj = k } ∀k ∈ L′. (23)

Furthermore, we have:

|L′ |(
∑

j∈U\{i }
I {kj=ki }) ≤

∑
k∈L′

∑
j∈U\{i }

I {kj=k }. (24)

According to Eq. (24), we substitute and rearrange the corre-

sponding terms. The following equation holds:∑
j∈U\{i }

I {kj = ki } ≤ ( |U | − 1)/ |L′ |. (25)

Based on Eq. (25), there exists nki (s) ≤ (|U| + |L
′ | − 1)/|L′ |.

Furthermore, the following equation holds.

Pi (s) ≥
a + ln(( |U | + |L′ | − 1)/ |L′ |)
( |U | + |L′ | − 1)/ |L′ |)

. (26)

We use p to denote
|U |+ |L′ |−1
|L′ |

and Pmin
i to denote

a+lnp
p . As

mentioned above, if user i selects r ′i , the profit is Pi . Hence, Pi (s) ≥

max{Pi , P
min
i }.

On the other hand, due to the fact that nki (s) ≥ 1, there ex-

ists Pi (s) ≤ a. Let Pmax
i = a. Furthermore, we can conclude that

Pi (s
∗) ≤ max{Pi , P

max
i }.

In conclusion, according to the above description, the following

equation holds: ∑
i ∈U max{Pi , P

min
i }∑

i ∈U max{Pi , P
max
i }

≤ PoA ≤ 1. (27)

□
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Figure 4: Decision slot vs. user number.

Table 2: Simulation Parameters

Parameters Value

Route number recommended to a user 1∼5

Original reward of a task ak 10∼20

Parameter measuring reward increment µk 0∼1

User weight parameters αi , βi and γi 0.1∼0.9

System weight parameters φ , θ 0.1∼0.8

Number of repeated simulations 500

5 PERFORMANCE EVALUATION

5.1 Trace-Based Sets

We use three widely-used real-world data sets to evaluate the pro-

posed algorithm. Shanghai [32] contains the GPS trace data of taxis
collected from August 2006 to October 2006 in Shanghai, China. We

select 200 traces and the traces are collected from one day. Roma
[1] contains GPS information about 320 taxis collected over 30 days

in Rome, Italy. We select 150 traces in the center of the city. Epfl
[21] is a trace set of mobility data about 500 taxi cabs collected over

30 days in the San Francisco Bay Area, USA. We select 200 traces

and each of which was collected from the same period of one day.

We extract the origin and the destination from the traces and

utilize Google Maps API to generate the recommended route set

for each origin-destination pair. The tasks are randomly generated

with the reward and each recommended route may cover some

tasks. The detour distance for each route is calculated as the ex-

tra distance compared with the shortest route and the congestion

level is calculated by the velocity of the vehicles on the route. The

simulation parameters are shown in Table 2.

5.2 Comparison Algorithms

We use the following algorithms in the simulations. (1) Distributed

Game-theoretical Route Navigation(DGRN): The proposed algo-

rithm utilizes SUU algorithm to randomly select a user from the

users that send the update requests and allows the user to select the

best route to maximize its profit. (2) Multi-User Update Navigation

(MUUN): The proposed algorithm utilizes PUU algorithm to select

a set of users from the users that send the update requests and

allows the selected users to parallel update the route decisions by

selecting the best route to maximize their profits. (3) Better Re-

sponse Update Navigation (BRUN): BRUN randomly selects a user

from the users that send the update requests and allows the user

to randomly select a route that is better than the current route

in each decision slot. (4) Best Update of All Users (BUAU): BUAU

inspects all users and selects the user that maximizes the value

of the potential function to update the decision in each decision
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Figure 5: Decision slot vs. task number.
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Figure 6: Potential function and total profit vs. decision slot.

Table 3: The selected user number vs. overlap ratio.

Total task # 50 60 70 80 90

Overlap ratio 0.526 0.531 0.532 0.536 0.538

Selected user # 2.013 1.978 1.842 1.751 1.701

slot. (5) Bayesian Asynchronous Task Selection (BATS): We modify

the task selection approach in the existing research [5] to apply to

our scenario. (6) Centralized Optimal Route Navigation (CORN):

The centralized optimal approach to maximize the total profit of

all users. (7) Random Route Navigation (RRN): Each mobile user

randomly selects a route from the recommended route set.

5.3 Numerical Results

5.3.1 Convergence for Nash equilibrium. We first verify the conver-

gence for the proposed distributed algorithm in Fig. 3. Specifically

we randomly select 15 users in each data set and observe the dy-

namics of the profits in 20 decision slots. It is obvious that the profit

of the user changes with the decision updates in the beginning and

can converge to a stable point (i.e., Nash equilibrium of the multi-

user game). It is worth noting that some users’ profits may decrease

as a result of other users’ decision updates. Since the reward of a

task is equally shared by the participants, if a user selects a route,

the profits of all users performing the task on that route decrease.

In Fig. 4, we investigate the number of decision slots for con-

vergence with the change of the number of users. The simulation

results show that the number of decision slots ranks as follows:

MUUN<BUAU<DGRN<BRUN<BATS. The reason is that MUUN

selects multiple users and the selected users update their decisions

in parallel, while BUAU selects only one user who maximizes the

potential function in each decision slot. Hence, MUUN reaches the

maximum value as quickly as possible. DGRN and BRUN randomly

select a user to update the decision with the best and better re-

sponse update manner respectively. Hence, DGRN converges to the

equilibrium a little faster than BRUN. For BATS, the user updates

the decision in sequence to maximize the profit in each decision slot.

In some decision slots, some users cannot increase the profits but
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Figure 7: Total profit vs. user number.
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Figure 8: Coverage vs. user number.
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Figure 9: Average reward vs. task number.

still update the decisions, which increases the number of decision

slots for convergence.

In Fig. 5, we investigate the number of decision slots for con-

vergence with the change of the number of tasks. The simulation

results show that the number of decision slots ranks as follows:

MUUN<BUAU<DGRN<BRUN<BATS. The reason for this is the

same as the description in Fig. 4. With the growth of the number

of tasks, the number of decision slots slightly increases. This is be-

cause when the number of tasks increases, the users are more likely

to cover the same tasks with others. Hence, the route decisions of

users are more likely to be coupled with each other and it will take

more decision slots to reach a Nash equilibrium state.

In Fig. 6, we observe the dynamics of the value of the potential

function and the total profit of all users with the change of the

decision slot. We can find that the value of the potential function

increases in the beginning and finally converges to a stable state

(i.e., Nash equilibrium), which matches the theoretical analysis. The

total profit increases with the growth of decision slots on the whole

with some fluctuations, because each user maximizes its own profit

in the multi-user game rather than the total profit and a user’s

decision update may decrease other users’ profits. Hence, the total

profit may decrease sometimes.

In Table. 3, we observe the selected number of users to update the

decision with the change of the overlap ratio in MUUN. The overlap

ratio is defined as the ratio between the number of tasks that have

more than one participant and the total number of tasks. Specifically,

we change the overlap ratio by varying the total number of tasks

from 50 to 90, and observe the average number of selected user
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Figure 10: Jain’s fairness index vs. user number.
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Figure 11: Average reward vs. task number and user number.

Table 4: Comparison between DGRN and CORN.

User # DGRN CORN Ratio Bound

9 65 65 1 0.717

10 78 81 0.963 0.688

11 87 89 0.977 0.753

12 94 97 0.969 0.809

13 109 110 0.990 0.785

14 115 116 0.991 0.876

of all decision slots. We conduct the simulation on Shanдhai data
set and repeat the simulation 500 times. With the growth of the

number of tasks, more routes intersect with other routes on some

task locations. Since MUUN selects users whose selected route does

not intersect with others’ on the task locations, the average selected

number of users decreases with the increase of the overlap ratio.

5.3.2 Profit, coverage, and reward. As shown in Fig. 7, we investi-

gate the trend of total profit with the growth of the number of users

and we repeat the simulations 500 times. The total profit is the sum

of the profit function values of all the users. The total profit ranks

as follows: RRN<DGRN<CORN. Since DGRN does not maximize

the total profit but maximize each user’s profit in an equilibrium

state, the total profit of DGRN is a little less than that of CORN.

As shown in Fig. 8, we investigate the coverage with the growth

of the number of users. The simulation is repeated 500 times. The

coverage is calculated as the ratio between the number of covered

tasks and the total number of tasks. The coverage ranks as follows:

RRN<BATS<DGRN, as DGRN can adjust the settings to increase

the coverage of tasks.

As shown in Fig. 9, we investigate the trend of average reward

with the growth of the number of tasks. The average reward is

defined as the total reward of all the users divided by the number of

users. We repeat the simulations 500 times. The simulation results

rank as follows: RRN<BATS<DGRN. It is easy to find out that the

average reward increases with the growth of the number of tasks, as



ICPP ’21, August 9–12, 2021, Lemont, IL, USA En Wang, Dongming Luan, Yongjian Yang, Zihe Wang, Pengmin Dong, Dawei Li, Wenbin Liu, and Jie Wu

0.0 0.2
0.4

0.6
0.8 0.8

0.6
0.4

0.2
0.0

9.5

10.0

10.5

11.0

q

A
ve

ra
ge

 r
ew

ar
d

j

9.310
9.466
9.621
9.777
9.932
10.09
10.24
10.40
10.55
10.71
10.87

(a) Average reward

0.0
0.2

0.4
0.6

0.8 0.0
0.2

0.4
0.6

0.8
8

9

10

11

12

13

θ
D

e
to

u
r
 d

is
ta

n
c
e

ϕ

7.820

8.382

8.944

9.506

10.07

10.63

11.19

11.75

12.32

12.88

13.44

(b) Detour distance

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

8

9

10

11

12

13

θ

C
o

n
g

e
st

io
n

 l
e
v

e
l

ϕ

7.780
8.364
8.948
9.532
10.12
10.70
11.28
11.87
12.45
13.04
13.62

(c) Congestion level

Figure 12: The influence of system parameters.

Table 5: The influence of the user parameters.

αi reward βi detour γi congestion

0.1 7.74 0.1 12.24 0.1 12.03

0.2 7.85 0.2 10.97 0.2 10.48

0.3 7.94 0.3 9.88 0.3 9.52

0.4 7.96 0.4 9.38 0.4 8.75

0.5 7.98 0.5 8.84 0.5 8.48

0.6 8.08 0.6 8.38 0.6 8.20

0.7 8.10 0.7 8.07 0.7 8.05

0.8 8.16 0.8 7.99 0.8 7.97

a user may perform more tasks when the number of tasks increases.

The error bar guarantees that the simulation results are accurate.

Fig. 10 shows the dynamics of Jain’s fairness index with the

growth of the number of users. We repeat the simulations 500 times.

Jain’s fairness index [14] is used to measure the fairness of the

user’s profit, which is defined as
(
∑
i∈U Pi (s))2

|U |
∑
i∈U Pi (s)2

. It is worth noting

that the fairness depends on how evenly distributed the profit of

each user is. The simulation results show that the proposed DGRN

achieves the highest Jain’s fairness index among CORN and RRN,

as DGRN can reach a Nash equilibrium of multi-user game.

Fig. 11 shows the average reward of the proposed algorithm

with the change of the number of tasks and number of users. We

repeat the simulation 500 times. From Fig. 11, we find that the aver-

age reward increases with the growth of the number of tasks and

decreases with the growth of the number of users. The reason is

that the user may perform more tasks when the number of tasks

increases and the reward of a task may be shared with more partic-

ipants when the number of users increases. The simulation results

match the theoretical analysis.

In Table. 4, we further study the gap between DGRN and CORN.

With the change of the number of users, the ratio between the total

profit of DGRN and CORN is always larger than the lower bound

of PoA, which matches the theoretical analysis.

5.3.3 The influence of algorithm parameters and the real-world
example. In Fig. 12, we evaluate the influence of the system param-

eters φ and θ on the Shanдhai data set. We repeat the simulations

500 times. It is interesting to find out that the average reward in-

creases with the decrease of φ and θ , because the decrease of φ and

θ suggests that the platform emphasizes the importance of letting

users receive more rewards. Correspondingly, the detour distance

decreases with the growth of φ and the congestion level decreases

with the growth of θ respectively.

In Table. 5, we randomly select a user from the user set and vary

the parameters αi , βi and γi from 0.1 to 0.8 respectively. We repeat

(a) Shanghai (b) Roma (c) Epfl

Figure 13: The presentation on real data sets.

the simulation for 500 times. When changing αi , we observe the
value of the reward obtained by user i . It is easy to find out that the

reward increases with the growth of αi , because αi is the weight
parameter concerning how much the user emphasizes getting the

task reward. When αi increases, user i prefers to select the route
with a high reward to increase the profit. Similarly, the detour

distance and the congestion level decrease with the growth of βi
and γi respectively. Hence, the user can adjust the values of αi , βi
and γi to achieve the different individual preferences.

Finally, to better demonstrate the schemes, we introduce three

examples based on three data sets by utilizing Google Maps. As

shown in Fig. 13 (a), the sensing tasks are distributed in the city.

We consider two users and utilize Google Maps API to generate the

recommended routes between the initiation and destination. The

platform recommends the user 2 or 3 routes. The user will choose

one route (marked with a green color) and complete the tasks on

that route. Since the situation of Fig. 13 (b) and (c) is similar to that

in Fig. 13 (a), we do not give the additional description.

6 CONCLUSION

In this paper, motivated by the widely-used map navigation sys-

tems, we propose to utilize the route navigation system to perform

distributed vehicular crowdsensing task allocation. We first prove

that the centralized optimization problem is NP-hard and formulate

the problem as a multi-user potential game. Then, we propose a

distributed route navigation algorithm. Users canmodify the param-

eters of the profit function to satisfy their individual preferences,

and the platform can also do the same to achieve different task allo-

cation purposes. Furthermore, we analyze the performance of the

algorithm theoretically. Finally, we conduct extensive simulations

based on three real-world datasets. The simulation results show

that the proposed approach achieves a Nash equilibrium while

achieving a total user profit close to that of the optimal solution.
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