
Energy-Aware Scheduling for Aperiodic Tasks on
Multi-core Processors

Dawei Li and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, USA
{dawei.li, jiewu}@temple.edu

Abstract—As the performance of modern multi-core proces-
sors increases, the energy consumption in these systems also
increases significantly. Dynamic Voltage and Frequency Scaling
(DVFS) is considered an efficient scheme for achieving the goal
of saving energy. In this paper, we consider scheduling a set
of independent aperiodic tasks, whose release times, deadlines
and execution requirements are arbitrarily given, on DVFS-
enabled multi-core processors. Our goal is to meet the execution
requirements of all the tasks, and to minimize the overall
energy consumption on the processor. Instead of seeking optimal
solutions with high complexity, we aim to design lightweight
algorithms suitable for real-time systems, with good perfor-
mances. By applying a subinterval-based method, we come up
with a simple algorithm to allocate tasks’ available execution
times during a heavily overlapped subinterval based on their
desired execution requirement during that subinterval. Based
on the allocated available execution times, we further consider
the final frequency setting and task scheduling, which guarantee
that all tasks meet their execution requirements, and tries to
minimize the overall energy consumption. Extensive simulations
for various platform and task characteristics and evaluations
using a practical processor’s power configuration indicate that
our proposed algorithm has a good performance in terms of
saving processor energy, though it has low complexity. Besides,
the proposed algorithm is easy to be implemented in practical
systems.

Index Terms—Dynamic Voltage and Frequency Scaling (DVF-
S), multi-core processors, aperiodic tasks, energy-aware schedul-
ing, subinterval approach.

I. INTRODUCTION
High energy consumption in modern computing systems

has become an important issue, because it not only results in
high electricity bills, but it also increases the requirements for
the cooling system and other system components. Currently,
the most significant portion of energy is still consumed by
processors or processing cores. To facilitate energy-efficient
design, the Dynamic Voltage and Frequency Scaling (DVFS)
function is widely adopted [11], [15] in modern processors.

The basic idea of the DVFS strategy is to reduce a
processor’s (or a core’s) processing frequency, as long as
tasks’ predefined constraints are not violated. Since the power
consumption of the processor is a polynomial of the process-
ing frequency, generally with a degree no less than 2 [20],
while the overall execution time of a task is just inversely
proportional to the processing frequency, DVFS provides the
possibility of minimizing energy consumption given a certain
performance/timing requirement.

During the past two decades, tremendous works have been
done regarding energy-aware scheduling on DVFS-enabled
platforms. Both circuit-level design and system scheduling
have been studied in [10] and [23], respectively. It is impossi-
ble, and not necessary, to provide all of the existing research

here; we refer the readers to a comprehensive survey in
[13], where typical works on traditional tasks models, namely,
frame-based tasks, periodic tasks, sporadic tasks, and tasks
with precedence constraints have been included. Later, Li, et al.
provide another survey [19], mainly focusing on energy-aware
scheduling on multiprocessors; several new trends in this field
are also included. For relatively simpler task models, namely,
framed-based tasks and periodic tasks, intensive works have
been done for energy-aware scheduling on both uniprocessors
[5], [6], [14], [21] and multiprocessors [3], [7], [12]. More
recent works involve new processor architectures [16], and new
task characteristics [17]. Energy-aware scheduling for sporadic
tasks on multiprocessors has also been well addressed [22].
Comparatively, energy-aware scheduling for general aperiodic
tasks lacks extensive research endeavors.

A. Related Work
[23] proposes an optimal offline algorithm for scheduling

aperiodic tasks on uniprocessors. Given an aperiodic task
set, T = {τ1, τ2, · · · , τn}, each task is characterized by its
release time, deadline, and execution requirement, denoted by
τi = (Ri, Di, Ci), and all the processors have same power
consumption function p(f) = fα. An off-line scheduling
algorithm (referred to as YDS algorithm) is proposed to
minimize the energy consumption of task executions. First,
a set of subintervals are constructed according to all distinct
release times and deadlines. The YDS algorithm is a greedy
algorithm that finds the subinterval [t1, t2] with the greatest
intensity, C(t1, t2)/(t2 − t1), where C(t1, t2) denotes the
execution requirement that has a release time no earlier than
t1, and has a deadline no later than t2. The processor will run
at speed C(t1, t2)/(t2 − t1) during interval [t1, t2]. Then, the
instance is modified as if the time interval [t1, t2] does not
exist. That is, tasks with deadlines greater than t1 are reduced
to max{t1, Di−(t2−t1)} and tasks with release times greater
than t1 are reduced to max{t1, Ri−(t2−t1)}, and the process
is repeated. It is proved that the proposed scheduling method
is optimal in terms of minimizing overall processor energy
consumption.

For the same task model and power consumption model,
considering scheduling on multiprocessor platforms, [8] proves
that the problem of finding an energy minimal scheduling
for execution of a set of tasks on multiprocessor with task
migration allowed has polynomial complexity; it requires that
the power consumption with respect to the execution frequency
function, p(f) is a convex one, and p(0) = 0. Then, a polyno-
mial time algorithm which requires repeatedly solving linear
programming problems is proposed. For the same problem
with p(f) = fα, [2] develops a fully combinatorial algorithm
with complexity O(n2f(n)) that relies on repeated maximum

2 4 6 8 10 12 t0

(a) The original example

2 4 6 8 10 12 t0

(b) τ3 scheduled, problem updated
Fig. 1. The problem and the updated problem.

flow computations, where n is the number of tasks, and f(n)
is the complexity of finding a maximum flow in a graph with
O(n) vertices; independently, [4] proposes a polynomial time
combinatorial algorithm which is based on a reduction to the
maximum flow problem and with complexity O(nf(n) logU),
where U is the range of all possible values of processors’
speed divided by the desired accuracy. All the works in [8],
[2] and [4] require that p(0) = 0; in other words, static
powers of processors are assumed negligible, which is no
longer a suitable assumption for modern processors [12], [13],
[18]. Different from these existing works, we consider the
processor’s static power explicitly, i.e., we assume a more
practical power model: p(f) = fα + p0.
B. Introductory Example

We would like to give a simple example to demonstrate
how the YDS algorithm schedules tasks on a uniprocessor first.
We consider three tasks, which are given in Fig. 1(a), whose
release times are R1 = 0, R2 = 2, R3 = 4, and deadlines are
D1 = 12, D2 = 10, D3 = 8. Their execution requirements
are C1 = 4, C2 = 2, C3 = 4. According to the definition of
interval intensity, it is easy to find that the interval with the
greatest intensity is [4, 8] and its intensity is C3/(8− 4) = 1.
Thus, during this interval, the uniprocessor should execute at
frequency f = 1. After this step, we update the problem
instance as described before and get an instance shown in
Fig. 1(b). Comparing intervals [2, 6] and [0, 8], interval [2, 6] is
with intensity C2/(6− 2) = 0.5, while [0, 8] is with intensity
(C1 + C2)/(8 − 0) = 0.75. Thus, [0, 8] is the interval with
the greatest intensity. During this interval, the uniprocessor
should execute at frequency f = 0.75. The two tasks, τ1
and τ2 are scheduled by the Earliest Deadline First (EDF)
scheme. Combined with the first step, i.e., the scheduling for
τ3, we can achieve the practical overall scheduling shown in
Fig. 2(a). In this paper, we address energy-aware scheduling for
general aperiodic tasks on homogeneous multi-core processors,
with the explicit consideration of processor’s static power. We
design lightweight algorithms for the problem and conduct
extensive simulation to verify the applicability of the proposed
algorithms.
C. Contributions and Paper Organization

Our main contributions can be outlined as follows:
• We address energy-aware scheduling for general ape-

riodic tasks on multi-core processors. Different from
existing works, we explicitly consider processors’
static powers. We formulate the problem in a clear
and formal way, which helps us find the key aspect of

2 4 6 8 10 12 t

f

0

(a) Scheduling on a uniprocessor

2 4 6 8 10 12 t

t

f

f

0

(b) Scheduling on a dual-core processor
Fig. 2. Aperiodic task scheduling on uniprocessor and a dual-core processor.

a solution/scheduling. Based on the formulated prob-
lem, we also show that the energy-aware scheduling
problem with the consideration of static powers is
still polynomial time solvable, however, with high
complexity.

• Instead of seeking polynomial time solutions with
high complexity, we propose a lightweight algorithm
suitable for real-time systems to solve the problem
efficiently with good performances. Namely, we pro-
pose to allocate execution time for a task during
an heavily overlapped subinterval, where the number
of overlapping tasks is greater than the number of
processors, according to the task’s Desired Execution
Requirement (DER) during this subinterval.

• We demonstrate the practical usage of the proposed
algorithms by numerical simulations; also, we evaluate
our scheduling algorithms using a practical processor’s
power consumption characteristics. Our scheduling
mechanisms are easy to implement in a practical
system.

The rest of the paper is organized as follows. In Section II,
we describe a simple example to motivate our work. We give
a clear and formal definition of the problem in Section III.
In Section IV, we obtain some important characteristics of an
optimal solution; then, the original problem is reformulated
into a convex optimization problem that can be solved in
polynomial time. After that, two algorithms are described in
Section V, where an illustration example is also provided to
demonstrate our overall approach. Numerical simulations and
evaluations using a practical processor’s power consumption
characteristics are presented in Section VI. We conclude our
paper in Section VII.

II. MOTIVATIONAL EXAMPLE
We demonstrate our motivation using the same task ex-

ample in Fig. 1(a). We assume that the power consumption
of each task is p(f) = fα + p0, α = 3, p0 = 0.01, if the
task is executed at frequency f , and the energy consumption
of task τi is Ei = p(f)(Ci/f) = (f3 + p0)Ci/f . Instead of
considering the problem on a uniprocessor, we consider the
problem on a homogeneous multi-core processor, where any
core can process at most one task at any instant time. In this
example with three tasks, we consider scheduling the tasks on a
processor with two cores such that the execution requirements
are met and the overall energy consumption is minimized.

We can see that before time R2 = 2, only one task,
i.e., τ1, is ready to execute; before time R3 = 4, only two
tasks, i.e., τ1 and τ2, are ready to execute. Besides, by now,
the number of ready tasks does not exceed the number of
available cores, 2. Thus, during interval [0, 4], core M1 can be

exclusively allocated to τ1; during interval [2, 4], core M2 can
be exclusively allocated to τ2. Similarly, M1 can be exclusively
allocated to τ1 during interval [8, 12]; M2 can be exclusively
allocated to τ2 during interval [8, 10]. However, during interval
[4, 8], all of the three tasks are ready for execution, while we
only have two cores. Denote the time that each task occupies
a core during interval [4, 8], as x1, x2, x3, respectively. Also,
denote the total time that τ1 occupies a core during intervals
[0, 4] and [8, 12] as y1, and the total time that τ2 occupies a
core during the intervals [2, 4] and [8, 10] as y2. We have the
following constraints:

0 ≤ x1, x2, x3 ≤ 4;

x1 + x2 + x3 ≤ 8;

0 ≤ y1 ≤ 8;

0 ≤ y2 ≤ 4.

We need to minimize the energy consumption:

E = ((4/(x1+y1))3+0.01)(x1+y1)+

((2/(x2+y2))3+0.01)(x2+y2)+((4/x3)3+0.01)x3

= 64/(y1+x1)2+8/(y2+x2)2+64/x2
3+

0.01(x1+x2+x3+y1+y2).

By solving the KKT conditions [9] for this optimization prob-
lem with inequality constraints, we can obtain that the optimal
values for x1, x2, x3, y1, y2 are 8/3, 4/3, 4, 8, 4 respectively.
The minimal energy consumption is 64/(8 + 8/3)2 + 8/(4 +
4/3)2 +64/42 = 155/32. Note that the execution core and or-
der for the three tasks during interval [4, 8] can be arbitrary. In
practice, we can choose the best method to avoid unnecessary
preemptions and migrations. The final scheduling for the three
tasks is shown in Fig. 2(b). For this simple example, we can use
KKT conditions to solve the problem. However, generally, for
complex cases, these kinds of problems are difficult to solve,
especially when static powers are introduced. One state-of-
the-art approach to solve these problems is the Interior Point
method, which requires a large number of numeric evaluations
and iterations. The time complexity of this method is too
high to be used in real-time systems. In this paper, instead of
seeking optimal solutions with high complexity as in [2], [4],
and [8], we propose lightweight algorithms for the problem.

III. SYSTEM MODEL AND PROBLEM DEFINITION
A. Task Model

We consider scheduling a set of independent aperiodic
tasks T = {τ1, τ2,· · ·, τn}. Each task τi is represented by a
three tuple, τi = (Ri, Di, Ci), where Ri is the release time
of τi, Di >Ri is the deadline of τi, and Ci is the execution
requirement of τi. Tasks do not have precedence constraints.
We assume that all of the tasks are preemptive, and migrations
are allowed.
B. Platform Model

We consider a multi-core processor with m DVFS-enabled
independent processing cores. By independent, we mean that
the cores can execute at different frequencies at any time,
and can adjust their execution frequencies independently. We
assume ideal processing cores whose frequency ranges are
continuous on (0,+∞). Cores can operate in two modes when
it is on: active mode and sleep mode. Active mode refers
to the state when it is executing some task and the power
consumption is the sum of both dynamic power and static

power, p(f) = fα + p0, α ≥ 2. When a core has no task to
execute, it enters the sleep mode immediately to save energy,
and the power consumption becomes zero.
C. Problem Definition

Given a set of preemptive aperiodic tasks T =
{τ1, τ2, · · · , τn}, our goal is to schedule all of the tasks
on a DVFS-enabled processor with m homogeneous cores,
M1,M2, · · · ,Mm, such that the overall energy consumption
is minimized. Since tasks are preemptive, and migrations are
allowed, each task τi’s execution might consist of Ki segments.
The jth (1 ≤ j ≤ Ki) segment of τi’s execution starts at
time ri,j and ends at time di,j . For notational brevity, and to
avoid segments overlapping at end points, we denote the jth
execution segment of τi as [ri,j , di,j). We index these segments
sequentially, such that Ri ≤ ri,1 < di,1 ≤ ri,2 < di,2 ≤ · · ·
≤ri,j<di,j ≤· · · ≤ri,Ki<di,Ki≤Di. Assume that each seg-
ment completes an execution requirement of ci,j . Each task’s
execution segments lie within its release time and deadline. We
denote τi’s overall execution intervals as the union of all of its
execution segments, namely, Ui = [ri,1, di,1)∪· · ·∪ [ri,j , di,j)
∪· · ·∪ [ri,Ki , di,Ki). Let fi,j be the execution frequency for
τi’s jth execution segment. Then, the execution requirement
completed during the jth segment is ci,j=(di,j−ri,j)fi,j . Let
R̄= minni=1{Ri}, which is the earliest release time of all the
tasks, and D̄ = maxni=1{Di}, which is the latest deadline of
all the tasks. We introduce a 0-1 function, exe(i, t), to indicate
whether task τi is executing at time t:

exe(i, t) =

{
1 if t ∈ Ui.
0 otherwise. (1)

Energy consumption of each task:

Ei =

Ki∑
j=1

ci,j

(
fα−1
i,j +

p0

fi,j

)
(2)

The execution requirement satisfies:
∑Ki
j=1 ci,j = Ci.

One important constraint we should keep in mind is that,
at any time, the number of executing tasks must be less than
or equal to the number of cores. Obviously, the time span we
need to consider is from R̄ to D̄.

n∑
i=1

exe(i, t) ≤ m,∀t ∈ [R̄, D̄]. (3)

The optimization problem can be formulated as follows:

min Etotal =
∑n
i=1Ei (4)

s.t.
∑Ki
j=1 ci,j = Ci,∀i = 1, 2, · · · , n; (5)∑n
i=1 exe(i, t) ≤ m,∀t ∈ [R̄, D̄]; (6)

Ri ≤ ri,1 < di,1 ≤ ri,2 < di,2 ≤ · · · ≤ ri,j (7)
< di,j ≤ · · · ≤ ri,Ki < di,Ki ,∀i = 1, 2, · · · , n. (8)

It is no easy task to solve this optimization problem directly.
In the following, we will attack the problem step by step,
starting with considering the ideal optimal situation of the
problem. Related notations are provided in Table I; some of
the meanings will be made clear later.

IV. PRELIMINARIES
In this section, we uncover some important characteristics

of an optimal solution. Also, the original problem is reformu-
lated into a convex optimization problem for guiding efficient
lightweight algorithms.

TABLE I. NOTATIONS USED IN THIS PAPER

Notation Description

n,m the number of tasks and processing cores.
T task set {τ1, τ2, · · · , τn}; τi is the ith task.
R̄ the earliest release time of all the tasks.
D̄ the latest deadline of all the tasks.
Ri, Di, Ci release time, deadline, execution requirement of τi.
ri,j the left end of task τi’s jth execution interval.
di,j the right end of task τi’s jth execution interval.
fi,j execution frequency of τi during its jth segment.
exe(i, t) binary function indicating if task τi is executing at time t.
Mj the jth processing core (j = 1, 2, · · · ,m).
p(f) core’s power when it is running at f .
fOτi

optimal frequency setting for task τi in the ideal situation
where the number of cores is unlimited.

[tj , tj+1] the jth constructed subinterval.
nj the number of overlapping tasks during the jth subinterval.
τj,i the ith overlapping tasks during the jth subinterval.
t(τj,i) available execution time of τj,i during the jth subinterval.
c(τj,i) desired execution requirement of τj,i during the jth subinterval.
xi,j the execution time of τi during the jth subinterval.
EO optimal energy consumption of the ideal case, where the number

of cores is unlimited.
ĒO practically achievable optimal energy consumption of the problem.
A
F1
i , AF2

i task τi’s total available execution time calculated by the evenly
and the DER-based allocating methods, respectively.

EI1 ,EF1 overall energy consumption of the intermediate and
final schedulings based on the evenly allocating method.

EI2 ,EF2 overall energy consumption of the intermediate and final
schedulings based on the DER-based allocating method.

A. Characteristics of an Optimal Solution
Observation 1: in an optimal solution, no matter how

many segments a task’s execution consists of, the execution
frequencies for this task during all its intervals should be equal,
i.e., fi,1 = fi,2 = · · · = fi,Ki ,∀i = 1, 2, · · · , n.

Illustration: consider a scheduling, in which task τi’s exe-
cution frequency during its jth interval is fi,j . The execution
requirement completed during each interval is ci,j = fi,j(di,j−
ri,j). The following condition holds:

Ki∑
j=1

fi,j(di,j − ri,j) = Ci. (9)

Energy consumption of task τi can be calculated as:

Ei =

Ki∑
j=1

(fαi,j + p0)(di,j − ri,j). (10)

To minimize Ei, we can apply the Lagrange Multiplier
Method, which tells that:

αfα−1
i,j (di,j−ri,j)−λ(di,j−ri,j)=0,∀j = 1, · · · ,Ki, (11)

where λ is the Lagrange Multiplier. Thus, fi,1 = fi,2 = · · · =
fi,Ki = α−1

√
λ/α. Applying the first constraint, we have

fi,j = Ci/

Ki∑
j=1

(di,j − ri,j),∀j = 1, 2, · · · ,Ki. (12)

Thus, the execution frequencies of τi during all its intervals
should be equal, and the common execution frequency is equal
to the overall execution requirement of τi divided by the overall
execution time of τi [20].

We sort all Ri and Di values in ascending order, and relabel
the distinct values as t1, t2, · · · , tN , where N ≤ 2n is the total
number of distinct Ri and Di values; t1 = R̄ is the earliest
release time, and tN = D̄ is the latest deadline. Through
this method, we also construct a set of N − 1 subintervals:

{[t1, t2], [t2, t3], · · · , [tN−1, tN]}. After this, the key of the
problem is to determine the execution time of each task τi’s
during each subinterval [tj , tj+1].

B. Problem Reformulation
We are now ready to reformulate the problem into a

convex optimization problem. Denote the execution time of
the ith task during the jth subinterval, [tj , tj+1] by xi,j ,
i = 1, · · · , n, j = 1, · · · , N − 1. An obvious fact is that,
task τi’s execution segment(s) lies within subintervals that are
covered by interval [Ri, Di]. We have{

xi,j=0 if [tj , tj+1] /∈ [Ri,Di].
0≤xi,j≤ tj+1 − tj if [tj , tj+1] ∈ [Ri,Di].

(13)

Also, the total execution time of all tasks during subinterval
[tj , tj+1] should be less than the total execution time that is
available:

n∑
i=1

xi,j ≤ m(tj+1 − tj),∀j = 1, 2, · · · , N − 1. (14)

The original problem can be reformulated as follows:

min Etotal=
∑n
i=1((

∑N−1
j=1 xi,j)((

Ci∑N−1
j=1 xi,j

)α+p0)) (15)

s.t. (13) and (14). (16)

Theorem 1: The energy minimal scheduling of aperiodic
tasks on multi-core processors with static power consumptions
and migrations allowed is polynomial time solvable.

Proof: First, the reformulated problem is a convex pro-
gramming program that can be solved in polynomial time
by the Interior Point method [9]. We demonstrate this by
showing both the constraints and objective function are con-
vex. Obviously, the constraints in Equations (13) and (14)
are linear, thus, are convex. In Equation (15),

∑N−1
j=1 xi,j is

the total execution time of task τi. α ≥ 2 guarantees that
C3
i /(
∑N−1
j=1 xi,j)

α−1 is convex. Apparently, p0

∑N−1
j=1 xi,j is

convex. Thus, the objective function is also convex. Second,
given the optimal solution of the convex programming prob-
lem, i.e., the optimal values for xi,j’s, a valid scheduling can
be derived if all the tasks are preemptive and migrations are
allowed, as will be shown later in Algorithm 1.

We denote the practically achievable optimal energy con-
sumption by ĒO. However, achieving the optimal solution
using the Interior Point method requires a large number of
numerical evaluations and iterations. Besides, the reformulated
problem has O(n2) number of variables; this fact also incurs
significant time complexity for achieving the optimal solution.
Instead of seeking optimal solutions with high complexity,
as in [8], [2], and [4], we consider developing lightweight
algorithms which are suitable for real-time systems.

Before further discussion, we give the following defini-
tions. The overlapping tasks during a subinterval, [tj , tj+1],
is the set of tasks whose release times are less than or equal
to tj , and whose deadlines are greater than or equal to tj+1.
Denote the number of overlapping tasks during subinterval
[tj , tj+1] by nj . A heavily overlapped subinterval is a subinter-
val from {[t1, t2], [t2, t3], · · · , [tN−1, tN]}, during which, the
number of overlapping tasks is greater than the number of
cores. A lightly overlapped subinterval is an interval from
{[t1, t2], [t2, t3], · · · , [tN−1, tN]}, during which, the number of

Fig. 3. Available execution time versus actual execution time. (a) The
execution requirement and its available execution time. (b) The scheduling
use all available execution time. (c) The scheduling use a part of the available
execution time.

overlapping tasks is less than or equal to the number of cores.

Observation 2: during a subinterval [tj , tj+1], if it is a
lightly overlapped subinterval, the overlapping tasks during
this subinterval are valid to occupy a processing core for the
whole subinterval.

Illustration: this is obvious, since the number of overlap-
ping tasks during such a subinterval is less than or equal to
the number of cores. Any task other than the overlapping tasks
during this subinterval either are not ready for execution or
have been completed (deadline has passed).

According to our problem reformulation and observations,
it can be noticed that the key of the problem lies in how to
allocate the execution time to the overlapping tasks during each
subinterval, i.e., how to determine xi,j’s. Due to the existence
of static power, a certain amount of execution time allocated
to a task might not be actually used by this task. For example,
in Fig. 3, assume that the task is valid to occupy a core from
0 to 5. The power consumption of a core is p(f) = f2 + 0.25.
Using all available execution time from 0 to 5 (Fig. 3(b))
results in an energy consumption of 2.05 (at frequency 0.4);
using only available execution time from 0 to 4 (Fig. 3(c))
results in an energy consumption of 2.00 (at frequency 0.5).
Thus, using only a part of the available execution time may be
better. We first consider how to allocate “available” execution
times to tasks. According to Observation 2, for a lightly
overlapped subinterval, we can allocate (tj+1− tj) to each
of its overlapping tasks’ available execution time. In the next
section, we address how to allocate available execution times
to overlapping tasks during a heavily overlapped subinterval.

V. SUBINTERVAL-BASED SCHEDULING

As for how to allocate available execution time during a
heavily overlapped subinterval, two approaches can be applied.
One allocates available execution times evenly among all
overlapping tasks. The other method, which is intuitively more
reasonable, is to allocate the available execution times based
on tasks’ DERs during this subinterval. We consider an ideal
case, where the number of cores is unlimited, to define the
DER.

A. An Ideal Case
Consider an ideal case, where the number of processing

cores is unlimited. In this situation, we do not need to consider
the collisions among tasks, and can simply execute one task
on one core. In this ideal case, the only constraint is that
the execution time of task τi should not exceed Di − Ri.
Assume that task τi’s execution frequency is fi. Then, energy
consumption of τi is

Eideali = Ci
(
fα−1
i + p0/fi

)
. (17)

The optimal energy consumption can be achieved by solving
the following optimization problem:

min
∑n
i=1E

ideal
i (18)

s.t. fi ≥ Ci/(Di −Ri). (19)

We denote the optimal frequency setting for τi by fOτi .
Applying the KKT conditions for each optimization problem,
we can easily get the analytical expression for fOτi :

fOτi = max{ α
√
p0/(α− 1), Ci/(Di −Ri)}. (20)

Denote the execution interval of τi, in this ideal scheduling,
SO, by UOτi = [Ri, Ri + Ci/f

O
τi], and the optimal energy

consumption of τi by EOτi , which can be calculated as follows:

EOτi = Ci
(
(fOτi)

α−1 + p0/f
O
τi

)
. (21)

Also, the optimal energy consumption of this ideal case is:
EO =

∑n
i=1E

O
τi .

B. Scheduling by the Evenly Allocating Method
1) An Intermediate Scheduling: We consider allocating

available execution times evenly among all overlapping tasks
during a heavily overlapped subinterval [tj , tj+1]. First, we
construct an intermediate scheduling, SI1 , in which the execu-
tion requirement completed in interval [tj , tj+1] is equal to the
ideal optimal case, SO, where the number of cores is unlimited.
Since the number of overlapping tasks during interval [tj , tj+1]
is nj , nj > m, we allocate each task τi an available execution
time of m(tj+1− tj)/nj . If in SO, the execution time of τi is
less than or equal to this amount, we leave the execution fre-
quency unchanged. If in SO, the execution time of τi is greater
than this amount, say, tO(m(tj+1− tj)/nj < tO ≤ tj+1− tj),
in order for the task to complete the same amount of execution
requirement, we need to increase the execution frequency to
fOτi t

O/(m(tj+1 − tj)/nj), which is at most fOτinj/m.
By increasing the execution frequency, the dynamic energy

consumption during this subinterval will be increased by at
most (nj/m)α−1, while the static energy consumption will re-
duce. Thus, the total energy consumption of task τi will not be
greater than (nj/m)α−1EOi . Note that we do not specify which
task we are considering, which means that, for each overlap-
ping task in interval [tj , tj+1], its energy consumption is not
greater than (nj/m)α−1 times its optimal energy consumption
in the ideal case. Denote nmaxj = max{m,maxN−1

j=1 nj}.
It is easy to notice that this intermediate scheduling, SI1 ,
has an energy consumption, EI1 , that is no greater than
(nmaxj /m)α−1EO.

Again, the allocated available execution time may not
be fully used by each task, due to the existence of static
power. In the following, we will use “task scheduling” and
“task’s available execution time scheduling” interchangeably.
In our approach, we require that each task’s executions are
only mapped to its available execution intervals. By now, we
have allocated available execution times to tasks; to avoid
task collisions during a heavily overlapped subinterval, we
still need to schedule the overlapping tasks in a safe way.
Algorithm 1 provides a safe way to schedule these tasks’
available execution times. By the evenly allocating method,
each task’s allocated execution time during this interval is
t(τj,1) = t(τj,2) · · · = t(τj,nj) = m(tj+1 − tj)/nj . Pk,
initialized as Pk = tj , k = 1, 2, · · · ,m, represents the earliest
available time of core Mk during subinterval [tj , tj+1].

Algorithm 1 Available Execution Time Scheduling During a
Heavily Overlapped Subinterval
Input: a heavily overlapped subinterval, [tj , tj+1]; the set of

overlapping tasks during this interval, Tj = {τj,1, τj,2,
· · · , τj,nj}, nj > m; Each task’s allocated execution time
during this interval t(τj,i),∀i = 1, 2, · · · , nj ;

Output: A scheduling of tasks without collision;
1: Pk = tj ,∀k = 1, 2, · · · ,m; k = 1;
2: for i := 1 to nj do
3: if Pk + t(τj,i) > tj+1 then
4: Schedule the first part of τj,i on core Mk+1 from

time tj to time tj +Pk + t(τj,i)− tj+1; Pk+1 = tj +Pk +
t(τj,i)− tj+1;

5: Schedule the second part of τj,i on core Mk from
time Pk to time tj+1; Pk = tj+1;

6: k = k + 1;
7: else
8: Schedule τj,i on core Mk from time Pk to time
Pk + t(τj,i); Pk = Pk + t(τj,i);

2) Final Scheduling of the Evenly Allocating Method: A
refined scheduling can be constructed based on SI1 . Since
we have allocated available execution times for each task
during every lightly overlapped subinterval and every heavily
overlapped subinterval, we can calculate the total available
execution time for each task τi, denoted by AF1

i . The optimal
frequency setting for τi can be determined by solving the
following optimization problem:

min Ci
(
fα−1
i + p0/fi

)
(22)

s.t. fi ≥ Ci/AF1
i . (23)

which has the solution, fi = max{ α
√
p0/(α− 1), Ci/A

F1
i }.

We denote this final scheduling as SF1 . Since SF1 is further
optimized based on SI1 , the energy consumption of these
three schedulings has the following relation: EF1 ≤ EI1 ≤
(nmaxj /m)α−1EO.

C. Scheduling by the DER-based Allocating Method
The evenly allocating method ignores the execution re-

quirements of overlapping tasks; thus, it may result in tasks not
efficiently utilizing the available execution times. In the fol-
lowing, we propose another method, which allocates available
execution times to tasks, according to their desired execution
requirements, in a heavily overlapped subinterval.

1) An Intermediate Scheduling: In the ideal case, each task
whose [Ri, Di] contains [tj , tj+1] is valid to occupy the entire
subinterval. We define the DER of τj,i during this heavily
overlapped subinterval as:

c(τj,i) = |UOτj,i ∩ [tj , tj+1]|fOτj,i . (24)

where fOτj,i is the optimal frequency setting of task τj,i in the
ideal case, SO. |UOτj,i ∩ [tj , tj+1]| represents τj,i’s execution
time of the scheduling of the ideal case, during subinterval
[tj , tj+1]. This value may be not equal to [tj , tj+1], due to the
existence of the static power. Moreover, if UOτj,i∩[tj , tj+1] = ∅,
c(τj,i) = 0. Different tasks’ execution times and optimal
execution frequencies may be different, resulting in the fact
that the desired execution requirements in this interval are
different. For example, if a task’s execution requirement is
quite small, while its valid execution time, Di − Ri, is very

Algorithm 2 DER-based Available Execution Time Allocation
Input: a heavily overlapped subinterval, [tj , tj+1]; the

set of overlapping tasks during this interval, Tj =
{τj,1, τj,2, · · · , τj,nj}; the desired execution requirement
of each task during this interval c(τj,i),∀i = 1, 2, · · · , nj ;
the number of cores, m;

Output: task τj,i’s execution time during this interval,
t(τj,i),∀i = 1, 2, · · · , nj ;

1: C =
∑nj
i=1 c(τj,i);

2: Sort tasks in Tj in descending order of their c(τj,i) values.
Denote the sorted order set as {τj,i1 , τj,i2 , · · · , τj,inj };
//i1, i2, · · · , inj is a permutation of 1, 2, · · · , nj ; c(τj,i1) ≥
c(τj,i2) ≥ · · · ≥ c(τj,inj).

3: for k := 1 to nj do
4: if c(τj,ik)

C ≥ 1
m then

5: t(τj,ik) = tj+1 − tj ;
6: C = C − c(τj,ik);
7: m = m− 1;
8: else
9: t(τj,ik) =

c(τj,ik)
C m(tj+1 − tj);

large, then, the optimal execution frequency of this task will
be low (assuming a low static power). For such a task in
a heavily overlapped subinterval, allocating more available
execution time to this task may not reduce the overall en-
ergy consumption. Intuitively, we can allocate more available
execution time to tasks whose desired execution requirement
is high.

We apply Algorithm 2 to allocate available execution
times during each heavily overlapped subinterval. In Algorithm
2, C represents the total execution requirement of all the
overlapping tasks during this subinterval. When allocating
available execution times, this algorithm considers the task
with the greatest DER first. For example, if τj,1 is the task
with the greatest DER, the algorithm attempts to allocate
c(τj,1)/C of the total execution time of all cores, m(tj+1−tj).
If c(τj,i)/C > 1/m, the desired execution time of τj,1 is
c(τj,1)m(tj+1−tj)/C>tj+1−tj , which is not valid. Thus, τj,1
is allocated tj+1−tj . If c(τj,1)/C≤1/m, τj,1 can be allocated
its desired execution time. After applying Algorithm 2, we can
also apply Algorithm 1 to derive a safe task scheduling during
this subinterval.

We also consider an intermediate scheduling first, in which
the execution requirement of each task during each subinterval
is equal to that of SO. Denote t(τj,i) as the available execution
time allocated to τj,i by Algorithm 2. if |UOτj,i ∩ [tj , tj+1]| ≤
t(τj,i), a task’s execution frequency does not need to be
changed. However, if |UOτj,i ∩ [tj , tj+1]|>t(τj,i), we increase
its execution frequency to |UOτj,i ∩ [tj , tj+1]|fOτj,i/t(τj,i). We
denote this intermediate scheduling by SI2 .

2) Final Scheduling of the DER-based Allocating Method:
Similarly, we can design a final scheduling SF2 based on
SI2 . Note that, after applying Algorithm 2 for every heavily
overlapped subinterval, the total available execution time for
each task can also be easily calculated. Denote AF2

i as the total
available execution time for each task τi using the DER-based
allocating method. To further optimize the frequency setting
and energy consumption, while still meeting the execution
requirement of each task, we can solve another optimization

0 2 4 6 8 10 12 14 16 18 20 22

(a)

(b)

0 2 4 6 8 10 12 14 16 18 20 22

(c) Overall scheduling
Fig. 4. Illustration example. (a) The original task set. (b) Scheduling in the
first subinterval. (c) Overall scheduling.

problem similar to (22) and (23), with only AF1
i replaced

by AF2
i . The optimal frequency setting for this problem can

also be easily calculated: fi = max{ α
√
p0/(α− 1), Ci/A

F2
i }.

Since SF2 is further optimized based on SI2 , their energy
consumption has the following relation: EF2 ≤ EI2 .

D. Example
Look at an example of six tasks: τ1 = (0, 8, 10), τ2 =

(2, 14, 18), τ3 = (4, 8, 16), τ4 = (6, 4, 14), τ5 = (8, 10, 20),
τ6 = (12, 6, 22) as shown in Fig. 4(a). As has been defined,
τi = (Ri, Ci, Di), i = 1, 2, · · · , 6, Ri, Ci, and Di represent
the release time, execution requirement and deadline of task
τi, respectively. We consider scheduling these tasks on a quad-
core (4-core) processor, with each core’s power consumption
being p(f)=f3.

With the release time and deadline at hand, we construct
the subintervals. In this example, there are a total of 12 distinct
values of Ri and Di. Thus, we can construct 11 subintervals:
{[tj , tj+1], j = 1, 2, · · · , 11}, where tj = 2(j − 1),∀j =
1,· · ·, 12. It is easy to notice that only during intervals [8, 10]
and [12, 14], the number of overlapping tasks is greater than
the number of cores. Thus, only intervals [8, 10] and [12, 14]
are heavily overlapped subintervals. If we allocate the available
execution time evenly among each interval’s overlapping tasks,
each overlapping tasks will be allocated (4/5) × 2 = 8/5.
Applying Algorithm 1, we can derive a safe scheduling during
inter [8, 10]. The scheduling is detailed in Fig. 4(b). The
scheduling during interval [12, 14] is similar, and thus, is
omitted. Final frequency settings for τ1, τ2, τ3, τ4 and τ5 are
8/(8 + 8/5), 14/(12 + 16/5), 8/(8 + 16/5), 4/(4 + 16/5) and
10/(8 + 16/5), respectively. The final frequency setting for τ6
is 6/(8+8/5). The overall scheduling based on this method is
derived as Fig. 4(c). The overall energy consumption of SF1

is 33.0642.
The optimal execution frequency for each task in SO

can be calculated as fOτi = Ci/(Di − Ri). In this example,
fOτ1 = 4/5, fOτ2 = 7/8, fOτ3 = 2/3, fOτ4 = 1/2, fOτ5 = 5/6,
fOτ6 = 3/5. Thus, the desired execution requirements of tasks

8 10

(a)

12 14

(b)
Fig. 5. Subinterval scheduling by the DER-based allocating method. (a)
Scheduling in the first subinterval. (b) Scheduling in the second subinterval

τ1, τ2, τ3, τ4 and τ5 during interval [8, 10] are 8/5, 7/4, 4/3, 1
and 5/3, respectively. Applying Algorithm 2, we can de-
termine the allocation time of tasks τ1, τ2, τ3, τ4 and τ5, as
1.7415, 1.9048, 1.4512, 1.0884, 1.8141. The scheduling during
interval [8, 10] can be derived as Fig. 5(a). Similarly, the
desired execution requirement of tasks τ2, τ3, τ4, τ5 and τ6
during interval [12, 14] are 7/4, 4/3, 1, 5/3 and 6/5. Applying
Algorithm 2 again, we can determine the allocation time of
tasks τ2, τ3, τ4, τ5 and τ6, as 2, 1.5385, 1.1538, 1.9231, 1.3846.
Also, we can derive the scheduling during interval [12, 14]
as shown in Fig. 5(b). With the allocated execution times
during interval [8, 10] and [12, 14], we can calculate the overall
available execution time of each task. Thus, we can further
optimize the execution frequency of each task. We omit the
final scheduling of the second method, since it is a straight-
forward process. The overall energy consumption of SF2 is
31.8362. We can see that allocating available execution times
based on desired execution requirements will save more energy
than evenly allocating available execution times.

VI. EXPERIMENTS AND SIMULATIONS

We design various numerical simulations to evaluate our
proposed scheduling methods in this section. On the task
side, the release times, deadlines, and execution requirements
of all of the tasks can vary. What also matters is the total
number of tasks. On the platform side, the power consumption
characteristics, namely, the values of α and p0, also have
a significant influence. Another important parameter is the
number of cores of the multi-core processor. Although there
are many parameters that might influence the energy consump-
tion of a scheduling, we notice that, it is not the absolute
values that matter. Combined or comparative parameter values
dictate the influence. Also, we need to consider the situations
that are close to practical processor and task characteristics.
With these considerations, we design our simulation settings as
follows. We randomly generate tasks’ release times on interval
[0, 200]; the values are uniformly distributed. We generate
tasks’ execution requirements on interval [10, 30]; values are
also uniformly distributed. Intuitively, a combined parameter
of Ri, Ci, Di: Ci/(Di−Ri), the intensity of a task, may have a
significant influence. Thus, we first generate a random intensity
value for τi, denoted by intensityi, for which we choose its
value less than or equal to 1, and then set the deadline of task
τi as: Di = Ci/intensityi +Ri.

Recall that the reformulated convex optimization problem
can be solved in polynomial time; denote the energy consump-
tion of the optimal solution by ĒO. Thus, we normalize the
energy consumption of each scheduling, divided by the optimal
energy consumption ĒO. We denote the Normalized Energy

0.00 0.04 0.08 0.12 0.16 0.20

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

p0

 NEC of I1
 NEC of F1
 NEC of I2
 NEC of F2
 NEC of Idl

Fig. 6. Normalized energy consumption for various static power values.

2.0 2.2 2.4 2.6 2.8 3.0
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

alpha

 NEC of I1
 NECof F1
 NEC of I2
 NEC of F2
 NEC of Idl

Fig. 7. Normalized energy consumption for various α values.

Consumption (NEC) of SI1 , SF1 , SI2 and SF2 by “NEC of
I1”, “NEC of F1”, “NEC of I2” and “NEC of F2”, respectively.
We also normalize the optimal energy consumption of the ideal
case, and denote EO/ĒO as “NEC of Idl”. Notice that, due
to the existence of static power, EO may be greater than ĒO;
however, for most cases, EO ≤ ĒO, as will be shown by
various experiment results.

A. Influence of Platform’s Characteristics
To investigate the performance of our scheduling algorithm

on different platform characteristics, we choose three important
parameters: the values of α, p0, and the number of cores.

Considering the influences of α and p0, we choose the
number of cores fixed as m= 4, which is a common config-
uration of modern multi-core processors. We generate n= 20
tasks, with their intensities randomly choosing values from
[0.1, 0.2,· · ·, 1.0]. To evaluate the influence of static power con-
sumption, we fix α=3, and vary the static power consumption
as {0, 0.02, 0.04, · · · , 0.20}. We run our algorithm on each
setting 100 times and calculate the five average NEC values.
The result is shown in Fig. 6. To evaluate the influence of the
dynamic parameter α, we fix the static power consumption
as p0 = 0, and vary the values of α as 2.0, 2.1,· · ·, 3.0. The
result is shown in Fig. 7. We further run simulations for each
pair of (α, p0) values, where α ∈ {2.0, 2.1, · · · , 3.0}, and
p0 ={0, 0.02, 0.04,· · ·, 0.20}. The results are shown in Table II.

From Fig. 6 and Fig. 7, we can see that, the intermediate
scheduling, SI1 and its corresponding final scheduling, SF1

have much greater energy consumption, especially when p0

is low and α is high; the intermediate scheduling SI2 and
its corresponding final scheduling, SF2 , have more stable and

2 4 6 8 10 12 14 16
0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Number of Cores

 NEC of I1
 NEC of F1
 NEC of I2
 NEC of F2
 NEC of Idl

Fig. 8. Normalized energy consumption for various numbers of cores.

lower energy consumption. This demonstrates the advantage of
the DER-based allocating method over the evenly allocating
method. Compared to SI2 , SF2 has a further reduced near-
optimal energy consumption.

Also, from Table II, we can see that the normalized energy
consumption of SF2 remains at at a low level when the
static power changes from 0 to 0.20. The reason for this
lies in the smart aspect of the subinterval-based scheduling.
For low static power, namely, p0 = 0, the ideal optimal
scheduling is to stretch all of the tasks during their interval
[Ri, Di]; our subinterval-based scheduling detects subintervals
where the cores are heavily loaded and share some amount
of the load with other lightly loaded subintervals. For high
static power, even the optimal solution will not choose to
stretch task executions as much as possible; our proposed
approach adopts a frequency refining after allocating available
execution times; thus, it will not lead to great increase of
static energy consumption either. Consequently, in both cases,
the normalized energy consumption remains at a satisfactorily
low level. Besides, from Table II, we can see that the DER-
based allocating method obviously outperforms the evenly
allocating method. When the processor’s static power is zero,
the corresponding NEC of the DER-based method is about 1.1.
When the processor’s static power increases, NEC of the DER-
based method decreases from around 1.1 to around 1.03, which
demonstrates that the DER-based allocating method achieves
near-optimal energy consumption.

To evaluate the influence of the total number of cores,
we fix α = 3, p0 = 0.2, and vary the number of cores
as 2, 4, 6, 8, 10, 12. The results are shown in Fig. 8. Though,
when the number of cores is 2, SF2 has a worse-than-general
performance, the NEC of SF2 sharply reduces when the
number of cores increases.

B. Influence of Tasks’ Characteristics
To investigate the influence of tasks’ characteristics, we fix

the following values: number of cores, m = 4; dynamic power
parameter, α = 3; and static power, p0 = 0.2. To investigate
the influence of task intensity, we set the number of tasks,
n = 20, and vary the intensity generation range from {[0.1, 1],
[0.2, 1], · · · , [1.0, 1.0]}. The result is shown in Figure 9. To
investigate the influence of the number of tasks, we set the task
intensity generation range as [0.1, 1.0], and vary the number of
tasks as 5, 15, 20, 25, 30, 35, 40. The result is shown in Fig. 10.

In Fig. 9, the energy consumptions of SF2 is quite sta-
ble when task intensity changes significantly, though other
schedulings have significant fluctuations. From Fig. 10, we

TABLE II. NORMALIZED ENERGY CONSUMPTION OF THE FINAL SCHEDULING APPROACHES FOR VARIOUS (α, p0) VALUES PAIRS

α NECs static power, p0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

2.0
NEC of F1 1.3607 1.3083 1.2468 1.1893 1.1798 1.1883 1.1881 1.1655 1.1340 1.1175 1.1268
NEC of F2 1.0961 1.0751 1.0783 1.0527 1.0264 1.0391 1.0036 1.0227 1.0229 1.0093 1.0181

2.1
NEC of F1 1.3737 1.3488 1.3283 1.2090 1.2302 1.2288 1.2168 1.9566 1.1680 1.1422 1.1583
NEC of F2 1.1014 1.0429 1.0256 1.0150 1.0101 1.0429 1.0036 1.0040 1.0016 1.0013 1.0256

2.2
NEC of F1 1.4387 1.4066 1.3244 1.3049 1.2600 1.2366 1.2391 1.2169 1.1847 1.1521 1.1644
NEC of F2 1.0972 1.0709 1.0537 1.0450 1.0491 1.0409 1.0353 1.0438 1.0226 1.0324 1.0237

2.3
NEC of F1 1.4752 1.4579 1.3071 1.2309 1.2037 1.2579 1.2073 1.1805 1.1543 1.1651 1.1771
NEC of F2 1.1020 1.1028 1.0977 1.0774 1.0530 1.0528 1.0557 1.0350 1.0436 1.0331 1.0377

2.4
NEC of F1 1.5270 1.5039 1.3690 1.2589 1.3124 1.3039 1.0852 1.0657 1.0572 1.0489 1.1990
NEC of F2 1.1098 1.0995 1.0886 1.0623 1.0749 1.0595 1.0475 1.0469 1.0245 1.0340 1.0286

2.5
NEC of F1 1.5857 1.4862 1.3101 1.3647 1.2558 1.2862 1.2915 1.2708 1.2370 1.2495 1.2101
NEC of F2 1.1110 1.0935 1.0879 1.0783 1.0520 1.0435 1.0479 1.0272 1.0356 1.0266 1.0279

2.6
NEC of F1 1.6968 1.6507 1.4671 1.5144 1.4193 1.3807 1.3580 1.4009 1.2906 1.3407 1.2671
NEC of F2 1.1191 1.1002 1.0935 1.0771 1.0530 1.0602 1.0696 1.0785 1.0561 1.0357 1.0335

2.7
NEC of F1 1.7137 1.6625 1.4798 1.5038 1.3888 1.3625 1.3488 1.2856 1.3928 1.3014 1.2798
NEC of F2 1.1167 1.0916 1.0875 1.0796 1.0656 1.0616 1.0639 1.0576 1.0492 1.0474 1.0375

2.8
NEC of F1 1.8496 1.7301 1.6569 1.6026 1.4532 1.4401 1.4350 1.4069 1.3520 1.3752 1.3269
NEC of F2 1.1309 1.1183 1.0913 1.0766 1.0550 1.0583 1.0617 1.0406 1.0395 1.0470 1.0413

2.9
NEC of F1 1.9250 1.8763 1.8438 1.6508 1.5889 1.4763 1.4571 1.4794 1.4099 1.3952 1.3438
NEC of F2 1.1245 1.1060 1.0956 1.0810 1.0723 1.0660 1.0605 1.0548 1.0435 1.0402 1.0356

3.0
NEC of F1 2.0214 1.5298 1.3848 1.2829 1.2076 1.5298 1.5164 1.4759 1.4360 1.4019 1.3848
NEC of F2 1.1386 1.1208 1.0932 1.0731 1.0750 1.0688 1.0701 1.0531 1.0567 1.0477 1.0432

[0.2, 1.0] [0.4, 1.0] [0.6, 1.0] [0.8, 1.0] [1.0, 1.0]

1.0

1.2

1.4

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Task Intensity Generation Range

 NEC of I1
 NEC of F1
 NEC of I2
 NEC of F2
 NEC of Idl

Fig. 9. Normalized energy consumption for various task intensity generation
ranges.

5 10 15 20 25 30 35 40
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Number of Tasks

 NEC of I1
 NEC of F1
 NEC of I2
 NEC of F2
 NEC of Idl

Fig. 10. Normalized energy consumption for various numbers of tasks.

can see that when the number of tasks increases, though the
energy consumptions of schedulings, SI1 and SF1 increase
significantly, the proposed scheduling, SF2 will not. SF2 still
has a much better performance than SF1 .

C. Applying the Scheduling Method on a Practical Processor’s
Power Configuration

We also consider a multi-core processor with practical
power configuration. We are aware that practical processing
cores are only able to execute on a set of discrete frequency

TABLE III. FREQUENCY AND POWER CHARACTERISTICS OF THE
INTEL XSCALE PROCESSOR

k 1 2 3 4 5
frequency, fk (MHz) 150 400 600 800 1000
power, pk (mW) 80 170 400 900 1600

values, instead of arbitrary continuous values. For a practical
multi-core processor, we first apply the curve-fitting technique
for the frequency and power characteristics using the form of
p(f) = γfα + p0. We use the power characteristics of the
Intel XScale processor, which is shown in Table III [1], as
the power characteristics of a core on a quad-core processor.
Since practical processors have similar power characteristics,
we just choose Intel XScale as an representative. Applying the
curve-fitting technique, we achieve a fitting function: p(f) =
3.855 × 10−6f2.867 + 63.58. Then, we apply our scheduling
method and derive the frequency setting for each of the tasks,
though these frequency values may not appear in the available
frequency set of the core. After this, we round each derived
frequency value to the closest higher frequency. Though other
techniques that use both the closest lower frequency and the
closest higher frequency can be used, we choose the simple
rounding up strategy to show the advantage of our final
practical scheduling against other scheduling methods.

For each task, we generate the tasks’ execution requirement
Ci within [4000, 8000]. Tasks’ release times are uniformly
generated between 0 and 200s. A reasonable deadline is chosen
as, Di = Ri + Ci/(intensityi × f2), where f2 = 400(MHz)
is the second available execution frequency. Task intensity
is still within [0.1, 1.0]. The results are shown in Fig. 11,
in which the practical scheduling based on SF2 still has the
best performance in terms of saving energy, and is also very
close to the optimal energy consumption. Since SI1 and SI2
may require significantly increasing the execution frequency
during heavily overlapped subintervals, their energy consump-
tion may increase significantly. Besides, when a frequency
higher than f5 is required, tasks’ deadlines may be missed.
During experiments, we notice the probability of SI1 and
SI2 missing deadline(s) is significant; the probability of SF1

missing deadline(s) is non-negligible, while the probability of
SF2 missing deadline(s) is negligible.

I1 F1 I2 F2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Practical Scheduling
Fig. 11. Normalized energy consumption of the practical scheduling based
on different approaches

D. Additional Remarks

So far, we assume using all of the cores available. However,
we can choose how many cores to use before actual scheduling.
Basically, before actually running the aperiodic task set, we
can simulate the energy consumption of a scheduling that uses
one core, then two cores, until the maximum number of cores.
Among all these scheduling strategies, we choose the one that
consumes the minimum amount of energy. In the practical
execution, we use the scheduling with the minimum energy
consumption and the corresponding number of cores. Also
notice that both algorithms 1 and 2 are with low complexity,
and obtaining the desired execution times and the final optimal
frequency settings only needs several simple calculations.
Thus, our overall scheduling algorithm is easy and suitable
to be implemented in real-time systems.

VII. CONCLUSION

The energy-aware scheduling for general aperiodic tasks on
multi-core processors is addressed. We formulate the problem
on multi-core processors in a formal way, which shows that it is
polynomial time solvable (though requiring high complexity),
and helps us find that the key aspect of a solution/scheduling
lies in how to allocate available execution times during a
heavily overlapped subinterval. Instead of seeking optimal
solutions with high complexity, we design a lightweight algo-
rithm to solve the problem efficiently with good performance.
Specifically, we allocate the available execution time for a task
according to its desired execution requirement during a heav-
ily overlapped subinterval, where the number of overlapping
tasks is greater than the number of cores. We demonstrate
the practical usage of the proposed algorithms by numerical
simulations; also, we evaluate our scheduling method using
a practical multi-core processor’s power consumption char-
acteristics. Results show that the lightweight algorithm can
achieve near-optimal energy consumption in general cases.
Besides, our proposed scheduling mechanisms are easy to be
implemented in a practical system.

REFERENCES

[1] Intel xscale microarchitecture. http://developer.intel.com/design/intelxsc-
ale/benchmarks.htm.

[2] S. Albers, A. Antoniadis, and G. Greiner. On multi-processor speed
scaling with migration: Extended abstract. In Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pages 279–288, 2011.

[3] T.A. AlEnawy and H. Aydin. Energy-aware task allocation for rate
monotonic scheduling. In Proceedings of the 11th IEEE Real Time and
Embedded Technology and Applications Symposium, pages 213–223,
2005.

[4] E. Angel, E. Bampis, F. Kacem, and D. Letsios. Speed scaling
on parallel processors with migration. In Proceedings of the 18th
International Conference on Parallel Processing, Euro-Par, 2012.

[5] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Determining
optimal processor speeds for periodic real-time tasks with different
power characteristics. In 13th Euromicro Conference on Real-Time
Systems, pages 225–232, 2001.

[6] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and
aggressive scheduling techniques for power-aware real-time systems. In
Proceedings. 22nd IEEE Real-Time Systems Symposium, pages 95–105,
2001.

[7] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. In Proceedings of International Parallel and Dis-
tributed Processing Symposium, page 9, 2003.

[8] B. D. Bingham and M. R. Greenstreet. Energy optimal scheduling
on multiprocessors with migration. In International Symposium on
Parallel and Distributed Processing with Applications, pages 153–161,
Dec. 2008.

[9] S. Boyd and L. Vandenberghe. Convex optimization. In Cambridge
University Press, 2004.

[10] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor
design. In Proceedings of the 28th Hawaii International Conference on
System Sciences, volume 1, pages 288–297, Jan. 1995.

[11] A. Chandrakasan, A. Burstein, and R. W. Brodersen. A low power
chipset for portable multimedia applications. In Solid-State Circuits
Conference, 1994. Digest of Technical Papers., IEEE International,
pages 82–83, Feb. 1994.

[12] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient
scheduling of real-time tasks in multiprocessor systems. In Proceedings
of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 408–417, 2006.

[13] J.-J. Chen and C.-F. Kuo. Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (dvs) platforms. In Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 28–38, Aug. 2007.

[14] J.-J. Chen, T.-W. Kuo, and C.-S. Shih. 1 + ε approximation clock rate
assignment for periodic real-time tasks on a voltage-scaling processor.
In Proceedings of the 5th ACM International conference on Embedded
Software, pages 247–250, 2005.

[15] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design.
In Low Power Electronics, 1994. Digest of Technical Papers., IEEE
Symposium, pages 8–11, Oct. 1994.

[16] F. Kong, W. Yi, and Q. Deng. Energy-efficient scheduling of real-time
tasks on cluster-based multicores. In Proceedings of Design, Automation
Test in Europe Conference and Exhibition, pages 1–6, March 2011.

[17] W. Y. Lee. Energy-saving dvfs scheduling of multiple periodic real-time
tasks on multi-core processors. In Proceedings of the 13th IEEE/ACM
International Symposium on Distributed Simulation and Real Time
Applications, pages 216–223, 2009.

[18] V. Legout, M. Jan, and L. Pautet. A scheduling algorithm to reduce
the static energy consumption of multiprocessor real-time systems.
In Proceedings of the 21st International Conference on Real-Time
Networks and Systems, pages 99–108, 2013.

[19] D. Li and J. Wu. Energy-aware scheduling on multiprocessor platforms.
In Springerbriefs on Computer Science, Oct. 2012.

[20] K. Li. Scheduling precedence constrained tasks with reduced processor
energy on multiprocessor computers. Computers, IEEE Transactions
on, 61(12):1668–1681, 2012.

[21] P. Mejia-Alvarez, E. Levner, and D. Mossé. Adaptive scheduling server
for power-aware real-time tasks. ACM Trans. Embed. Comput. Syst.,
3(2):284–306, May 2004.

[22] V. Nelis and J. Goossens. Mora: An energy-aware slack reclamation
scheme for scheduling sporadic real-time tasks upon multiprocessor
platforms. In Proceedings of the 15th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages
210–215, August 2009.

[23] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu
energy. In Proceedings. of the 36th Annual Symposium on Foundations
of Computer Science, pages 374–382, 1995.

