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Background

• high throughput

• low-cost

• scalability

• large data set



Background

performance degradation
•communication cost in the shuffling phase 

•load imbalance in the reduction phase

Map Shuffle Reduce



LELB

Figure 1. The distribution of keys 

(A simplified example).

sum of workload(A)
= sum of workload(B)
=sum of workload(C)

Key issues
• Which node will keys A, B and C be 

executed on? 
• Which job will be executed first on every 

node?
• For each node, will it send/receive data 

using a network source, or will it reduce 
using the computing source?



LELB

(1) the proportion of the kth 
key on the nth Map Node

(2) the proportion of the kth 
key on the nth Map Node 
of the kth key on all the 
Map Nodes

(3) Based on (1) & (2),  take 
into account both the 
internal node locality and 
locality between all the 
nodes
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Fig.2. The distribution of keys on 3 Map nodes
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different situations:



MLSR

Figure 3. The execution flow of MLSR.

Supposed that the time complexity of 

computation for n keys is fC(n)

the time complexity of communication for n

keys is fT(n)

The Cost of executing Local Reduce + Shuffle + Final Reduce is:
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The cost of executing traditional Shuffle + Reduce is: 
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 if

Cost1 is smaller than Cost2, that is, the scheme of “Local 
Reduce + Shuffle + Final Reduce” will be applied.
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MLSR
Algorithm 2  MLSR (Map + Local Reduce + 

Shuffle + Reduce) Algorithm 
Input:  kkey : the kth key 

numKeys: the number of keys 

numMapNodes: the number of Map Nodes  

snumMapNodenRn 1, : load balance  

scheduling scheme during 

reduce phase generated 

by LELBA 

Output: scheduling scheme generated by MLSRA 
1: for all snumMapNoden 1  do 

2:         for all numKeysk 1  do 

3:      if 
n

k Rkey   then 

4:                if Cost(Local Reduce+Shuffle+Reduce) of 

                     kkey  is less than Cost(Shuffle+Reduce) 

 of kkey  then 

5:                     local reduce for kkey  on the nth nodes 

6:                end if 

7:                shuffle for kkey  

8:             end if 

9:  end for 

10: end for 

11: for all snumMapNoden 1  do 

12:        for all numKeysk 1  do 

13:      if 
n

k Rkey   then 

14:               local reduce for kkey  on the nth nodes 

15:             end if 

16:  end for 

17: end for 

18:   final reduce for kkey , numKeysk 1  

 



Experiments 

examples

• Word count

• Merge sort

different factors

• data sizes

• map tasks’ number



Experiments 

Figure 9. The relationship between 
the computing performance and 
the size of data for Merge Sort.

Figure 10. The relationship between 
the computing performance and

the number of map tasks for Merge Sort.



Experiments 

Figure 9. The relationship between 
the computing performance and 
the size of data for word count.

Figure 10. The relationship between 
the computing performance and

the number of map tasks for word count.



Conclusion

• This paper proposes a Locality-Enhanced Load Balance (LELB) algorithm

• And extends the execution flow of MapReduce to Map, Local reduce, 
Shuffle and final Reduce (MLSR), then proposes a corresponding MLSR 
algorithm. 

• Use of the novel algorithms can share the computation of reduce and 
overlap with shuffle in order to take full advantage of CPU and I/O 
resources.

• The actual test results demonstrate that the execution performance 
outperforms the execution performance using hadoop by up to 9.2% 
(for Merge Sort) and 14.4% (for WordCount).
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