
ICPP 2015

Optimizing MapReduce based on Locality
of K-V Pairs and Overlap between Shuffle
and Local Reduce

• Background

• LELB and MLSR

• Experiments and Conclusion

Content

Background

• high throughput

• low-cost

• scalability

• large data set

Background

performance degradation
•communication cost in the shuffling phase

•load imbalance in the reduction phase

Map Shuffle Reduce

LELB

Figure 1. The distribution of keys

(A simplified example).

sum of workload(A)
= sum of workload(B)
=sum of workload(C)

Key issues
• Which node will keys A, B and C be

executed on?
• Which job will be executed first on every

node?
• For each node, will it send/receive data

using a network source, or will it reduce
using the computing source?

LELB

(1) the proportion of the kth
key on the nth Map Node

(2) the proportion of the kth
key on the nth Map Node
of the kth key on all the
Map Nodes

(3) Based on (1) & (2), take
into account both the
internal node locality and
locality between all the
nodes

1

(2) 2 /
numMapNodes

k k k
n n n

n

Locality key key

1 1

2

1 1

(3) 1 2

()

k k k
n n n

k k
n n

numKeys numMapNodes
k k
n n

k n

k
n

numKeys numMapNodes
k k
n n

k n

Locality Locality Locality

key key

key key

key

key key

1

(1) 1 /
numKeys

k k k
n n n

k

Locality key key

Fig.2. The distribution of keys on 3 Map nodes

LELB

LELB

numKeys

k

k
n

k
n

k
n keykeyLocality

1

2 /)(）1（

snumMapNode

n

k
n

k
n

k
n keykeyLocality

1

2 /)(）2（

different situations:

MLSR

Figure 3. The execution flow of MLSR.

Supposed that the time complexity of

computation for n keys is fC(n)

the time complexity of communication for n

keys is fT(n)

The Cost of executing Local Reduce + Shuffle + Final Reduce is:

，)......(

)}(),......,(),(max{

)}(),......,(),(max{1

21

21

21

mC

mTiTiTi

mcCC

nnnf

nfnfnf

nfnfnfCost

0)(iTi nf 1where and

The cost of executing traditional Shuffle + Reduce is:

，)......(

)}(),......,(),(max{2

21

21

mC

mTiTiTi

nnnf

nfnfnfCost

)}({max)()1(12
1

NfNfCostCost iC

m

i
C

,
)(

)}({max
1 1

Nf

Nf

C

iC

m

i

 if

Cost1 is smaller than Cost2, that is, the scheme of “Local
Reduce + Shuffle + Final Reduce” will be applied.

MLSR

MLSR
Algorithm 2 MLSR (Map + Local Reduce +

Shuffle + Reduce) Algorithm
Input: kkey : the kth key

numKeys: the number of keys

numMapNodes: the number of Map Nodes

snumMapNodenRn 1, : load balance

scheduling scheme during

reduce phase generated

by LELBA

Output: scheduling scheme generated by MLSRA
1: for all snumMapNoden 1 do

2: for all numKeysk 1 do

3: if
n

k Rkey then

4: if Cost(Local Reduce+Shuffle+Reduce) of

 kkey is less than Cost(Shuffle+Reduce)

 of kkey then

5: local reduce for kkey on the nth nodes

6: end if

7: shuffle for kkey

8: end if

9: end for

10: end for

11: for all snumMapNoden 1 do

12: for all numKeysk 1 do

13: if
n

k Rkey then

14: local reduce for kkey on the nth nodes

15: end if

16: end for

17: end for

18: final reduce for kkey , numKeysk 1

Experiments

examples

• Word count

• Merge sort

different factors

• data sizes

• map tasks’ number

Experiments

Figure 9. The relationship between
the computing performance and
the size of data for Merge Sort.

Figure 10. The relationship between
the computing performance and

the number of map tasks for Merge Sort.

Experiments

Figure 9. The relationship between
the computing performance and
the size of data for word count.

Figure 10. The relationship between
the computing performance and

the number of map tasks for word count.

Conclusion

• This paper proposes a Locality-Enhanced Load Balance (LELB) algorithm

• And extends the execution flow of MapReduce to Map, Local reduce,
Shuffle and final Reduce (MLSR), then proposes a corresponding MLSR
algorithm.

• Use of the novel algorithms can share the computation of reduce and
overlap with shuffle in order to take full advantage of CPU and I/O
resources.

• The actual test results demonstrate that the execution performance
outperforms the execution performance using hadoop by up to 9.2%
(for Merge Sort) and 14.4% (for WordCount).

• S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen:Locality/fairness-
aware key partitioning for mapreduce in the cloud,” in Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference on.IEEE, 2010, pp. 17–24.

• S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu,“Handling
partitioning skew in mapreduce using leen,” Peer-to-Peer Networking
and Applications, vol. 6, no. 4, pp. 409–424, 2013.

• M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. S-toica,
“Improving mapreduce performance in heterogeneous environments,”
in OSDI, vol. 8, 2008, p. 7.

• Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in
mapreduce,” in Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE Computer
Society, 2012, pp. 419–426.

Reference

• Contact：
– Jianjiang Li

• lijianjiang@ustb.edu.cn

– Jie Wu
• jiewu@temple.edu

– Xiaolei Yang
• chinayangxiaolei@163.com

– Shiqi Zhong
• zhongshiqi1991@163.com

