

A Buffer Management Strategy on Spray and Wait Routing Protocol in DTNs

En Wang^{1,2}, Yongjian Yang¹, Jie Wu² and Wenbin Liu³

1 Department of Computer Science and Technology, Jilin University, Changchun, China

2 Department of Computer and Information Sciences, Temple University, Philadelphia, USA

3 Department of Software Engineering, Jilin University, Changchun, China

wangen0310@126.com; yyj@jlu.edu.cn; jiewu@temple.edu; nike_lwb@126.com

Outline

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

1.1 Motivation

- The dramatic change of topology and the frequent interruption of connections make it difficult to forward the message to the destination in DTNs
- To maximize delivery ratio, while reducing the network congestion, Spray and Wait adopts a binary splitting method to distribute a set number of copies into the network
- However, there is still partial congestion due to the limited buffer size, even in the Spray and Wait routing protocol.

1.2 Problem

 How to address the message scheduling and drop problem in Spray and Wait routing protocol (*M*: message id, *C*: message copies number, *R*: message remaining TTL).

1.2 Problem

- When a connection is established, which message to send first
- When overflow occurs, which message to drop

1.3 Challenge

• In order to optimize the delivery ratio, how to decide the message priority.

How to map the number of copies (C_i) and remaining TTLs (R_i) into message priority

 How to address message scheduling and drop problem according to the priority.

Outline

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

2.1 Mobility Model

- Definition 1: Intermeeting time: the elapsed time from the end of the previous contact to the start of the next contact between nodes in a pair
- Definition 2: Minimum intermeeting time: the minimum elapsed time for a specific node from the end of the previous contact to the start of the next contact with any other node.
- Intermeeting times are exponentially distributed under many popular mobility patterns such as random walk, random waypoint, and random direction.

$$f(x) = \lambda e^{-\lambda x} \ (x \ge 0)$$

2.1 Mobility Model: the random-waypoint (a) and the real trace EPFL (b)

2.2 Utility Model

Symbol	Meaning
N	Total number of nodes in the network
$K_{(t)}$	Number of distinct messages in the network at time t
TTL_i	Initial time-to-live (TTL) for message i
R_i	Remaining time-to-live (TTL) for message <i>i</i>
T_i	Elapsed time for message i since its generation
	$(T_i = TTL_i - R_i)$
$n_i(T_i)$	Number of nodes with message i in buffer after elapsed time T_i
$m_i(T_i)$	Number of nodes (excluding source) that have seen message i
	after elapsed time T_i
$d_i(T_i)$	Number of nodes that have dropped message i after elapsed time T_i
	$(d_i(T_i) = m_i(T_i) + 1 - n_i(T_i))$
E(I)	Mathematical expectation of intermeeting times
λ	Parameter in the exponential distribution of intermeeting times
	$\left(\lambda = \frac{1}{E(I)}\right)$
$E(I_{min})$	Mathematical expectation of the minimum intermeeting times
λ_{min}	Parameter in the exponential distribution of minimum
	intermeeting times $(\lambda_{min} = \frac{1}{E(I_{min})})$
C	The initial number of copies of message i in source node
C_i	The copies number of message i in the current node
U_i	Priority of message i
$P(T_i)$	Probability that message <i>i</i> has been successfully delivered
	after elapsed time T_i
$P(R_i)$	Probability that undelivered message i will reach the destination
	within time R_i
P_i	Probability that message i can be successfully delivered
P	Global delivery ratio

 The probability of message *i* being delivered is given by the probability that message *i* has been delivered and the probability that message *i* has not yet been delivered, but will be delivered during the remaining time R_i

$$P_i = (1 - P_{T_i})P_{R_i} + P_{T_i}$$

2.2 Utility Model

• Due to the reason that all the nodes including the destination have an equal chance of seeing the message *i*:

$$P(T_i) = \frac{m_i(T_i)}{N-1}$$

Probability that undelivered message *i* will reach the destination within time *R_i*:

$$P(R_i) = 1 - \prod_{k=0}^{\log_2^{C_i}} e^{-\lambda n_i(T_i)[R_i - kE(I_{min})]}$$

= $1 - e^{-\lambda n_i(T_i)[(\log_2^{C_i} + 1)R_i - \frac{1}{2(N-1)\lambda}\log_2^{C_i}(\log_2^{C_i} + 1)]}$

2.2 Utility Model

• We obtain the final expression for P_i as follows:

$$P_{i} = \frac{m_{i}(T_{i})}{N-1} + \left(1 - \frac{m_{i}(T_{i})}{N-1}\right)$$
$$\left(1 - e^{-\lambda n_{i}(T_{i})\left[(\log_{2}^{C_{i}} + 1)R_{i} - \frac{1}{2(N-1)\lambda}\log_{2}^{C_{i}}(\log_{2}^{C_{i}} + 1)\right]}\right)$$

• Note that the global delivery ratio P equals the sum of P_i :

$$P = \sum_{i=1}^{K_{(t)}} \left[\frac{m_i(T_i)}{N-1} + \left(1 - \frac{m_i(T_i)}{N-1}\right) \right]$$
$$\left(1 - e^{-\lambda n_i(T_i)\left[(\log_2^{C_i} + 1)R_i - \frac{1}{2(N-1)\lambda}\log_2^{C_i}(\log_2^{C_i} + 1)\right]}\right)$$

2.2 Utility Model

Three cases:

 $\begin{cases} \Delta(n_i) = 1 & \text{If replicate message } i \text{ during contact.} \\ \Delta(n_i) = 0 & \text{If no action for message } i \text{ is taken.} \\ \Delta(n_i) = -1 & \text{If drop an already existing message } i. \end{cases}$

• Therefore, the utility of message *i* is precisely the derivative of the delivery ratio P_i , which is defined as U_i

$$U_{i} = \left(1 - \frac{m_{i}(T_{i})}{N-1}\right) \lambda \left[(\log_{2}^{C_{i}} + 1)R_{i} - \frac{1}{2(N-1)\lambda} \log_{2}^{C_{i}} (\log_{2}^{C_{i}} + 1) \right]$$
$$e^{-\lambda n_{i}(T_{i})\left[(\log_{2}^{C_{i}} + 1)R_{i} - \frac{1}{2(N-1)\lambda} \log_{2}^{C_{i}} (\log_{2}^{C_{i}} + 1) \right]}$$

The higher U_i indicates that the message i is more important ۲

2.2 Utility Model

• Estimation of $m_i(T_i)$ and $n_i(T_i)$:

$$n_i(T_i) = m_i(T_i) + 1 - d_i(T_i)$$

• $d_i(T_i)$ is achieved as follows:

Data Structure:		Node ID	Dropp	ed List	t Record Time		
Node A		encoun	ter		Node B		
A	Messages:1,3,5	300	\langle	\Rightarrow	В	Messages:1,4,6	350
С	Messages:2,7,8	250	_		С	Messages: 2,8	200
			Į				
Node A						Node B	
A	Messages:1,3,5	300			В	Messages:1,4,6	350
В	Messages:1,4,6	350			Α	Messages:1,3,5	300
С	Messages:2,7,8	250			С	Messages:2,7,8	250

2.2 Utility Model

• $m_i(T_i)$ is estimated as follows:

Outline

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

3. Scheduling and Drop Strategy

3.1 Strategy

Algorithm 1 SDSRP			
Input:			
Copies number: C , Remaining TTL : R ,			
Number of messages in the buffer: n			
The ID of new coming message: m			
Output:			
Scheduling message: ID_S , Dropping message: ID_D			
1: for $i = 1$ to n do			
2: map C_i , R_i to $Priority_i$			
3: Sort $Priority_i$ incrementally			
4: Find highest $Priority_h$, and assign h to ID_S			
5: Find lowest $Priority_l$, and assign l to ID_D			
6: if connection up then			
7: return ID_S			
8: if buffer overflows then			
9: map C_m , R_m to $Priority_m$			
10: if $Priority_m < Priority_l$ then			
11: assign m to ID_D			
12: return ID_D			

Outline

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

4.1 Simulation parameters (random-waypoint)

Parameter	Random-Waypoint
Simulation Time	18000s
Simulation Area	4500m×3400m
Number of Nodes	100
Moving Speed	2m/s
Transmission Speed	250Kbps
Transmission Range	100m
Buffer Size	2MB,2.5MB,3MB,3.5MB,4MB,4.5MB,5MB
Message Size	0.5MB
Message generation rate	$[10,15][15,20][20,25] \cdots [35,40][40,45][45,50]$
TTL	300mins
Initial Copies Number	16,20,24,28,32,36,40,44,48,52,56,60,64

4.2 Four buffer management strategies

- 1. Spray and Wait adopts the FIFO (first in first out) buffer management strategy.
- 2. Spray and Wait-O regards the ratio between the remaining TTL and initial TTL as the priority.
- 3. Spray and Wait-C treats the ratio between the current message copies number and initial copies number as the priority.
- 4. SDSRP is our method, use Ui as the priority.

4.3 Simulation Results

4.3 Simulation Results

4.3 Simulation Results

4.4 Simulation parameters (EPFL)

Parameter	EPFL-Dateset
Simulation Time	18000s
Number of Nodes	200
Transmission Speed	250Kbps
Transmission Range	100m
Buffer Size	2MB,2.5MB,3MB,3.5MB,4MB,4.5MB,5MB
Message Size	0.5MB
Message generation rate	$[10,15][15,20][20,25] \cdots [35,40][40,45][45,50]$
TTL	300mins
Initial Copies Number	16,20,24,28,32,36,40,44,48,52,56,60,64

4.5 Simulation Results

4.5 Simulation Results

4.5 Simulation Results

Outline

- 1. Introduction
- 2. Model Description
- 3. Scheduling and Drop Strategy
- 4. Evaluation
- 5. Future Work

1. Future Work

- Other replication-based routing schemes
 - delegation forwarding, etc

• The problem of messages in different sizes

Thank You