
Efficient Microservice Deployment with Dependencies
in Multi-Access Edge Computing

1st Shuaibing Lu

Faculty of Information Technology

Beijing University of Technology

Beijing, China

The 29th IEEE International Conference on Parallel and Distributed Systems (ICPADS 2023)

2nd Ran Yan

Faculty of Information Technology

Beijing University of Technology

Beijing, China

3rd Jie Wu

Center for Networked Computing

Temple University

Philadelphia, USA

CONTENTS

1 Introduction

Model and Formulation

Experiment and Results

2

3

4

Algorithm Design

3

Edge computing is emerging

l The recent advances in edge computing technologies have enabled a
wide range of data-intensive and time-critical applications

l Edge systems → multiple services, a number of users…

Smart City Automated Driving AR/VR

4

Microservice architecture

l The limitations of traditional monolithic applications in terms of
scalability and flexibility.

l A lightweight and highly flexible architectural pattern.

5

Problem

l How to deploy the microservices with dependencies
especially under resource constrained edge computing
systems still remains a problem?

6

An example scenario

Server Computing capability Storage
capability

v1 5 3

v2 1 6

v3 2 2

v4 4 1

v5 3 2

link 𝒍(𝒗𝟏 ,𝒗𝟐) 𝒍(𝒗𝟐 ,𝒗𝟑) 𝒍(𝒗𝟑 ,𝒗𝟒) 𝒍(𝒗𝟒 ,𝒗𝟓) 𝒍(𝒗𝟓 ,𝒗𝟏) 𝒍(𝒗𝟐 ,𝒗𝟒)

bandwidth 3 5 4 1 2 3

7

Challenges
l 1. How can complex dependencies among microservices be effectively

dealt with to improve the overall efficiency?

l 2. How to balance the trade-off between processing and transmission
time for optimal deployment without overwhelming the resource
constraints?

CONTENTS

1 Introduction

Model and Formulation

Experiment and Results

2

3

4

Algorithm Design

9

Model and Formulation

q Model

• system model: 𝐒 = {𝑆!}, 𝑆! = {𝑀!, 𝐸!}, 𝑀! = {𝑚"
!}, 𝐸! = {𝑒#!→#"

! },

𝑉 = 𝑣% ! 𝐿 = {𝑙("","#)}

• computation model:

Required processing
capability

Computing capability
of edge server

𝑑& 𝑚"
! = 𝑥 𝑖, 𝑘 1 𝑞#!

#/𝑐(($)

10

Model and Formulation

q Model
• communication model:

Data flow size
between microservices

Communication capability
of edge server

𝑑* 𝑒#!→#"
! = 𝑦 𝑖, 𝑘 	 1 𝑟#!→#"

! /𝑏(($,(%)

11

Model and Formulation
q Model

• makespan model:

𝑓 𝑚,! = 𝑚𝑎𝑥∀",, 𝑓 𝑚"
! + 𝑑& 𝑚,! + 𝑑* 𝑒#!→#"

!

completion time of the
predecessor 𝑚%

&
computation time of 𝑚'& transmission time for

data transferred

𝑇! = 𝑚𝑎𝑥∀,,.#∈𝐒 𝑓 𝑚,!

𝐓 = 𝑚𝑎𝑥∀.#∈𝐒 𝑇!

the makespan of service 𝑆&

makespan of services in set S

12

q Formulation

Model and Formulation
objective function

constraints

P1: minimize∀#,% 𝐓 (1)

subject to ∑()*+ 𝑥(𝑖, 𝑘) = 1! (2)

 ∑%)*+ 𝑥(𝑖, 𝑘) ≤ 𝜙(,&) , (3)

𝑏(,& ,,') ≤ 𝜏, (4)

𝑥 𝑖, 𝑘 ∈ 0,1 , 𝑦 𝑖, 𝑗 ∈ 0,1 , ∀𝑖, ∀𝑗, ∀𝑘 (5)

Optimal Microservice Deployment with Dependencies (OMDD problem): OMDD problem is how to
find a strategy for microservice in S to minimize P1 under the constraints (2)-(5).

CONTENTS

1 Introduction

Background

Experiment and Results

2

3

4

Algorithm Design

14

enhanced graph construction

p prioritization among multiple services

15

Scenario 1: OMDD with no storage constraint

q Step 1: find the server 𝒗𝟎 with the highest computing capability

• Sort 𝑉 in descending order according to the server’s computing capability 𝑐('-).

q Step 2: deploy the microservices
• deploy all microservices on the server 𝑣)

How to balance the computing and communication resources?

Theorem : OMDD-US is an optimal solution for solving P1 under the constraints (7),
(9)-(11).

16

Scenario 2: OMDD with no communication constraint

q Step 1

• Sort 𝑉 in descending order according to the server’s computing capability 𝑐('-).

q Step 2
• Sort microservices in descending order of required computing capability 𝑞*..

q Step 3
• Deploy the microservices sorted in descending order to servers with stronger

computing capabilities.

how to balance the computing and storage resources?

Theorem : OMDD-UB is an optimal solution on solving P1 under the constraints (7)-
(8), (10).

17

Scenario 3: OMDD with constraints (7)-(10)

l Definition 1 (main path): The main path 𝑝# 	refers to the path with the maximum
weight arg max{𝑤((!)} of /𝕀.

l Definition 2 (preferred server): Let 𝑣° indicate the preferred server of V ,

where 𝑣° = 𝑚𝑎𝑥+(,") 𝑣-|,"./ . Here,𝜉(𝑣-) is the priority value of 𝑣- with the sum
of the computing capacity and the maximum bandwidth that is connected in g.

l Definition 3 (maximum cut): Let 𝐶(! indicate the maximum cut of path 𝑝# in /𝕀

which constructs by 𝜙,° microservices with the largest weights combination.

Theorem : The main path will become the critical path when server computation
capacities and inter-server bandwidths are equal, where 𝑐('.) = 𝑏('-,'/)|∀'.∈.,∀/(0-,0/)∈0 .

18

Scenario 3: OMDD with constraints (7)-(10)
q Step 1: a preliminary deployment method based on main path embedding

• find the main path with the maximum weight.

• Prioritize placement on preferred server 𝑣°.

• Compare the number of microservices on the main path with the capacity of the
servers; if the server capacity is less than the number of microservices on the main
path, perform partitioning.

q Step 2: improved simulated annealing algorithm
• Through multiple iterations, the simulated annealing algorithm gradually converges to

optimal solutions, thereby improving the quality and effectiveness of the deployment
strategy.

CONTENTS

1 Introduction

Model and Formulation

Experiment and Results

2

3

4

Algorithm Design

20

Experiment and Results

q Basic Setting

• Hardware: Windows 10 with an Intel(R) Xeon(R) Silver 4210R CPU @
2.40GHz, NVIDIA RTX5000 GPU, and 32GB memory.

• Dataset: China Telecom Shanghai Company(3,233 base station locations
and their corresponding user connections in June 2014.)

• Range: Randomly selected subsets of locations containing 6, 20, and 50
base stations. Each service was abstracted as a DAG and generated with
the number of 18, 50, and 120 microservices, respectively.

21

Experiment and Results

q Two Comparison algorithms

• Simulated Annealing-only (SA): Traditional annealing algorithm, generating
random initial values.

• Q-Learning (QL): States are composed of the allocation status of a series
of services. Each service can be assigned to different servers (edge nodes

or cloud) or remain unassigned, and the action space contains ∑234
5 𝑀6 ∗ 𝑉

actions. We select the deployment on the corresponding server according
to the Q table.

22

Experiment and Results

Fig. 2. 10 servers and 25 microservices.

Fig. 3. 20 servers and 50 microservices.

Fig. 4. 50 servers and 120 microservices.

23

Conclusion

n We investigate the microservice deployment problem with dependencies by
formulating to minimize the makespan of multiple services under the resources
constraints in multiaccess edge computing, and we theoretically analyze and
demonstrate the complexity of this problem through the proof of NP-hardness.

n We propose three microservice deployment strategies by offering flexibility
and adaptability for various application scenarios. We initially consider two
straightforward scenarios: one with unlimited storage resources under the
bandwidth constraint, and the other with unlimited bandwidth resources under
the storage constraint. For each of these two scenarios, we introduce a novel
enhanced graph construction method and design two optimal solutions.

24

Conclusion

n We then consider a more complicated scenario with resource limitations on
storage, computing, and communication. We produce a feasible solution by
introducing an effective embedding method based on the novel definitions of
the main path and preferred server, which are extracted based on the topology
features of the services and edge environment, respectively. Based on that, we
propose an updating method by introducing an improved simulated annealing
strategy, and we analyze the complexity.

n We conducted extensive experiments to compare our strategies with several
baselines based on the China Telecom Shanghai Company dataset, which was
constructed by the geographic information of 3,233 base stations. The results
are shown from different perspectives to provide conclusions.

25

THANK YOU

