
Optimizing Resource Allocation in Pipeline
Parallelism for Distributed DNN Training

Yubin Duan
Temple University, USA

Email: yubin.duan@temple.edu

Jie Wu
Temple University, USA
Email: jiewu@temple.edu

Abstract—Deep Neural Network (DNN) models have been
widely deployed in a variety of applications. Driven by privacy
concerns and great improvement in the computational power of
mobile devices, the idea of training machine learning models on
mobile devices has become more and more important. Directly
applying parallel training frameworks designed for data center
networks to train DNN models on mobile devices may not
achieve the ideal performance, since mobile devices usually have
multiple types of computation resources such as ASIC, neural
engine, and FPGA. Moreover, the communication time is not
negligible when training on mobile devices. With the objective
of minimizing DNN training time, we propose to extend the
pipeline parallelism, which can hide the communication time
behind computation for DNN training by integrating the resource
allocation. Fine-tuning the ratio of resources allocated to forward
and backward propagation can improve resource utilization.
We focus on homogeneous workers and theoretically analyze
the ideal cases where resources are linearly separable. We also
discuss the model partition and resource allocation for a more
realistic case. Additionally, we investigate the heterogeneous
worker case. Trace-based simulation results show that our scheme
can efficiently reduce the time cost of a training iteration.

Index Terms—DNN training, pipeline parallelism, machine
learning, model partition, resource allocation

I. INTRODUCTION

Machine learning models, especially deep neural networks
(DNNs), have been widely deployed in a variety of applica-
tions. With the rapid growth of available training data volume,
sizes of DNN models continuously increase to improve the
model accuracy. A large number of parameters in DNN
models makes the training process time-consuming. Usually,
the large DNN models are trained in data center clusters.
However, the service provider would acquire users’ privacy
data when training their DNN models, which raises data
security concerns. Moreover, the computation power of mobile
devices has been greatly improved in recent years. Driven by
these factors, the idea of training machine learning models on
a group of mobile devices is proposed [1]. For example, a
federated learning framework [2] keeps data locally and trains
DNN models on mobile devices. It is necessary to develop an
efficient distributed training scheme to speed up the training
process on a group of mobile devices.

Training DNN models is an iterative process. Each iteration
has two phases: forward and backward propagation. In forward

This research was supported in part by NSF grants CNS 2128378, CNS
2107014, CNS 1824440, CNS 1828363, CNS 1757533, CNS 1629746, and
CNS 1651947.

Worker 1 Worker 2 Worker 3 Worker 4

Forward

Backward

1
1

1
1

2
2

2
2

3
3

3

4
4

4
1

1
1

1

2
2

2
5

5
5

53 3
3

3

4 4
4

4
32 6

5
6

65
5

6

Conv layer

FC layer

Worker 1
Worker 2
Worker 3
Worker 4

Staleness

…
…
…
…

Time

Fig. 1. A DNN training pipeline for AlexNet.
propagation, training data is passed from input layers to output
layers. Each intermediate layer processes the output from the
previous layer using its corresponding model parameters and
activation functions. Backward propagation traverses the DNN
in reverse order. It calculates the gradient of model parameters
and updates the parameters accordingly. The backward propa-
gation cannot start until the result of the forward propagation
is calculated. Efficiently training DNN models in parallel is
challenging because of the bi-directional propagation property
and the fact that model parameters are frequently modified.

There are many parallelisms that are proposed to efficiently
train DNN models in data center networks. Data parallelism
is a commonly used approach, in which the training data is
divided and assigned to training devices. Workers need to
frequently synchronize the model parameters via parameter
servers [3] or AllReduce communication [4]. However, data
parallelism suffers from a large communication cost [5].
Model parallelism is another efficient approach to organize
multiple devices. In model parallelism, DNN model param-
eters are partitioned by layers. Each device is assigned to a
subset of parameters. However, the resource utilization ratio
is not high in model parallelism.

Notably, by expanding on the model parallelism, [5]–[7]
introduce pipeline parallelism that allows scalable DNN train-
ing. Similar to model parallelism, the DNN model is divided
among workers. Each worker has a set of consecutive DNN
layers. Importantly, the forward and backward propagation
phases of different input data are overlapped in a pipelined
manner. An example of pipeline parallelism is illustrated in
Fig. 1. The forward and backward propagation operations are
labeled by blue and green blocks, respectively. The number in
each block indicates the input data ID. A row of blocks shows
the operations taken by the corresponding worker in each time

slot. Worker 1 first performs the forward propagation for input
data 1 to 4 and then runs the backward propagation for input
data 1 after waiting for the output of worker 2. We use the
blocks in Fig. 1 labeled by 1 to explain the procedures of a
DNN training iteration.

Existing distributed training frameworks are usually de-
signed for data center networks. Directly applying those
frameworks to train DNNs on mobile devices may not achieve
the ideal performance, considering that mobile devices have
unique properties compared to data center clusters. Mobile
devices usually have a different type of computation unit,
which usually contains a CPU and one or more cores for spe-
cialist computation such as GPU, FPGA, and neural engines
[8], [9]. Therefore, we need to consider resource allocation
when training DNN models on mobile devices. Without proper
allocation, there would be idle bubbles in the training pipeline
as shown in Fig. 1, which enlarges the training makespan. In
addition, the communication latency of mobile communication
is usually larger than that in data center networks. Moreover,
mobile devices may have different hardware configurations.

Considering those observations, we propose to extend
pipeline parallelism for efficient DNN training in mobile
devices. We focus on pipeline parallelism since it can reduce
the training time by hiding the communication phase behind
the computation phase. Compared to data parallelism, using
pipeline parallelism can reduce the communication overhead.
Noticing that each worker device could have multiple types of
computational resources, we put the resource allocation into
consideration when partitioning DNN models among workers.
We theoretically analyze the model partition for homogeneous
workers where all worker devices are identical. For the ideal
case where all resources are linearly separable, an optimal
model partition algorithm based on binary search is demon-
strated. Then, we extend the algorithm to a more realistic
case where each device has two fixed types of computational
resources. Additionally, we discuss the pipeline parallelism
for heterogeneous workers that have different computational
power. Inspired by [10], we organize the pipeline into different
waves to fit different devices.

The contributions of our paper are summarized as follows:
• We investigate the pipeline parallelism for training DNNs

on mobile devices, which have multiple types of compu-
tational resources.

• We theoretically analyze the DNN model partition prob-
lem among homogeneous workers and take the resource
allocation into consideration.

• We discuss the pipeline parallelism for heterogeneous
training devices and illustrate a clustering algorithm to
organize those devices.

• Our trace-based simulation on several widely deployed
DNN models shows that our scheme can efficiently
improve resource utilization and reduce the training time.

II. RELATED WORK

Data parallelism distributes training data samples among
workers. Workers need to frequently synchronize local param-

eters with each other. The synchronization frequency can ad-
just the trade-off between communication overhead and model
convergence or training accuracy. Bulk synchronous parallel
[11] requires workers to wait for each other to finish each
training iteration. Asynchronous Parallel [12] allows a worker
to use stale versions of model parameters without waiting, but
the training may not converge. Stale synchronous parallel [13]
allows parameter staleness but it is bounded by a pre-defined
threshold. The communication overhead during synchroniza-
tion is usually large. Existing approaches that minimize the
communication cost include optimizing data and parameter
allocation [14] and model compression [15]. Different from
those approaches, we use pipeline parallelism to avoid the
massive communication volume caused by transmitting the
whole set of parameters.

Model parallelism splits DNN models among available
workers. Workers only need to send gradients across each
other instead of the whole parameter set, which helps to reduce
the communication burden. Challenges in model parallelism
include efficient model partition [16] and resource allocation
[17]. Moreover, the model parallelism may underutilize avail-
able resources [5], [6]. To overcome the shortcomings of the
model parallelism, GPipe [6] presents pipeline parallelism,
in which forward and backward propagation is overlapped
in a pipeline. PipeDream [5] further improves the resource
utilization in the pipeline parallelism by avoiding frequent
pipeline flushes. HetPipe [10] extends the pipeline parallelism
for heterogeneous GPU clusters. Different from those ap-
proaches, we consider the resource allocation problem when
partitioning DNN models for pipeline parallelism.

Another approach to accelerate DNN training is from the
perspective of system architecture optimization. PatDNN [18]
presents an architecture-aware compiler to optimize the DNN
training on mobile devices. This approach focuses on im-
proving the DNN training speed for each individual device.
In contrast, we consider the DNN training among a group
of mobile devices. Notably, we assume each device can
have multiple types of computation resources. It has been
shown that integrating multiple types of computation units to
hardware architecture can accelerate DNN-related applications
[19]. Integrating different types of computation resources
could speed up DNN training.

III. MODEL
A. Pipeline Parallelism of DNN Training

Before formulating the model partition problem, we first
introduce the procedures of DNN training in pipeline paral-
lelism. Training a DNN model consists of repeated iterations
of forward and backward propagation. Let L denote a DNN
model and li denote the i−th layer in the DNN model. Let
l0 and lk denote the input and output layers, respectively.
Training a DNN model can be viewed as repeatedly adjusting
parameters in functions represented by DNN layers such that
a loss function is minimized. Let ϕ(w1, w2, . . . , wk) denote
the loss function, where wi refers parameters in layer li. After
the backward propagation of iteration t, the model parameter
for the following iteration t+1 is updated using the following

equation: w(t+1) = w(t) − α · ∇ϕ(w1, w2, . . . , wk), where α
is the learning rate, and ∇ϕ denotes the gradient of ϕ.

In pipeline parallelism, the model parameters are partitioned
into multiple parts and are allocated among available workers.
Let V = {v1, v2, . . . vn} denote a set of workers. It is
worth noting that forward and backward operations among
workers are organized in a pipelined manner. Multiple workers
could simultaneously run forward and backward propagation
on input data of different minibatches. Let di denote the
minibatch of input data with label i. Additionally, we assume
forward and backward propagation on all workers takes a fixed
period of time. Then, in the startup phase of the pipeline,
i.e., before the backward propagation of d1 is completed,
vi can start forward propagation of input dj+1 when vi+1

is executing the forward propagation of input dj . After the
startup phase, vi may work on the forward propagation of
dj+n−i or the backward propagation of dj−1 when vi+1 is
running the backward propagation of input dj , where we
assume the pipeline depth is n.

B. Network Model
We consider training DNN models among mobile devices

using pipeline parallelism. We first focus on the case of homo-
geneous workers that have identical hardware configurations.
Let R = {r1, r2, . . . , rm} denote the set of different types
of computational resources available on workers, where m is
the total number of resource types. The value of rj represents
the computational power of the j-th type of resource. The
computational power can be quantified by the number of float-
ing operations per second. Let bi denote the communication
bandwidth of worker vi. For homogeneous workers, we omit
the subscript and use b for simplicity. Both the computational
power and the communication bandwidth can be evaluated by
running benchmark tests in advance. Therefore, we assume
that the values of rj and b are known before partitioning the
DNN model among workers.

When using pipeline parallelism, we need to partition the
DNN layers. Let q denote the pipeline depth. For homogeneous
workers, we assume n = q. This assumption is feasible even
if the number of mobile devices is greater than q since we can
evenly group available devices into q virtual workers. If the
mobile devices cannot be evenly divided, we treat such cases
as heterogeneous settings, which are discussed in Section V.
When n = q, the DNN model needs to be partitioned into
q parts. Let pi = (ls, lt) denote the partition of DNN layers
assigned to vi, where ls and lt represent the first and last
layer of vi’s partition, respectively. The partition pi inclusively
contains the DNN layers from ls to lt.

Our objective is to minimize the DNN training time. We
use τ to denote the overall makespan of DNN training. The
formulation of the makespan is based on the computation time
and communication time costs of workers. Let f(pi, rj) denote
the computation time of executing forward propagation of the
DNN partition pi on resource rj of vi. Similarly, let g(pi, rj)
denote the backward propagation time of pi on rj for worker
vi. We use the function h(pi, bi) to denote the communication

time of transmitting the output of pi on the communication
channel with bandwidth bi. The communication volume con-
sists of the output of forward or backward propagation, and is
fixed once the partition pi is determined. In general cases, it
is difficult to formulate these functions. We first theoretically
analyze an ideal case where these functions are linear and
the resources are linearly separable. Additionally, we discuss
a more realistic case where we profile the computation and
communication time on two types of resources and predict
the function values with regression models.

To simplify the theoretical analysis, we assume that the
computation and communication time are linear models. For
each type of resource rj , the computation time is proportional
to the ratio of computational workload. The workload of a
DNN partition can be measured by the number of floating
operations (flops) needed before completion. Formally, for
forward propagation, f(pi, rj) ∝ pi/rj , where we use pi to
represent the workload of the corresponding DNN partition
in order to reduce the number of notations. Similarly, for
backward propagation, g(pi, rj) ∝ pi/rj . The communication
time is also a linear function with respect to the bandwidth b.

We assume that the computational resources are linearly
separable. We can assign a portion of an arbitrary type of
resource rj to either forward or backward operations, without
causing additional computation overhead. Then, we have the
following definition for the resource allocation ratio.

Definition 1: For any worker, let βj (0 ≤ βj ≤ 1) denote
the percentage of resource rj which is allocated for forward
propagation. The ratio of rj that is allocated for backward
propagation is 1− βj .

The ratio βj does not change over time since the DNN
partition is fixed during training in pipeline parallelism. In the
linear model, the time consumption for forward and backward
proportion is enlarged by 1/βj when the computation power
is reduced to βjrj . Similarly, we assume that the computation
workload pi can be linearly divided among different resources.
Formally, f(pi, βjrj)/f(pi, rj) = g(pi, βjrj)/g(pi, rj) =
1/βj . Note that f(pi, βjrj) ̸= g(pi, βjrj) since the same
type of resources may have different efficient processing
speeds when calculating forward and backward propagation.
By adjusting the ratio of βj , we may have a better origination
of pipeline parallelism and reduce the resource idle time.

In our model, workers can simultaneously perform forward
and backward propagation on its available computational
resources in parallel. Different from the traditional pipeline
parallelism, where a worker can at most perform one operation
at a time, our scheme further enhances the parallelism level
for workers with multiple types of resources. Fig. 2 shows
the timetable for our extended pipeline parallelism. We allow
the parallel execution of forward and backward propagation
on the same worker. Data 1′, 2′, 3′, and so on is inserted
to fulfill the pipeline. Allowing the parallel execution not
only makes full use of computational resources, but also
provides opportunities to fine-turn the duration of forward
and backward operations. We also enable parallel execution
on works with one type of resource using time sharing. This

5
2
5

3
5

4
5

6
3
6

4
6

3

2

2

75’
2’
5’

3’
5’

4’
5’

6’
3’
6’

…
…
…
…

1 2 31’ 2’𝑣!

𝑣"
𝑣#

𝑣$
Time

Fig. 2. An illustration of pipeline parallelism.

gives us an opportunity to adjust the resource allocation ratio.
A proper resource allocation can reduce the resource idle time
and training makespan. We need to carefully adjust the ratio
of resource allocation on forward and backward operations.
Therefore, we propose to consider the resource allocation
problem when partitioning a DNN model among workers.
C. Problem Formulation

Our objective is to minimize the DNN training time. The
training makespan is mainly determined by the number of
iterations and the duration of each iteration. We assume that
the number of iterations is a constant value and focus on
the duration of forward/backward propagation and commu-
nication. The convergence properties of our training scheme
are analyzed in Section IV. As shown in Fig. 2, the forward
propagation, backward propagation, and communication time
in our extended pipeline parallelism are overlapped. Fig. 3
provides a closer look at the pipeline execution on worker vi.
Except during the pipeline startup phase, the DNN training
time is repeatedly built by the time period shown in Fig. 3. We
notice that the operation that has the largest length dominates
the training time and is the bottleneck of the training pipeline
and we aim to minimize the longest operations.

In our scheme, the lengths of forward and backward propa-
gation are mainly related to resource allocation and the DNN
model partition. Specifically, model partition determines the
workload of each worker and the resource allocation is used
to ensure each worker can achieve the maximum speedup.
Notably, the forward propagation time for DNN partition pi
can be formulated as f(pi,

∑m
j=1 βjrj), when considering the

resource allocation. Accordingly, the backward propagation
time of pi is g(pi,

∑m
j=1(1−βj)rj). The communication time

is h(pi, b), which is only varied with partition pi in our model.
Our problem can be formulated as the following equations:

minmax
vi∈V

{
f(pi,

∑m

j=1
βjrj),g(pi,

∑m

j=1
(1−βj)rj),h(pi,b)

}
(1)

s.t. 0 ≤ βj ≤ 1,∀1 ≤ j ≤ m (2)
∪vi∈V pi = L (3)

Eq. (1) shows our objective of minimizing the duration
of bottleneck operations in DNN training. Eq. (2) shows
the resource allocation constraint. We can split each type of
resources for forward and backward propagation operations.
βj is the ratio of resources allocated to forward propagation
and cannot exceed 1. Eq. (3) is the partition constraint. The
union of partitions allocated to all workers should cover all of
the layers of the DNN model L.

IV. PIPELINE FOR HOMOGENEOUS WORKERS
A. Resource Allocation

The resource allocation aims to balance the time consump-
tion of forward and backward propagation. When analyzing

𝑑!
𝑑!"#$%

𝑑%"&
𝑑!"#$%"&

𝑑!$& 𝑑%
𝑑!"'

𝑑!"#$%"'

𝑑!"&

𝑓 𝑝%, 𝑟!
𝑔 𝑝%, 𝑟!
ℎ 𝑝%,𝑏

Fig. 3. Closer look at pipeline execution. (Blue for forward propagation,
green for backward propagation, and yellow for communication)

the resource allocation, we assume that the DNN partition pi
for worker vi is given. To simplify theoretical analysis, we
focus on the ideal case where resources are linearly separable.
When workers are homogeneous, the available resources are
identical on all workers. We denote wi as a representative in
our discussion. We build the linear programming model to
calculate the optimal βj for each type of resource rj .

We only consider the forward and backward propa-
gation time for resource allocation since the commu-
nication volume does not change with allocation ra-
tios. The objective of resource allocation is to mini-
mize max

{
f(pi,

∑m
j=1βjrj), g(pi,

∑m
j=1(1− βj)rj)

}
. The

following lemma shows that f(pi,
∑m

j=1βjrj) equals to
g(pi,

∑m
j=1(1− βj)rj) for βj in the optimal solution.

Lemma 1: In the optimal resource allocation,
f(pi,

∑m
j=1βjrj) = g(pi,

∑m
j=1(1− βj)rj).

Proof: We use proof by contradiction. Assume
f(pi,

∑m
j=1βjrj) ̸= g(pi,

∑m
j=1(1 − βj)rj) in the

optimal solution. W.l.o.g, we assume f(pi,
∑m

j=1βjrj) >
g(pi,

∑m
j=1(1− βj)rj). Then, the objective function becomes

f(pi,
∑m

j=1βjrj). We can reduce f(pi,
∑m

j=1βjrj) by
increasing βj (for any betaj > 0) by a small value ϵ. In our
linear model, the forward propagation time f monotonically
decreases with more resources or larger βj . The value of
the objective function decreases, accordingly. βj is not the
optimal solution and there is a contradiction. Therefore, the
lemma holds in the optimal solution. ■

According to Lemma 1, the resource allocation is equivalent
to the following linear programming problem.

min f(pi,
∑m

j=1
βjrj) (4)

s.t. f(pi,
∑m

j=1
βjrj) = g(pi,

∑m

j=1
(1− βj)rj) (5)

0 ≤ βj ≤ 1,∀1 ≤ j ≤ m (6)

The problem shown by Eq. (4) can be efficiently solved by
linear programming solvers. Additionally, it has a closed-form
solution when f(pi, rj)/g(pi, rj) = c,∀1 ≤ j ≤ m, where c
is a constant. The value c represents the ratio between the
forward and backward propagation time which together use
the whole portion of resource rj . It is a common assumption
that the ratio is fixed when analyzing the pipeline parallelism
[5], [6]. The following theorem shows the optimal resource
allocation in such cases.

Theorem 1: The optimal resource allocation ratio βj =
c/(c + 1), if f(pi, rj)/g(pi, rj) = c, ∀1 ≤ j ≤ m, where
c is a constant.
Proof: We use the KKT conditions in the optimization the-
ory to show that βj = c/(c + 1) for 1 ≤ j ≤ m
is the optimal solution to the problem. Specifically, in the
linear model, f(pi,

∑m
j=1 βjrj) = c1pi/(

∑m
j=1 βjrj) and

g(pi,
∑m

j=1(1 − βj)rj) = c2pi/(
∑m

j=1(1 − βj)rj), where c1

and c2 are constant coefficients. From f(pi, rj)/g(pi, rj) = c,
we know that c1/c2 = c. For simplicity, we omit function
parameters in the following proof and use f and g to denote
f(pi,

∑m
j=1 βjrj) and g(pi,

∑m
j=1(1 − βj)rj), respectively.

Then, we show that the stationarity condition holds when
βj = c/(c + 1). Specifically, ∂f

∂βj
=

c1rjpi

(
∑m

j=1 βjrj)2
and

∂g
∂βj

=
c2rjpi

(
∑m

j=1(1−βj)rj)2
. Using βj = c/(c + 1) and the dual

parameter u = −2/c, we have 2 ∂f
∂βj
− u ∂g

∂βj
= 0 for all

1 ≤ j ≤ m, which shows that the stationarity condition is
satisfied. What’s more, the complementary slackness, primal
feasibility, and dual feasibility also hold. According to the
KKT conditions, βj = c/(c+1) is the optimal solution to the
primal problem. ■

B. DNN Model Partition
The resource allocation balances the forward and backward

propagation time for a individual worker. From Fig. 2, we
notice that the it is also important to balance workload
among different workers. Otherwise, workers with an ex-
tremely large workload would be stragglers and enlarge the
training makespan. In DNN partitioning, we also need to
consider the communication time in different partition besides
measuring the computation time of forward and backward
propagation. We take the resource allocation into consideration
when partitioning DNN models and illustrate an efficient DNN
partition algorithm based on binary search.

DNN partitioning aims to balance the workload among
different workers and reduce the training makespan, which
can be achieved by calculating the resource allocation βj for
available resources of each worker. The communication time is
evaluated by the function h(pi, b). The forward and backward
communication volume of a partition pi is determined by
the dimensions of the first and last layer in the partition,
respectively. Those values can be quickly retrieve from a
lookup table given a partition pi. It is difficult to find a
closed-form solution, and exploring all possible partitions
costs exponential time.

Although it is difficult to directly find the optimal partition,
we can verify if a feasible partition exists given a partition
limitation. Partition limitation is an upper bound restriction
on the longest operations among all workers. Formally, given
a limitation x, a feasible partition plan should guarantee that
maxvi∈V

{
f(pi,

∑m
j=1βjrj), g(pi,

∑m
j=1(1− βj)rj), h(pi, b)

}
≤ x. The feasibility check can be done in linear time. Starting
from the input layer l0 and empty partitions, we greedily find
the longest continuous DNN layers such that the time costs
of forward, backward, and communication operations on the
partition consists of those layers which do not exceed the
limitation. The greedy partition repeats until the all layers
are processed. If the greedy strategy can partition the DNN
in to n parts or less (but more than 0), the given partition
limitation is feasible. Otherwise, the limitation is increased.
DNN layers would at most be scanned n times, and the
feasibility check can be completed in O(nk) time.

Considering the feasibility check is efficient, we propose to
use binary search to find the smallest feasible partition limi-

Algorithm 1 DNN Partition
Input: DNN model L
Output: The partition of DNN layers for each worker

1: Initialize x← minli∈L{f(li, rj), g(li, rj), h(li, b)}
2: Initialize y ← maxli∈L{f(L, rj), g(L, rj), h(li, b)}
3: while x < y do
4: mid← (x+ y)/2
5: if P ← partition DNN with limitation mid is feasible

then
6: x← mid+ ϵ
7: else
8: y ← mid
9: return P

tation. Specifically, the lower bound of the feasible partition
limitation is minli∈L{f(li, rj), g(li, rj), h(li, b)}, since such a
partition would at least contain one DNN layer. There does not
exist a feasible partition limitation that is lower than this value.
Similarly, the upper bound of the feasible partition limitation
is maxli∈L{f(L, rj), g(L, rj), h(li, b)}. f(L, rj), g(L, rj) rep-
resent the longest computation time when the whole DNN
model is assigned to a single worker. maxli∈L h(li, b) finds
the worst communication time. We can use binary search to
find the smallest feasible partition limitation in the range with
granularity ϵ, where ϵ is a small constant. Through the value
of ϵ, we can adjust the trade-off between time efficiency and
performance of the partition algorithm.

The procedure of our DNN partition algorithm is shown in
Alg. 1. Lines 1 and 2 initialize the upper and lower bounds
of the partition limitation. Variables x and y store lower and
upper bounds, respectively. Then, the following loop searches
for the smallest feasible limitation. Specifically, we iteratively
update the partition limitation using the average value of the
current bounds x and y. We attempt to partition the DNN
model using mid as the partition limitation with our greedy
strategy. If there is no feasible partition, it means the partition
limitation mid is too small. In line 6, we increase the lower
bound x to mid + ϵ, where ϵ a constant hyperparameter.
Otherwise, the limitation mid is too large and we decrease y to
mid in line 8. The while loop terminates when x = y. Finally,
we return the last feasible set P which contains partition pi
for each worker vi. The smallest feasible partition limitation
is stored in x.

We use a loop invariance to show the correctness of our
DNN partition algorithm. In Alg. 1, the while loop guarantees
that x − ϵ is always an infeasible partition limitation and r
always stores a feasible partition limitation. Specifically, in
the while loop, if the branch at line 6 is taken, then we know
mid is an infeasible limitation. After assigning mid+ ϵ to x,
x− ϵ is infeasible. On the other hand, if the branch at line 8
is taken, then mid is a feasible limitation. After updating in
line 8, y = mid is also a feasible limitation. Those invariant
properties hold during the while loop. Finally, when the loop
terminates, we have x = y. According to the loop invariance,
x − ϵ is infeasible and x = y is feasible. This means that

1
5

2
5

3
5

4
5

2
6

3
6

4
6

3

2

2

3
7

4
7

41’
5’

2’
5’

3’
5’

4’
5’

2’
6’

3’
6’

4’
6’

3
7’

5
6

5
7

5’
6’

4’
7’

𝑣!
𝑣"

𝑣#
𝑣$

Fig. 4. Idle blocks in heterogeneous settings.

x is the smallest feasible limitation under search granularity
ϵ. Therefore, the up-to-date partition P corresponding to x
stores the optimal DNN partition that minimizes our objective
function shown in Eq. (1).

C. Convergence Analysis
In pipeline parallelism, there are staleness issues when

considering parameter updates. Specifically, when a worker
performs a forward propagation, it may not use the most up-
to-date model parameters. For example, in Fig. 2, when worker
1 performs the forward propagation on input data 6, it can only
use the model parameters updated by data 1 instead of all first
five pieces of data. It is because the backward propagation
on data 2, 3, and 4 have not been passed to worker 1 yet.
Staleness is related to model convergence. If staleness is not
bounded, the DNN model may not converge during training.

Staleness refers to the number of missing updates when
processing data from the current minibatch. The staleness can
be bounded by using the weight stashing techniques proposed
in [5]. Specifically, a worker may keep multiple versions
of model parameters, and use the most up-to-date version
available when performing the forward propagation. After each
round of forward propagation, a copy of the model parameters
is stored in the memory. After k steps delay, the copy is
used to calculate the backward propagation on the same set
of data minibatch. There is a trade-off between memory cost
and the staleness bound or the model accuracy. We show that
the model still converges with a staleness bound.

Following the analysis in [13], we show that the DNN
model regret is bounded with an assumption that the com-
ponent function ϕ is convex and has bounded subdifferential
||∇ϕ(W)|| ≤ c1, where c1 is a constant. The new charac-
teristic used in the proof is that the distance between model
updates are bounded by another constant c2. Let s denote the
staleness of the model update, the regret can be bounded as
shown in the following theorem.

Theorem 2: Suppose the component function ϕ is convex,
its subdifferential ||∇ϕ(W)|| ≤ c1, and the distance between
two updates is bounded by c2, where c1 and c2 are constants.
Then, the regret is bound as R[W] ≤ 4c1c2

√
2ns/T , where

T is the number of updates.
Proof: The proof follows procedures similar to those shown in
[13]. The key characteristic is that the the staleness is bounded
by a constant value in pipeline parallelism. ■

V. PIPELINE FOR HETEROGENEOUS WORKERS

If a worker in the pipeline has different computation abili-
ties, there will be resource idle slots during training as shown
in Fig. 4. It would reduce the resource utilization and enlarge
the training makespan. Therefore, we aim to group heteroge-
neous devices into q groups, where q is the pipeline depth, such
that the difference of computation abilities among workers

is minimized. We assume devices in the same group can
collaborate without additional overhead. Formally, each device
v ∈ V has a resource vector that indicates the computation
speed of each resource rj . The set of heterogeneous devices
are grouped into q workers. To separate mobile devices and
workers, we use Vi ⊂ V to denote a worker which contains
multiple devices. We assume that the resource vector of Vi

is the summation of resource vectors of devices v ∈ Vi.
Formally, the computation ability of a worker Vi is evalu-
ated by max f(pi,

∑
v∈Vi

∑m
j=1 rj), g(pi,

∑
v∈Vi

∑m
j=1 rj). A

higher value means a longer computation time and a weaker
computation power.

The objective of our device group problem is
to minimize the training duration of the slowest
worker. Formally, we aim to find a set of workers to
minmaxVi{f(pi,

∑
v∈Vi

∑m
j=1rj),g(pi,

∑
v∈Vi

∑m
j=1rj)}. It

is not trivial to evenly group the heterogeneous devices.
Even if the cost function is submoduler, it is challenging
to achieve an average partition [20]. We follow a local
search heuristic to group heterogeneous devices. Start from
an empty set, we iteratively choose the worker that has the
smallest computation ability (or have the largest value of
max{f(pi,

∑
v∈Vi

∑m
j=1rj), g(pi,

∑
v∈Vi

∑m
j=1rj)}) and then

give it an unassigned worker that would induce the largest
decrease on the objective function value.

The detailed procedure of our device group algorithm is
shown in Alg. 2. Specifically, line 1 initializes workers as an
empty set, i.e, contains no devices. Then, the loop in lines 2-3
initializes the cost function for each worker. The cost function
value represents the time duration of the overlapped forward
and backward propagation. The following while loop in lines
4-8 updates the device partition. Line 5 chooses the worker
with the largest cost which is the current bottleneck. If there
are several workers that have the same cost, we arbitrarily
choose one. Line 6 picks a device that has not been assigned
yet. The device which can reduce the cost function the most
is chosen. Line 7 adds the chosen device to worker Vi. Line 8
removes it from the unsigned device list. Then, the loop repeats
until all devices are properly assigned to workers. Eventually,
workers that group heterogeneous devices are returned.

Theorem 3: The time complexity of the worker grouping
algorithm is O(n2m).
Proof: Lines 1-3 use linear time to initialize the worker set and
the cost functions. Within the while loop, line 5 takes at most
O(q) time to find the slowest worker. Line 6 needs at most
O(nm) time to choose the device that can induce the largest
reduction on the cost function. Specifically, evaluating the
value of max{f(pi,

∑
v∈Vi

∑m
j=1rj), g(pi,

∑
v∈Vi

∑m
j=1rj)}

costs linear time according to our analysis in the previous
subsection. At most we need to evaluate the cost function
value n times, once for each device in V . Lines 7 and 8
costs constant time if we use hash set to store V and Vi for
i = 1, 2, . . . , q. The while loop at most has O(n) iterations.
Therefore, the time complexity of the worker grouping algo-
rithm is O(q + n2m) = O(n2m). ■

Algorithm 2 Grouping Heterogeneous Devices
Input: Heterogeneous device set V , depth of the pipeline q
Output: Workers that group heterogeneous devices Vi, i =

1, 2, . . . , q
1: Vi ← ∅ for all i = 1, 2, . . . , q
2: for i = 1, 2, . . . , q do
3: initialize the cost function of each worker, cost(Vi)←

max{f(pi,
∑

v∈Vi

∑m
j=1rj), g(pi,

∑
v∈Vi

∑m
j=1rj)}

4: while V is not empty do
5: choose the worker Vi with the largest cost
6: v∗ ← argmaxv∈V cost(Vi)− cost(Vi ∪ v∗)
7: assign v∗ to Vi.
8: remove v∗ from V
9: return Vi, i = 1, 2, . . . , q as workers

VI. EVALUATION
A. Simulation Setup

We use trace-based simulation to evaluate the performance
of our resource allocation and model partition algorithms. We
use the PyTorch library to implement the DNN training.
We profile the computation time of forward and backward
propagation on mobile devices. Specifically, we use a laptop
that has an Intel i7 CPU, a GTX 1650 GPU, and 32GB RAM
as a relatively powerful device. We treat the CPU and GPU in
the laptop as different computation resources and separately
profile the forward and backward propagation time on each
resource. Other types of mobile devices include a laptop with
Intel i5 CPU, a Intel Iris Xe GPU and a Raspberry Pi 4B with
a Cortex-A72 CPU. The forward propagation output and time
consumption of each layer can be easily measured using the
torch.nn package. The forward and backward propagation
time of different layers on different resources is recorded in a
lookup table. We use the table and our linear model to simulate
the time consumption of forward and backward propagation
when only a part of resource is used.

We also measure the actual communication volume among
devices during training. The distributed computing package of
PyTorch does not provide APIs to measure the communi-
cation time. We build the communication interface between
devices using the gRPC package. Each gRPC message con-
tains a field to store forward or backward tensors and a field
to store timestamps. Usually, machine learning engines send
encoded tensors instead of plain tensors in communication.
To measure the accurate communication volume, we use
tensor.save() and tensor.load() APIs to encode
and decode tensors for communication. A virtual interface
BytesIO is used to flushed the encoded tensors in memory.

B. Simulation Results

We illustrate the result under different pipeline depths. In
this set of simulations, the laptop with an Intel i7 CPU and
GTX 1650 GPU is used as a worker. The number of workers
equals to the pipeline depth. The DNN model is partitioned
based on the pipeline depth. We compare the average time con-
sumption of a training epoch. Without resource allocation, the

(a) AlexNet (b) GoogLetNet
Fig. 5. Evaluating the impact of pipeline depth.

(a) AlexNet (b) GoogLeNet
Fig. 6. Comparison over resource allocation ratios.

default computation power allocated on forward propagation
is 50%. The simulation results are shown in Fig. 5.

Fig. 5(a) illustrates the training time for AlexNet [21]. We
can observe the speedup of training time when adding more
workers. The speedup is no longer obvious when there are
8 workers. This is because the AlexNet is relatively small.
Generating too many partitions is not necessary. Additionally,
we find that considering the resource allocation in DNN
partition helps reduce the training time. When pipeline depth
is 4, the improvement is about 5.7% compared to traditional
pipeline parallelism. Fig. 5(b) illustrates the simulation results
on GoogLeNet [22]. We find a more obvious speed up when
the number of workers increases in this case. Compared
to AlexNet, considering the resource allocation can bring
more benefits for GoogLeNet. When pipeline depth is 4, the
improvement is about 7.3%. Simulation results show that our
resource allocation scheme helps to reduce the training time.

Then, we investigate the impact of different resource alloca-
tion ratios on homogeneous workers. In this set of simulations,
we adjust the ratio of computation resources that are allocated
for forward propagation. Formally, we change the value of βj

for each type of resource. In the simulation, the mobile device
has two types of computation resources. According to Theo-
rem 1, β1 = β2 in the optimal allocation. Hence, we changes
the value of β1 and β2 in the experiment, but keep β1 = β2.
The simulation results are shown in Fig. 6. From the figure,
we find that allocating too much or too little computation
power on forward propagation increases the time consumption
of each training epoch. Backward propagation usually needs
more computation power. Allocating more power on forward
propagation has a more significant impact on the batch training
time compared to allocating less power.

Comparing Fig. 6(a) and Fig. 6(b), we find that train-
ing GoogLeNet requires a greater proportion of computation
resources compared to training AlexNet. Additionally, from
the figure, we find that the pipeline depth does not have
a significant impact on the resource allocation ratio. For a
specific DNN model, it is usually built with some repeated
blocks. For example, GoogLeNet repeats inception models

(a) AlexNet (b) GoogLeNet

Fig. 7. Evaluating the impact of heterogeneous workers.

multiple times. Despite different partitions, the ratio between
the time consumption of forward and backward propagation
is similar. The simulation results show that it is necessary
to optimize the resource allocation, which helps reduce the
makespan of DNN training in pipeline parallelism.

Additionally, we evaluate the performance of our scheme
with heterogeneous devices. We generate heterogeneous de-
vice sets with different sizes. To build each set, we randomly
pick from three types of devices. Then, we group hetero-
geneous devices together. Each group of devices is treated
as a worker for training. We assume that the resources on
different devices in the same worker group can be shared
without additional overhead since we aim to test if our
worker grouping algorithm can evenly partition heterogeneous
devices. The pipeline depth equals the number of groups in
the simulation. We compare our device grouping algorithm
with a brute force (BF) method and a sorting-based method.
BF explores all possible combinations of devices and finds
the optimal worker cluster. However, its time complexity is
exponential. In the sorting approach, devices are sorted based
on their overall computation power in ascending order. Start
from the slowest device, we continuously add devices to a
group until the group’s total computation power exceeds the
average computation power of all devices.

For heterogeneous settings, we investigate the performance
of our algorithm on different DNN models. The pipeline depth
is 4 in this set of simulations. Fig. 7 shows the average training
time of each epoch of AlexNet and GoogLeNet. From the
figure, we find that the performance of our device grouping
algorithm is close to the optimal one. Notably, our algorithm
does not explore all possible combinations and has polynomial
time complexity. The sorting-based algorithm does not per-
form well especially when the number of workers is large. The
performance gap between the sorting-based approach and our
algorithm is more obvious for GoogLeNet. This is because that
the computation workload of GoogLeNet is larger compared
to AlexNet. Evenly grouping mobile devices can balance the
training pipeline among workers.

VII. CONCLUSION

We discuss the resource allocation and model partition prob-
lem in pipeline parallelism. Different from existing pipeline
parallelism, we consider the resource allocation problem in
DNN model partition. For homogeneous workers, we theo-
retically analyze the resource allocation for the ideal case
where the resources are linearly separable. We show a partition
algorithm based on the resource allocation scheme to split

DNN models among workers. Moreover, we investigate the
case of heterogeneous mobile devices. We present a local-
search-based algorithm to group heterogeneous devices into
workers. We try to balance the computation power among
workers when grouping devices. Our simulation results show
that considering resource allocation for model partitioning can
improve resource utilization. Grouping heterogeneous workers
helps to reduce the training time.

REFERENCES

[1] R. Gu, S. Yang, and F. Wu, “Distributed machine learning on mobile
devices: A survey,” arXiv preprint arXiv:1909.08329, 2019.

[2] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimiza-
tion: Distributed optimization beyond the datacenter,” arXiv preprint
arXiv:1511.03575, 2015.

[3] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in OSDI, 2014, pp. 583–598.

[4] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce scheduling
for expediting distributed DNN training,” in IEEE INFOCOM, 2020.

[5] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in ACM SOSP, 2019, pp. 1–15.

[6] Y. Huang et al., “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” arXiv preprint arXiv:1811.06965, 2018.

[7] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia et al., “Dapple: A pipelined data parallel approach for
training large models,” in ACM PPoPP, 2021, pp. 431–445.

[8] C. Xu, S. Jiang, G. Luo, G. Sun, N. An, G. Huang, and X. Liu, “The
case for fpga-based edge computing,” IEEE TMC, 2020.

[9] Z. M. Fadlullah and N. Kato, “Hcp: Heterogeneous computing platform
for federated learning based collaborative content caching towards 6g
networks,” IEEE Transactions on Emerging Topics in Computing, 2020.

[10] J. H. Park, G. Yun, M. Y. Chang, N. T. Nguyen, S. Lee, J. Choi,
S. H. Noh, and Y.-r. Choi, “Hetpipe: Enabling large DNN training on
(whimpy) heterogeneous GPU clusters through integration of pipelined
model parallelism and data parallelism,” in ATC 20, 2020, pp. 307–321.

[11] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[12] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” arXiv preprint
arXiv:1106.5730, 2011.

[13] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson,
G. R. Ganger, and E. P. Xing, “More effective distributed ml via a stale
synchronous parallel parameter server,” NIPS, 2013.

[14] Y. Duan, N. Wang, and J. Wu, “Minimizing training time of distributed
machine learning by reducing data communication,” IEEE Transactions
on Network Science and Engineering, pp. 1–1, 2021.

[15] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li, “Distributed
hierarchical gpu parameter server for massive scale deep learning ads
systems,” arXiv preprint arXiv:2003.05622, 2020.

[16] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[17] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in ICML’17, pp. 2430–2439.

[18] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“Patdnn: Achieving real-time dnn execution on mobile devices with
pattern-based weight pruning,” in ASPLOS, 2020, pp. 907–922.

[19] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. of the IEEE, 2017.

[20] K. Wei, R. K. Iyer, S. Wang, W. Bai, and J. A. Bilmes, “Mixed
robust/average submodular partitioning: Fast algorithms, guarantees, and
applications.” in NIPS, 2015, pp. 2233–2241.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in IEEE CVPR, 2015, pp. 1–9.

