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1. On Problem Solving

How to Solve It (Poyla, 1945)

If you can’t solve a problem, then there is 
an easier problem you can solve: find it.

Is Computing An Experimental Science ? (Milner, 1986) 

A theory can only emerge through 

protracted exposure to application.

Ideas and applications developed side-by-side
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2. Mobile Cloud Computing (MCC)

 Cloud/Edge Computing

 Application-driven: VR/AR, 
video analytics using IoTs

 Better QoE: cloud computing 
and mobile/edge device

 Key indicators: latency, 
accuracy, energy, and privacy

 Latency-sensitive: how to 
bring rich computational 
resources to mobile users? 50 billion IoT devices by 2020
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DNN Inferencing

 Deep Neural Networks (DNNs)
 Technologies:  GPU (graphic) and TPU (tensor)

 AI applications
 Computer vision: AlexNet, VGG-16, Inception, RandWire

 Natural language processing: GPT-3

 Graph models of DNNs
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Convolution NNs

 CNNs (image classification)

 convolution (filtering), pooling (max/avg), fully-connected (neurons)

T
X

Presenter
Presentation Notes
The convolution layer (CONV) uses filters that perform convolution operations as it is scanning the input II with respect to its dimensions. Its hyperparameters include the filter size FF and stride SS. The resulting output OO is called feature map or activation map.



Sample CNNs
AlexNet (Red: CONV, Gray: POOL, Blue: FC)
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Offloading

 Three-stage collaborative computation offloading
 Local computation: processing on local devices
 Communication: transmitting intermediate DNN layers’ outputs
 Remote computation:  completing the remote processing in cloud

 Three models
 On-device optimization
 Cloud-only offloading
 Mixed-mode offloading
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Offloading Samples

 Given a partition (i.e., cut)
 Course-grained pipeline: local, comm, and remote
 Fine-grained pipeline: path-based 

(c) fine-grained pipelineT
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3. Optimal Scheduling
 DNN Computation Offloading Optimization (DCOO)

 DCOO: optimal scheduling (in terms of minimum makespan) 

for a given partition (i.e., cut).

 Cases of DNN
 Line-structure: trivial 
 Multi-path: hard
 DAG: hard

Theorem 1: DCOO is NP-hard for a multi-path DNN.

Proof: Reduce 3-machine flow-shop to DCOO.
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 Single-path

 Straightforward solution, even without a given cut

 Multi-path 

 Path: a path from input to cut or from cut to output

 Non-overlaps among paths (except input and output)

 E.g.,  v1-v2-v4, v1-v3, v6, v5-v6

Theorem 2: In multi-path DNNs, the optimal schedule can 

be achieved via the non-preemptive path-based schedule.

Multi-Path Scheduling



Extended Johnson Algorithm (EJA)

Path p(i) in three stages
 P1(i), P2(i), P3(i)

Linear solution (EJA)

 Dividing paths into H and L

 E.g., H = {1}, L = {3, 4, 2}
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Theorem 3*: If stage 2 is dominated by either stage 1 or 3,     

max{min p1(i), min p3(i)} ≥ max p2(i), EJA is optimal.

If Theorem 3 fails, EJA still achieves an approximation ratio of 5/3+.

 4

Optimality

*Chen et al, A new heuristic for three-machine flow shop scheduling, OR, 1996.
+Framinan et al, A review and classification of heuristics for permutation flow
shop scheduling with makespan objectives, JORS, 2004.
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Simulation

 Local and Cloud
 Local: Raspberry Pi, Cloud: Amazon EC2

 Algorithms
 LO: local only, EJA: Extended Johnson’s Algorithm,

DSL: no fine-grained pipeline, RO: remote only



Extensions
 General structure: DAG

 Conversion to multi-path
 Replicated nodes at join and fork

 Heuristic solution
 Scheduling: EJA on multi-path

 Execution: Replicated node executed once (the first time)
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Multiple DNNs Offloading to Edges
Internet of Vehicles: smart city
 Autonomous driving systems: perception is a key

 Multiple cameras/sensors: multiple (identical) DNNs

 V2X: V (vehicle), I (infrastructure), N (network), P (pedestrian)

Presenter
Presentation Notes
200 sensors: Radar, Light Detection and Ranging sensors, Sonar, Global Navigation Satellite Systems (GNSS)



4. Optimal Partition and Scheduling 

 Multiple line-structure DNNs
 AlexNet and VGG-16
 Video analytics and VR/AR

 Optimal partition and scheduling
 Brute force: O(kn)

n: # of copies, k: # of layers

 Existence of a better solution?
 Exploring special application properties



Johnson Algorithm (JA)

 Closer look at the optimality for EJA
 max{min p1(i), min p3(i)} ≥ max p2(i)

 However, p3(i) ≈ 0, reduced to 2-stage pipeline

AlexNet

Johnson, Optimal Two- and Three-Stage Production Schedules With Set-
up Time Included, Naval Research Logistics Quarter, 1954.
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JA in Illustration

 Optimality is guaranteed: JA on 2-stage pipeline

 First six layers of AlexNet
 One copy for each partition 6 copies

 H = {1, 2, 3}, increasing order of blue

 L = {4, 5, 6}, decreasing order of red

 Comm.-domination (or comp.-domination)
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Multiple Line-Structure Example
 Two copies of line-structure DNN

 Three possible partitions and scheduling



Special Application Property

 Line-structure (as the layer increases)
 Computation time: linear increasing (convex) function
 Communication time: monotonic decreasing convex function

 Computation vs. communication
 Data size: 2 – 12 MB
 Speed (uplink): 2-5 Mpbs (4G) and 6-54 Mpbs (WiFi)



Optimization Approximation
 Two functions on the continuous space

 Both comp. and comm. are convex
 One increasing and one decreasing

Theorem 4: A uniform partition of n line DNNs at the 
intersection will guarantee an approximation of 1 + 1

𝑛𝑛
.

Formal Proof: convex optimization
 Intersection point has the 

min {max {comp., comm.}} for n copies

 Strong duality, then KKT, the uniform partition has the 

least max { ∑comp., ∑comm. }



Optimization Approximation (cont’d)

 Informal proof
 Pair-wise “merge” and “replaced” by the middle-point

𝑓𝑓 𝑥𝑥 + 𝑓𝑓 𝑥𝑥′

2
≥ 𝑓𝑓(

𝑥𝑥 + 𝑥𝑥′

2
)

 Height of the intersection x* ≤ any max {comp., comm.}

 Two gaps: first pair in comm. and last pair in comp.

0nly one is counted in comm.-domination or comp.-domination

 When n → ∞, 1 + 1
𝑛𝑛

= 1

→



Sufficient Condition for Optimality
 For a given set of partitions

 Left/right most partition:  (comps, comml ) / (compl, comms)
 Intersection partition: (compm,  commm)

Theorem 5: The uniform partition beats the given set if
3compm < comps + compl + comms  and 3commm < comps + comml + comms 



Simulation (cont’d)

 Partition methods
 Joint Partition and Scheduling: JPS, Brute Force: BF

 Application
 VGG-16, AlexNet, and AlexNet’ (curve fitting) with n = 1, …, 29



Simulation (cont’d)

 Discrete version of intersection
 Intersection: 𝑥𝑥 ∗,  right: ⌈𝑥𝑥 ∗⌉ and left: ⌊𝑥𝑥 ∗⌋
 Ratio:  |𝑥𝑥 ∗-⌈𝑥𝑥 ∗⌉ ∶ 𝑥𝑥 ∗ - ⌊ 𝑥𝑥 ∗⌋|

 AlexNet VGG-16



5. Conclusions and Future Work
 Offloading as a Service

 Edge/cloud networks

 Different DNNs
 Single path, multi-path, and DAG

 Joint partition and scheduling
 Johnson’s rule and its extensions using pipelines
 Unique properties of comp. and comm. of DNNs

 Future work 
 Multi-tier offloading: edge and then cloud pipeline
 Optimal partition and scheduling of special DAGs

⌊



6. Some Reflections
Back to the past: interconnection networks
 Randomly wired NNs (random graphs): neuroscience
 Erdos-Renyi (ER): random, Barabasi-Albert (BA): preferential
 Watts-Strogatz (WS): small-world

⌊

Xie et al, Exploring Randomly Wired Neural Networks for Image Recognition, ICCV’19
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Avoiding: Reinventing the Wheel 

Reference searching practice
 1 to 3 iterative process: references, references’ references

Knowledge span 
 Career span: 5 to 7 years in MS + PhD period

Art of citations
 Good practice for citation: yearly distributions

Zheng and Wu, Snowballing Effects in Preferential Attachment, ICCCN’15
T
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Questions

Collaborators: Ning Wang (Rowan U.) and Yubin Duan (Temple U.) 
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