MACRO: Incentivizing Multi-leader Game-based Pareto-efficiency Crowdsourcing for Video Analytics

Yu Chen, Sheng Zhang, Ziying Zhou, Xiaokun Wang, Yu Liang, Ning Chen, Yuting Yan, Mingjun Xiao, Jie Wu, Zhuzhong Qian and Harry Xu

Nanjing University
Crowdsourcing

• Crowdsourcing: Crowd + Outsourcing
 – Turning to a Crowd of People to Obtain the Needed Data or Data Analysis Services
 – Basic Components: Task Requestor, Platform, Worker

Get Results from Mechanical Turk Workers
- Ask workers to complete HITs – Human Intelligence Tasks – and get results using Mechanical Turk. Get started.

As a Mechanical Turk Requester you:
- Have access to a global, on-demand, 24×7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you’re satisfied with the results

Make Money by working on HITs
- HITs – Human Intelligence Tasks – are individual tasks that you work on. Find HITs now.

As a Mechanical Turk Worker you:
- Can work from home
- Choose your own work hours
- Get paid for doing good work

Get your account, Load your tasks, Get results

Requestors Platforms Worker Pool

2024/6/12
Video Analytics

- Workers Equipped with Mobile Devices for Video Analytics
 - Mobile Devices: Mobile Phone, Tablets, Intelligent Vehicle
 - Video Analytics: Computer Vision Methods (e.g., Object Detection, Identification and Tracking) based on DNN Models (e.g., YOLO)
 - Typical Applications: Image Labelling, Mobile Sensing and Traffic Prediction
Crowdsourcing for Video Analytics

- Crowdsourcing for Video Analytics
 - Platforms hire proper workers, send video data to them, and select the configurations (frame rates, resolutions and models) to maximize their profits

- Existing Related Works:
 - Type 1: Address Conflicts among Workers
 - E.g., LOL [Infocom'22], LOL-C [TMC'24]
 - Type 2: Address Conflicts among Platforms
 - E.g., Crowd2 [Infocom'23]

- Research Gap:
 - Conflicts between platforms and workers can arise
Conflicts between Platforms and Workers

• **Different Optimization Goals** when Determining Video Analytics Configurations
 – Platforms recruit workers and strategically select the configurations to maximize their accuracy-based profits
 – Workers can flexibly accept the task or not, and tailor the configurations for their energy consumption-related individual gains
Conflicts between Platforms and Workers

• **Problem Formulation:**

 - Determine the video analytics configuration: frame rate $0 \leq f_{n,m} \leq F_n, \forall n \in \mathcal{N}, \forall m \in \mathcal{M}$

 - For each platform $n \in \mathcal{N}$, the optimization problem is formulated as

 \[
 \mathcal{P}^P_{1,n} : \max_{f_{n}} U^P_n(f_{n}) = \sum_{m=1}^{M} u^P_{n,m}(f_{n,m}) = \sum_{m=1}^{M} G_n(a_{n,m})
 \]

 \[
 \text{s.t.} \sum_{m=1}^{M} \frac{f_{n,m}}{F_n} R_n b_{n,m} \leq B_n
 \]

 - Meanwhile, the optimization problem for each worker $m \in \mathcal{M}$ is formulated as

 \[
 \mathcal{P}^W_{1,m} : \max_{f_{m}} U^W_m(f_{m}) = \sum_{n=1}^{N} u^W_{n,m}(f_{n,m}) = \omega_m(e^d_m + e^c_m)
 \]

 \[
 \text{s.t.} \sum_{n=1}^{N} f_{n,m} c_{n,m} \leq C_m
 \]

• **Major Challenge:**

 - It’s hard for platforms to optimally determine workers’ video analytics configurations for maximum accuracy-based profits while considering workers’ energy-related gains

2024/6/12
Overview of Our Work: MACRO

- **Multi-Platform Game for Pareto Efficiency (PE)**
 - [Alg. 1] For multi-platform game, we achieve the Pareto efficiency for platforms via a dual ascent-based method to determine proper video analytics configurations.

- **Incentivized Multi-Leader Game for Multi-Leader Stackelberg Equilibrium (MSE)**
 - [Alg. 2, Alg. 3] For multi-leader game, we design the incentive function and its incentive factor updating strategy, and present an incentive maximization method, reaching MSE.
Multi-Platform Game for Pareto Efficiency

• Before additionally considering workers' individual gains, we first maximize platforms' accuracy-based profits via a dual ascent-based approach (Alg. 1)

 – **Main Idea:** Maximize the Social Welfare of All Platforms, $\sum_{n=1}^{N} U_n^P (f_n,.)$

 – **Theoretical Analysis:** **Pareto Efficiency** can be achieved by Alg. 1, where no platform can change its strategy to increase its payoff without decreasing others' in multi-platform game

Algorithm 1: Dual Ascent for PE in Multi-platform Game

```
Input: R_n, b_{n,m}, F_n, B_n, c_{n,m}, C_m, \forall n \in \mathcal{N}, m \in \mathcal{M}
1 t \leftarrow 0, and Randomly Initialize f^0, \lambda^0 and \mu^0;
2 while t < T_{max} do
3 \quad f^{t+1} \leftarrow \arg \min_{f} \mathcal{L}(f, \lambda^{t}, \mu^{t});
4 \quad \lambda_{n}^{t+1} \leftarrow \lambda_{n}^{t} - \eta(\sum_{m=1}^{M} \frac{B_{n,m} - f_{n,m}^{t+1} - B_{n}}{F_{n,m}}), \forall n \in \mathcal{N};
5 \quad \mu_{m}^{t+1} \leftarrow \mu_{m}^{t} - \eta(\sum_{n=1}^{N} c_{n,m} f_{n,m}^{t+1} - C_{m}), \forall m \in \mathcal{M};
6 \quad t \leftarrow t + 1;
```

Output: $f_{T_{max}}$.
Incentivized Multi-Leader Game for MSE

- Considering workers’ gains inconsistent with platforms’, workers are encouraged to contribute to platforms’ Pareto efficiency via an incentive-based method
 - Two Layer Iteration (**Inner Layer for Workers** + **Outer Layer for Platforms**):
 - Inner Layer (Alg. 2): Workers’ Updating their Frame Rates f

 Design Incentive Function for Worker $m \in \mathcal{M}$: Covering Worker’s Utility, Platform’s Utility and Incentive Value

 $$l_m(\theta, m, f, m) = \sum_{n=1}^{N} u_{n,m}^P(f_{n,m}) + u_{n,m}^W(f_{n,m}) + (i - \theta_{n,m}f_{n,m})$$

 Main Idea: Maximize the Sum of All Workers’ Incentive Functions, $\sum_{m=1}^{M} l_m(\theta, m, f, m)$

 Algorithm 2: ADMM-based Optimization for Frame Rate

 ![Algorithm 2](image)

 Optimize the Sum of All Workers’ Incentive Functions
Incentivized Multi-Leader Game for MSE

- Considering workers’ gains inconsistent with platforms’, workers are encouraged to contribute to platforms’ Pareto efficiency via an incentive-based method
 - **Two Layer Iteration (Inner Layer for Workers + Outer Layer for Platforms):**
 - **Outer Layer (Alg. 3):** Platforms’ Updating their Incentive Factors θ
 - **Design Goal:** How to motivate workers to contribute to platforms’ PE when maximizing their incentives?
 - **Recall:** Workers’ Incentive Functions
 - $I_m(\theta, m, f, m) = \sum_{n=1}^{N} u_{n,m}^P(f_{n,m}) + u_{n,m}^W(f_{n,m}) + (\hat{l} - \theta_{n,m}f_{n,m})$
 - **Main Idea:** Leverage the Marginal Utility of Workers to Update the Incentive Factors $\frac{\partial u_{n,m}^W(f_{n,m})}{\partial f_{n,m}}$

Algorithm 3: Incentive Mechanism MACRO for MSE

- **Input:** $R_n, b_{n,m}, F_n, B_n, c_{n,m}, C_n, \forall n \in N, m \in M$
- $t \leftarrow 0$, and Randomly Initialize f^0, λ^0 and μ^0;
- **while Inequation (23) upon f^t is Not Satisfied do**
 - **Update Incentive Factors:**
 - $t \leftarrow t + 1$;
 - Invoke Alg. 2 with Input $(t, \theta^t, f^{t-1}, \lambda^{t-1}, \mu^{t-1})$, and Output $(f^{t, \tau_{max}}, \lambda^{t, \tau_{max}}, \mu^{t, \tau_{max}})$;
 - $(f^t, \lambda^t, \mu^t) \leftarrow (f^{t, \tau_{max}}, \lambda^{t, \tau_{max}}, \mu^{t, \tau_{max}})$;
- **Output:** f^t, θ^t.

2024/6/12
Incentivized Multi-Leader Game for MSE

- Considering workers’ gains inconsistent with platforms’, workers are encouraged to contribute to platforms’ Pareto efficiency via an incentive-based method
 - Two Layer Iteration (Inner Layer for Workers + Outer Layer for Platforms)
 - Theoretical Analysis:
 - Multi-leader Stackelberg equilibrium can be achieved
 - Specifically, platforms’ Pareto efficiency is guaranteed, and none of the platforms and workers have incentives to alter their strategies for higher payoff when others’ keep unchanged
Evaluation

• Trace-Driven Experiments
 – Video Dataset AICity and PANDA, yolov7 models, F1-Score based Accuracy
 – Transmission Energy $\sim N(5,0.5) \times 10^{-6} \text{ J}$, Computation Energy $\sim N(5,0.5) \text{ J per Frame}
 – Revenues G_n and ω_m Generated from Sales Product Dataset
 – Bandwidth Budget B_n in $[10, 25]$, Computation Capacity C_m in $[3, 21]$

• Evaluated:
 – How does Alg. 1 converge for Pareto efficiency?
 – How do Alg. 2 and Alg. 3 converge for multi-leader Stackelberg equilibrium?
 – How is the scalability of MACRO?
Converge for Pareto efficiency

- How does Alg. 1 converge for Pareto efficiency?

Platform cannot change its frame rate to improve the social welfare.
Converge for MSE

- How do Alg. 2 and Alg. 3 converge for multi-leader Stackelberg equilibrium?

Convergence of Incentive Utility

MSE for Workers

MSE for Platforms

Worker and platform cannot change their strategies to raise their utility
Scalability of MACRO

• How is the scalability of MACRO?

MACRO improves the social welfare by 26% on average

Varying Number of Workers

Various Video Content Types

Various Video Resolution
Conclusion

• MACRO: firstly considering the platform-worker conflicts for video analytics tasks upon crowdsourcing
 – For multi-platform game, we achieve the Pareto efficiency for platforms via a dual ascent-based method to determine proper video analytics configurations
 – For multi-leader game, we design the incentive function and its incentive factor updating strategy, and present an incentive maximization method, reaching the multi-leader Stackelberg equilibrium